@@ -133,7 +133,7 @@ Search for an ensemble of machine learning algorithms
133133 .. code-block :: none
134134
135135
136- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7efbed0116d0 >
136+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f0eb3815eb0 >
137137
138138
139139
@@ -162,7 +162,7 @@ Print the final ensemble performance
162162
163163 .. code-block :: none
164164
165- <smac.runhistory.runhistory.RunHistory object at 0x7efbed0212b0 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
165+ <smac.runhistory.runhistory.RunHistory object at 0x7f0eb35b7790 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
166166 data_loader:batch_size, Value: 64
167167 encoder:__choice__, Value: 'OneHotEncoder'
168168 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -194,7 +194,7 @@ Print the final ensemble performance
194194 scaler:__choice__, Value: 'StandardScaler'
195195 trainer:StandardTrainer:weighted_loss, Value: True
196196 trainer:__choice__, Value: 'StandardTrainer'
197- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0013036727905273438 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
197+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0013079643249511719 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
198198 data_loader:batch_size, Value: 64
199199 encoder:__choice__, Value: 'OneHotEncoder'
200200 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -226,7 +226,7 @@ Print the final ensemble performance
226226 scaler:__choice__, Value: 'StandardScaler'
227227 trainer:StandardTrainer:weighted_loss, Value: True
228228 trainer:__choice__, Value: 'StandardTrainer'
229- , ta_runs=1, ta_time_used=2.208378314971924 , wallclock_time=3.245152473449707 , budget=5.555555555555555), TrajEntry(train_perf=0.14619883040935677, incumbent_id=2, incumbent=Configuration:
229+ , ta_runs=1, ta_time_used=2.003859281539917 , wallclock_time=3.0306620597839355 , budget=5.555555555555555), TrajEntry(train_perf=0.14619883040935677, incumbent_id=2, incumbent=Configuration:
230230 data_loader:batch_size, Value: 54
231231 encoder:__choice__, Value: 'OneHotEncoder'
232232 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -259,31 +259,26 @@ Print the final ensemble performance
259259 trainer:MixUpTrainer:alpha, Value: 0.8559230573827334
260260 trainer:MixUpTrainer:weighted_loss, Value: True
261261 trainer:__choice__, Value: 'MixUpTrainer'
262- , ta_runs=18, ta_time_used=113.46635627746582 , wallclock_time=169.39868116378784 , budget=50.0)]
263- {'accuracy': 0.8728323699421965 }
262+ , ta_runs=18, ta_time_used=191.332772731781 , wallclock_time=243.9774169921875 , budget=50.0)]
263+ {'accuracy': 0.861271676300578 }
264264 | | Preprocessing | Estimator | Weight |
265265 |---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
266- | 0 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
267- | 1 | None | CatBoostClassifier | 0.12 |
268- | 2 | None | RFClassifier | 0.12 |
269- | 3 | SimpleImputer,NoEncoder,NoScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
270- | 4 | None | ExtraTreesClassifier | 0.1 |
271- | 5 | None | KNNClassifier | 0.1 |
272- | 6 | SimpleImputer,OneHotEncoder,StandardScaler,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
273- | 7 | None | SVC | 0.08 |
274- | 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
275- | 9 | SimpleImputer,OneHotEncoder,StandardScaler,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
276- | 10 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
277- | 11 | SimpleImputer,OneHotEncoder,StandardScaler,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
278- | 12 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
266+ | 0 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
267+ | 1 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
268+ | 2 | None | CatBoostClassifier | 0.18 |
269+ | 3 | None | SVC | 0.18 |
270+ | 4 | None | RFClassifier | 0.08 |
271+ | 5 | None | ExtraTreesClassifier | 0.06 |
272+ | 6 | None | KNNClassifier | 0.06 |
273+ | 7 | SimpleImputer,OneHotEncoder,MinMaxScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
279274
280275
281276
282277
283278
284279 .. rst-class :: sphx-glr-timing
285280
286- **Total running time of the script: ** ( 5 minutes 21.948 seconds)
281+ **Total running time of the script: ** ( 5 minutes 19.640 seconds)
287282
288283
289284.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py :
0 commit comments