Skip to content
This repository was archived by the owner on Nov 27, 2024. It is now read-only.

Move tensor math to OnnxStack.Core #126

Merged
merged 1 commit into from
Feb 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
245 changes: 245 additions & 0 deletions OnnxStack.Core/Extensions/TensorExtension.cs
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,256 @@
using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics.Tensors;
using System.Numerics;

namespace OnnxStack.Core
{
public static class TensorExtension
{
/// <summary>
/// Divides the tensor by float.
/// </summary>
/// <param name="tensor">The data.</param>
/// <param name="value">The value.</param>
/// <returns></returns>
public static DenseTensor<float> DivideTensorByFloat(this DenseTensor<float> tensor, float value) => tensor.MultiplyTensorByFloat(1 / value);


/// <summary>
/// Multiplies the tensor by float.
/// </summary>
/// <param name="tensor">The data.</param>
/// <param name="value">The value.</param>
/// <returns></returns>
public static DenseTensor<float> MultiplyTensorByFloat(this DenseTensor<float> tensor, float value)
{
var result = new DenseTensor<float>(tensor.Dimensions);
TensorPrimitives.Multiply(tensor.Buffer.Span, value, result.Buffer.Span);
return result;
}


/// <summary>
/// Subtracts the float from each element.
/// </summary>
/// <param name="tensor">The tensor.</param>
/// <param name="value">The value.</param>
/// <returns></returns>
public static DenseTensor<float> SubtractFloat(this DenseTensor<float> tensor, float value)
{
var result = new DenseTensor<float>(tensor.Dimensions);
TensorPrimitives.Subtract(tensor.Buffer.Span, value, result.Buffer.Span);
return result;
}


/// <summary>
/// Adds the tensors.
/// </summary>
/// <param name="tensor">The sample.</param>
/// <param name="sumTensor">The sum tensor.</param>
/// <returns></returns>
public static DenseTensor<float> AddTensors(this DenseTensor<float> tensor, DenseTensor<float> sumTensor)
{
var result = new DenseTensor<float>(tensor.Dimensions);
TensorPrimitives.Add(tensor.Buffer.Span, sumTensor.Buffer.Span, result.Buffer.Span);
return result;
}


/// <summary>
/// Sums the tensors.
/// </summary>
/// <param name="tensors">The tensor array.</param>
/// <param name="dimensions">The dimensions.</param>
/// <returns></returns>
public static DenseTensor<float> SumTensors(this DenseTensor<float>[] tensors, ReadOnlySpan<int> dimensions)
{
var result = new DenseTensor<float>(dimensions);
for (int m = 0; m < tensors.Length; m++)
{
TensorPrimitives.Add(result.Buffer.Span, tensors[m].Buffer.Span, result.Buffer.Span);
}
return result;
}


/// <summary>
/// Subtracts the tensors.
/// </summary>
/// <param name="tensor">The sample.</param>
/// <param name="subTensor">The sub tensor.</param>
/// <returns></returns>
public static DenseTensor<float> SubtractTensors(this DenseTensor<float> tensor, DenseTensor<float> subTensor)
{
var result = new DenseTensor<float>(tensor.Dimensions);
TensorPrimitives.Subtract(tensor.Buffer.Span, subTensor.Buffer.Span, result.Buffer.Span);
return result;
}

/// <summary>
/// Divides the tensor by float, mutates the original
/// </summary>
/// <param name="tensor">The tensor to mutate.</param>
/// <param name="value">The value to divide by.</param>
/// <returns></returns>
public static DenseTensor<float> DivideBy(this DenseTensor<float> tensor, float value)
{
value = 1 / value;
TensorPrimitives.Multiply(tensor.Buffer.Span, value, tensor.Buffer.Span);
return tensor;
}


/// <summary>
/// Multiples the tensor by float, mutates the original
/// </summary>
/// <param name="tensor">The tensor to mutate.</param>
/// <param name="value">The value to multiply by.</param>
/// <returns></returns>
public static DenseTensor<float> MultiplyBy(this DenseTensor<float> tensor, float value) => DivideBy(tensor, 1 / value);


/// <summary>
/// Computes the absolute values of the Tensor
/// </summary>
/// <param name="tensor">The tensor to mutate.</param>
/// <returns></returns>
public static DenseTensor<float> Abs(this DenseTensor<float> tensor)
{
TensorPrimitives.Abs(tensor.Buffer.Span, tensor.Buffer.Span);
return tensor;
}


