|
22 | 22 |
|
23 | 23 |
|
24 | 24 | def _create_column_transformer(
|
25 |
| - preprocessors: Dict[str], |
| 25 | + preprocessors: Dict, |
26 | 26 | numerical_columns: List[str],
|
27 | 27 | categorical_columns: List[str],
|
28 | 28 | ) -> ColumnTransformer:
|
@@ -329,14 +329,14 @@ def _get_columns_info(
|
329 | 329 | # Make sure each column is a valid type
|
330 | 330 | for i, column in enumerate(X.columns):
|
331 | 331 | column_dtype = self.dtypes[i]
|
332 |
| - if column_dtype.name in ['category', 'bool']: |
| 332 | + if column_dtype in ['category', 'bool']: |
333 | 333 | categorical_columns.append(column)
|
334 | 334 | feat_type.append('categorical')
|
335 | 335 | # Move away from np.issubdtype as it causes
|
336 | 336 | # TypeError: data type not understood in certain pandas types
|
337 | 337 | elif not is_numeric_dtype(column_dtype):
|
338 | 338 | # TODO verify how would this happen when we always convert the object dtypes to category
|
339 |
| - if column_dtype.name == 'object': |
| 339 | + if column_dtype == 'object': |
340 | 340 | raise ValueError(
|
341 | 341 | "Input Column {} has invalid type object. "
|
342 | 342 | "Cast it to a valid dtype before using it in AutoPyTorch. "
|
@@ -368,7 +368,7 @@ def _get_columns_info(
|
368 | 368 | "Make sure your data is formatted in a correct way, "
|
369 | 369 | "before feeding it to AutoPyTorch.".format(
|
370 | 370 | column,
|
371 |
| - column_dtype.name, |
| 371 | + column_dtype, |
372 | 372 | )
|
373 | 373 | )
|
374 | 374 | else:
|
|
0 commit comments