@@ -184,7 +184,7 @@ def registerFunction(self, name, f, returnType=StringType()):
184184
185185 :param name: name of the UDF
186186 :param f: python function
187- :param returnType: a :class:`DataType` object
187+ :param returnType: a :class:`pyspark.sql.types. DataType` object
188188
189189 >>> sqlContext.registerFunction("stringLengthString", lambda x: len(x))
190190 >>> sqlContext.sql("SELECT stringLengthString('test')").collect()
@@ -226,8 +226,8 @@ def createDataFrame(self, data, schema=None, samplingRatio=None):
226226 from ``data``, which should be an RDD of :class:`Row`,
227227 or :class:`namedtuple`, or :class:`dict`.
228228
229- When ``schema`` is :class:`DataType` or datatype string, it must match the real data, or
230- exception will be thrown at runtime. If the given schema is not StructType, it will be
229+ When ``schema`` is :class:`pyspark.sql.types. DataType` or datatype string, it must match the real data, or
230+ an exception will be thrown at runtime. If the given schema is not StructType, it will be
231231 wrapped into a StructType as its only field, and the field name will be "value", each record
232232 will also be wrapped into a tuple, which can be converted to row later.
233233
@@ -236,7 +236,7 @@ def createDataFrame(self, data, schema=None, samplingRatio=None):
236236
237237 :param data: an RDD of any kind of SQL data representation(e.g. row, tuple, int, boolean,
238238 etc.), or :class:`list`, or :class:`pandas.DataFrame`.
239- :param schema: a :class:`DataType` or a datatype string or a list of column names, default
239+ :param schema: a :class:`pyspark.sql.types. DataType` or a datatype string or a list of column names, default
240240 is None. The data type string format equals to `DataType.simpleString`, except that
241241 top level struct type can omit the `struct<>` and atomic types use `typeName()` as
242242 their format, e.g. use `byte` instead of `tinyint` for ByteType. We can also use `int`
0 commit comments