@@ -133,7 +133,7 @@ Search for an ensemble of machine learning algorithms
133133 .. code-block :: none
134134
135135
136- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f17d1cd15e0 >
136+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7fd84a7ed670 >
137137
138138
139139
@@ -162,7 +162,7 @@ Print the final ensemble performance
162162
163163 .. code-block :: none
164164
165- <smac.runhistory.runhistory.RunHistory object at 0x7f17d1d96e50 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
165+ <smac.runhistory.runhistory.RunHistory object at 0x7fd84a7edc40 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
166166 data_loader:batch_size, Value: 64
167167 encoder:__choice__, Value: 'OneHotEncoder'
168168 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -194,7 +194,7 @@ Print the final ensemble performance
194194 scaler:__choice__, Value: 'StandardScaler'
195195 trainer:StandardTrainer:weighted_loss, Value: True
196196 trainer:__choice__, Value: 'StandardTrainer'
197- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0011916160583496094 , budget=0), TrajEntry(train_perf=0.1578947368421053, incumbent_id=1, incumbent=Configuration:
197+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0013194084167480469 , budget=0), TrajEntry(train_perf=0.1578947368421053, incumbent_id=1, incumbent=Configuration:
198198 data_loader:batch_size, Value: 64
199199 encoder:__choice__, Value: 'OneHotEncoder'
200200 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -226,7 +226,7 @@ Print the final ensemble performance
226226 scaler:__choice__, Value: 'StandardScaler'
227227 trainer:StandardTrainer:weighted_loss, Value: True
228228 trainer:__choice__, Value: 'StandardTrainer'
229- , ta_runs=1, ta_time_used=3.463505744934082 , wallclock_time=4.493630886077881 , budget=5.555555555555555), TrajEntry(train_perf=0.14035087719298245, incumbent_id=2, incumbent=Configuration:
229+ , ta_runs=1, ta_time_used=4.939751625061035 , wallclock_time=5.972339868545532 , budget=5.555555555555555), TrajEntry(train_perf=0.14035087719298245, incumbent_id=2, incumbent=Configuration:
230230 data_loader:batch_size, Value: 170
231231 encoder:__choice__, Value: 'NoEncoder'
232232 feature_preprocessor:Nystroem:kernel, Value: 'cosine'
@@ -260,34 +260,32 @@ Print the final ensemble performance
260260 trainer:MixUpTrainer:alpha, Value: 0.758019642405335
261261 trainer:MixUpTrainer:weighted_loss, Value: False
262262 trainer:__choice__, Value: 'MixUpTrainer'
263- , ta_runs=15, ta_time_used=109.08182263374329, wallclock_time=159.79244685173035, budget=50.0)]
264- {'accuracy': 0.861271676300578}
265- | | Preprocessing | Estimator | Weight |
266- |---:|:------------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
267- | 0 | None | CBLearner | 0.18 |
268- | 1 | SimpleImputer,OneHotEncoder,Normalizer,KernelPCA | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
269- | 2 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
270- | 3 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
271- | 4 | SimpleImputer,NoEncoder,Normalizer,KitchenSink | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
272- | 5 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
273- | 6 | SimpleImputer,OneHotEncoder,Normalizer,PowerTransformer | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
274- | 7 | SimpleImputer,NoEncoder,Normalizer,KernelPCA | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
275- | 8 | SimpleImputer,OneHotEncoder,MinMaxScaler,PowerTransformer | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
276- | 9 | SimpleImputer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
277- | 10 | None | RFLearner | 0.02 |
278- | 11 | None | ETLearner | 0.02 |
279- | 12 | None | SVMLearner | 0.02 |
280- | 13 | None | KNNLearner | 0.02 |
281- | 14 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
282- | 15 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
263+ , ta_runs=15, ta_time_used=163.56785583496094, wallclock_time=220.1450080871582, budget=50.0)]
264+ {'accuracy': 0.8554913294797688}
265+ | | Preprocessing | Estimator | Weight |
266+ |---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
267+ | 0 | SimpleImputer,OneHotEncoder,Normalizer,KernelPCA | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.18 |
268+ | 1 | None | KNNLearner | 0.16 |
269+ | 2 | None | SVMLearner | 0.12 |
270+ | 3 | None | CBLearner | 0.1 |
271+ | 4 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
272+ | 5 | SimpleImputer,OneHotEncoder,Normalizer,PowerTransformer | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
273+ | 6 | None | RFLearner | 0.06 |
274+ | 7 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
275+ | 8 | SimpleImputer,OneHotEncoder,MinMaxScaler,PowerTransformer | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
276+ | 9 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
277+ | 10 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
278+ | 11 | SimpleImputer,OneHotEncoder,Normalizer,TruncSVD | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
279+ | 12 | SimpleImputer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
280+ | 13 | None | ETLearner | 0.02 |
283281
284282
285283
286284
287285
288286 .. rst-class :: sphx-glr-timing
289287
290- **Total running time of the script: ** ( 5 minutes 34.529 seconds)
288+ **Total running time of the script: ** ( 5 minutes 25.958 seconds)
291289
292290
293291.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py :
0 commit comments