44IRSA Queries (`astroquery.ipac.irsa `)
55*************************************
66
7- Getting started
7+ Getting Started
88===============
99
1010This module provides access to the public astrophysics catalogs,
1616Below we provide examples of common searches.
1717
1818
19- Catalog search
19+ Catalog Search
2020--------------
2121
2222Available IRSA catalogs
@@ -201,8 +201,8 @@ with the ``spatial`` parameter set to ``"All-Sky"``.
201201.. TODO: add example, that is runnable, but still potentially useful.
202202
203203
204- Selecting Columns
205- -----------------
204+ Selecting columns
205+ ^^^^^^^^^^^^^^^^^
206206
207207The IRSA service allows to query either a subset of the default columns for
208208a given table, or additional columns that are not present by default. This
@@ -246,7 +246,7 @@ available about the columns in a `~astropy.table.Table`.
246246
247247
248248Async queries
249- --------------
249+ ^^^^^^^^^^^^^
250250
251251For bigger queries it is recommended using the ``async_job `` keyword option. When used,
252252the query is send in asynchronous mode.
@@ -262,7 +262,7 @@ the query is send in asynchronous mode.
262262 J000009.78-355736.9 0.0407905 -35.9602605 0.0454 ... 0.0005762523295116 -0.5872239888098030 100102010 8873706189183
263263
264264Direct TAP query to the IRSA server
265- -----------------------------------
265+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
266266
267267The `~astroquery.ipac.irsa.IrsaClass.query_tap ` method allows for a rich variety of queries. ADQL queries
268268provided via the ``query `` parameter is sent directly to the IRSA TAP server, and the result is
@@ -293,8 +293,17 @@ returned as a `~pyvo.dal.TAPResults` object. Its ``to_table`` or ``to_qtable`` m
293293 202.809023 46.964558 15.874 0.081 ... 15.322 0.188 AAC 000
294294
295295
296+ Image Search
297+ ------------
298+
299+ The `~astroquery.ipac.irsa ` module provides an interface to image searches as well.
300+ This is primarily based on performing IVOA Simple Image Access, version 2 (SIAv2)
301+ queries against the IRSA services.
302+ An auxiliary interface is provided to allow users to identify subsets -- "collections" --
303+ of the available image data, typically associated with individual missions.
304+
296305Simple image access queries
297- ---------------------------
306+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^
298307
299308`~astroquery.ipac.irsa.IrsaClass.query_sia ` provides a way to access IRSA's Simple
300309Image Access VO service. In the following example we are looking for Spitzer
@@ -308,7 +317,7 @@ Enhanced Imaging products in the centre of the COSMOS field as a `~astropy.table
308317 `IRSA tutorials
309318 <https://caltech-ipac.github.io/irsa-tutorials/#accessing-irsa-s-on-premises-holdings-using-vo-protocols> `__.
310319
311- For more info, visit the `IRSA documentation <https://irsa.ipac.caltech.edu/ibe/sia_v1.html >`__
320+ For more info, visit the `IRSA documentation <https://irsa.ipac.caltech.edu/ibe/sia_v1.html >`__.
312321
313322.. doctest-remote-data ::
314323
@@ -319,35 +328,17 @@ Enhanced Imaging products in the centre of the COSMOS field as a `~astropy.table
319328 >>> coord = SkyCoord(' 150.01d 2.2d' , frame = ' icrs' )
320329 >>> spitzer_images = Irsa.query_sia(pos = (coord, 1 * u.arcmin), collection = ' spitzer_seip' )
321330
322- To list available collections for SIA queries, the
323- `~astroquery.ipac.irsa.IrsaClass.list_collections ` method is provided, and
324- will return a `~astropy.table.Table `. You can use the ``servicetype ``
325- argument to filter for image or spectral collections using ``'SIA' `` or
326- ``'SSA' `` respectively. You can also use the ``filter `` argument to show
327- only the collections with the given filter strings in the collection names.
331+ The collection name, ``spitzer_seip `` in this example,
332+ can be obtained from the collection-query API detailed below.
328333
329- .. doctest-remote-data ::
334+ The result, in this case in ``spitzer_images ``, is a table of image metadata in the IVOA "ObsCore" format
335+ (see the `ObsCore v1.1 documentation
336+ <https://www.ivoa.net/documents/ObsCore/20170509/index.html> `__).
330337
331- >>> from astroquery.ipac.irsa import Irsa
332- >>> Irsa.list_collections(servicetype = ' SIA' , filter = ' spitzer' )
333- <Table length=38>
334- collection
335- object
336- -------------------
337- spitzer_abell1763
338- spitzer_clash
339- spitzer_cosmic_dawn
340- spitzer_cygx
341- spitzer_deepdrill
342- ...
343- spitzer_spuds
344- spitzer_srelics
345- spitzer_ssdf
346- spitzer_swire
347- spitzer_taurus
348-
349- Now open a cutout image for one of the science images. You could either use
350- the the IRSA on-premise data or the cloud version of it using the
338+ Now you can open the FITS image and, if desired, make a cutout from
339+ one of the science images.
340+ You could either use
341+ the the IRSA on-premises data or the cloud version of it using the
351342``access_url `` or ``cloud_access `` columns. For more info about fits
352343cutouts, please visit :ref: `astropy:fits_io_cloud `.
353344
@@ -360,7 +351,7 @@ cutouts, please visit :ref:`astropy:fits_io_cloud`.
360351 >>> with fits.open(science_image[' access_url' ], use_fsspec = True ) as hdul:
361352 ... cutout = Cutout2D(hdul[0 ].section, position = coord, size = 2 * u.arcmin, wcs = WCS(hdul[0 ].header))
362353
363- Now plot the cutout.
354+ Now you can plot the cutout.
364355
365356.. doctest-skip ::
366357
@@ -386,8 +377,39 @@ Now plot the cutout.
386377 plt.imshow(cutout.data, cmap='grey')
387378 plt.show()
388379
380+ Collection queries
381+ ^^^^^^^^^^^^^^^^^^
382+
383+ To list available collections for SIA queries, the
384+ `~astroquery.ipac.irsa.IrsaClass.list_collections ` method is provided, and
385+ will return a `~astropy.table.Table `.
386+ You can use the ``filter `` argument to show
387+ only collections with a given search string in the collection names.
388+ The ``servicetype `` argument is used to filter for image collections, using ``'SIA' ``,
389+ or spectral collections (also see below), using ``'SSA' ``.
390+
391+ .. doctest-remote-data ::
392+
393+ >>> from astroquery.ipac.irsa import Irsa
394+ >>> Irsa.list_collections(servicetype = ' SIA' , filter = ' spitzer' )
395+ <Table length=38>
396+ collection
397+ object
398+ -------------------
399+ spitzer_abell1763
400+ spitzer_clash
401+ spitzer_cosmic_dawn
402+ spitzer_cygx
403+ spitzer_deepdrill
404+ ...
405+ spitzer_spuds
406+ spitzer_srelics
407+ spitzer_ssdf
408+ spitzer_swire
409+ spitzer_taurus
410+
389411
390- Simple spectral access queries
412+ Simple Spectral Access Queries
391413------------------------------
392414
393415`~astroquery.ipac.irsa.IrsaClass.query_ssa ` provides a way to access IRSA's Simple
0 commit comments