Description
Prerequisites
Please answer the following questions for yourself before submitting an issue.
- [ Yes] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- [ Yes] I carefully followed the README.md.
- [ Yes] I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
- [Yes ] I reviewed the Discussions, and have a new bug or useful enhancement to share.
Expected Behavior
Installed flash_attn==2.6.1 and passing to Llama(flash_attn=True) for Gemma-2
it is should enable flash_attn
Current Behavior
The Llama engine shows:
llama_new_context_with_model: flash_attn is not compatible with attn_soft_cap - forcing off
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
Environment and Context
A100 x 1 GPU (90GB), 24 CPU, 220 GB vRAM
Running bartowski/gemma-2-27b-it-GGUF
$ python3 --version 3.10
Steps to Reproduce
Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.
- Download bartowski/gemma-2-27b-it-GGUF
- gemma_engine = Llama(
model_path=/path/to/model,
flash_attn=True,
n_gpu_layers=-1,
n_ctx=1024,
verbose=True,
) - See verbose logs:
llama_model_loader: loaded meta data with 33 key-value pairs and 508 tensors from static/gemma2/gemma-2-27b-it-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = gemma2
llama_model_loader: - kv 1: general.name str = gemma-2-27b-it
llama_model_loader: - kv 2: gemma2.context_length u32 = 8192
llama_model_loader: - kv 3: gemma2.embedding_length u32 = 4608
llama_model_loader: - kv 4: gemma2.block_count u32 = 46
llama_model_loader: - kv 5: gemma2.feed_forward_length u32 = 36864
llama_model_loader: - kv 6: gemma2.attention.head_count u32 = 32
llama_model_loader: - kv 7: gemma2.attention.head_count_kv u32 = 16
llama_model_loader: - kv 8: gemma2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 9: gemma2.attention.key_length u32 = 128
llama_model_loader: - kv 10: gemma2.attention.value_length u32 = 128
llama_model_loader: - kv 11: general.file_type u32 = 7
llama_model_loader: - kv 12: gemma2.attn_logit_softcapping f32 = 50.000000
llama_model_loader: - kv 13: gemma2.final_logit_softcapping f32 = 30.000000
llama_model_loader: - kv 14: gemma2.attention.sliding_window u32 = 4096
llama_model_loader: - kv 15: tokenizer.ggml.model str = llama
llama_model_loader: - kv 16: tokenizer.ggml.pre str = default
llama_model_loader: - kv 17: tokenizer.ggml.tokens arr[str,256000] = ["", "", "", "", ...
llama_model_loader: - kv 18: tokenizer.ggml.scores arr[f32,256000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 19: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 20: tokenizer.ggml.bos_token_id u32 = 2
llama_model_loader: - kv 21: tokenizer.ggml.eos_token_id u32 = 1
llama_model_loader: - kv 22: tokenizer.ggml.unknown_token_id u32 = 3
llama_model_loader: - kv 23: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 24: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 25: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 26: tokenizer.chat_template str = {{ bos_token }}{% if messages[0]['rol...
llama_model_loader: - kv 27: tokenizer.ggml.add_space_prefix bool = false
llama_model_loader: - kv 28: general.quantization_version u32 = 2
llama_model_loader: - kv 29: quantize.imatrix.file str = /models/gemma-2-27b-it-GGUF/gemma-2-2...
llama_model_loader: - kv 30: quantize.imatrix.dataset str = /training_data/calibration_datav3.txt
llama_model_loader: - kv 31: quantize.imatrix.entries_count i32 = 322
llama_model_loader: - kv 32: quantize.imatrix.chunks_count i32 = 128
llama_model_loader: - type f32: 185 tensors
llama_model_loader: - type q8_0: 323 tensors
llm_load_vocab: special tokens cache size = 364
llm_load_vocab: token to piece cache size = 1.6014 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = gemma2
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 256000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 4608
llm_load_print_meta: n_layer = 46
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 16
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 4096
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 2
llm_load_print_meta: n_embd_k_gqa = 2048
llm_load_print_meta: n_embd_v_gqa = 2048
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 36864
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 27B
llm_load_print_meta: model ftype = Q8_0
llm_load_print_meta: model params = 27.23 B
llm_load_print_meta: model size = 26.94 GiB (8.50 BPW)
llm_load_print_meta: general.name = gemma-2-27b-it
llm_load_print_meta: BOS token = 2 ''
llm_load_print_meta: EOS token = 1 ''
llm_load_print_meta: UNK token = 3 ''
llm_load_print_meta: PAD token = 0 ''
llm_load_print_meta: LF token = 227 '<0x0A>'
llm_load_print_meta: EOT token = 107 '<end_of_turn>'
llm_load_print_meta: max token length = 93
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: yes
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA A100 80GB PCIe, compute capability 8.0, VMM: yes
llm_load_tensors: ggml ctx size = 0.45 MiB
llm_load_tensors: offloading 46 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 47/47 layers to GPU
llm_load_tensors: CPU buffer size = 1195.31 MiB
llm_load_tensors: CUDA0 buffer size = 27591.06 MiB
..............................................................................................
llama_new_context_with_model: flash_attn is not compatible with attn_soft_cap - forcing off
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 736.00 MiB
llama_new_context_with_model: KV self size = 736.00 MiB, K (f16): 368.00 MiB, V (f16): 368.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.98 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 509.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 17.01 MiB
llama_new_context_with_model: graph nodes = 1850
llama_new_context_with_model: graph splits = 2
AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 0 |
Model metadata: {'quantize.imatrix.chunks_count': '128', 'gemma2.attn_logit_softcapping': '50.000000', 'gemma2.attention.value_length': '128', 'gemma2.attention.sliding_window': '4096', 'gemma2.attention.head_count': '32', 'gemma2.feed_forward_length': '36864', 'gemma2.block_count': '46', 'tokenizer.ggml.pre': 'default', 'gemma2.embedding_length': '4608', 'general.file_type': '7', 'gemma2.attention.layer_norm_rms_epsilon': '0.000001', 'gemma2.context_length': '8192', 'tokenizer.chat_template': "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}", 'general.architecture': 'gemma2', 'gemma2.final_logit_softcapping': '30.000000', 'gemma2.attention.head_count_kv': '16', 'tokenizer.ggml.add_eos_token': 'false', 'quantize.imatrix.file': '/models/gemma-2-27b-it-GGUF/gemma-2-27b-it.imatrix', 'tokenizer.ggml.add_space_prefix': 'false', 'tokenizer.ggml.model': 'llama', 'general.quantization_version': '2', 'general.name': 'gemma-2-27b-it', 'tokenizer.ggml.bos_token_id': '2', 'tokenizer.ggml.eos_token_id': '1', 'tokenizer.ggml.unknown_token_id': '3', 'tokenizer.ggml.padding_token_id': '0', 'tokenizer.ggml.add_bos_token': 'true', 'gemma2.attention.key_length': '128', 'quantize.imatrix.dataset': '/training_data/calibration_datav3.txt', 'quantize.imatrix.entries_count': '322'}
Available chat formats from metadata: chat_template.default
Using gguf chat template: {{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '
' + message['content'] | trim + '<end_of_turn>
' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model
'}}{% endif %}
Using chat eos_token:
Using chat bos_token:
Is this expected or i am missing something? please help