/// <summary>
/// Multiplies the specified tensor.
/// </summary>
/// <param name="tensor1">The tensor to mutate.</param>
/// <param name="mulTensor">The tensor to multiply by.</param>
/// <returns></returns>
public static DenseTensor<float> Multiply(this DenseTensor<float> tensor, DenseTensor<float> mulTensor)
{
TensorPrimitives.Multiply(tensor.Buffer.Span, mulTensor.Buffer.Span, tensor.Buffer.Span);
return tensor;
}


/// <summary>
/// Divides the specified tensor.
/// </summary>
/// <param name="tensor">The tensor to mutate.</param>
/// <param name="divTensor">The tensor to divide by.</param>
/// <returns></returns>
public static DenseTensor<float> Divide(this DenseTensor<float> tensor, DenseTensor<float> divTensor)
{
TensorPrimitives.Divide(tensor.Buffer.Span, divTensor.Buffer.Span, tensor.Buffer.Span);
return tensor;
}


/// <summary>
/// Adds the tensors, mutates the original
/// </summary>
/// <param name="tensor">The tensor to mutate.</param>
/// <param name="addTensor">The tensor values to add to tensor.</param>
/// <returns></returns>
public static DenseTensor<float> Add(this DenseTensor<float> tensor, DenseTensor<float> addTensor)
{
TensorPrimitives.Add(tensor.Buffer.Span, addTensor.Buffer.Span, tensor.Buffer.Span);
return tensor;
}


/// <summary>
/// Subtracts the tensors, mutates the original
/// </summary>
/// <param name="tensor">The tensor to mutate.</param>
/// <param name="subTensor">The tensor to subtract from tensor.</param>
/// <param name="dimensions">The dimensions.</param>
/// <returns></returns>
public static DenseTensor<float> Subtract(this DenseTensor<float> tensor, DenseTensor<float> subTensor)
{
TensorPrimitives.Subtract(tensor.Buffer.Span, subTensor.Buffer.Span, tensor.Buffer.Span);
return tensor;
}


/// <summary>
/// Reorders the tensor.
/// </summary>
/// <param name="tensor">The input tensor.</param>
/// <returns></returns>
public static DenseTensor<float> ReorderTensor(this DenseTensor<float> tensor, ReadOnlySpan<int> dimensions)
{
//reorder from batch channel height width to batch height width channel
var inputImagesTensor = new DenseTensor<float>(dimensions);
for (int y = 0; y < tensor.Dimensions[2]; y++)
{
for (int x = 0; x < tensor.Dimensions[3]; x++)
{
inputImagesTensor[0, y, x, 0] = tensor[0, 0, y, x];
inputImagesTensor[0, y, x, 1] = tensor[0, 1, y, x];
inputImagesTensor[0, y, x, 2] = tensor[0, 2, y, x];
}
}
return inputImagesTensor;
}

private static readonly int vectorSize = Vector<float>.Count;

/// <summary>
/// Clips the specified Tensor valuse to the specified minimum/maximum.
/// </summary>
/// <param name="tensor">The tensor.</param>
/// <param name="minValue">The minimum value.</param>
/// <param name="maxValue">The maximum value.</param>
/// <returns></returns>
public static DenseTensor<float> Clip(this DenseTensor<float> tensor, float minValue, float maxValue)
{
Vector<float> min = new Vector<float>(minValue);
Vector<float> max = new Vector<float>(maxValue);
var clipTensor = new DenseTensor<float>(tensor.Dimensions);
for (int i = 0; i < tensor.Length / vectorSize; i++)
{
Vector.Min(min,
Vector.Max(max,
new Vector<float>(tensor.Buffer.Span.Slice(i * vectorSize, vectorSize))))
.CopyTo(clipTensor.Buffer.Span.Slice(i * vectorSize, vectorSize));
}
for (int i = (int)(tensor.Length - tensor.Length % vectorSize); i < tensor.Length; i++)
{
clipTensor.Buffer.Span[i] = Math.Clamp(tensor.Buffer.Span[i], minValue, maxValue);
}
return clipTensor;

}


/// <summary>
/// Generate a random Tensor from a normal distribution with mean 0 and variance 1
/// </summary>
/// <param name="random">The random.</param>
/// <param name="dimensions">The dimensions.</param>
/// <param name="initNoiseSigma">The initialize noise sigma.</param>
/// <returns></returns>
public static DenseTensor<float> NextTensor(this Random random, ReadOnlySpan<int> dimensions, float initNoiseSigma = 1f)
{
var latents = new DenseTensor<float>(dimensions);
for (int i = 0; i < latents.Length; i++)
{
// Generate a random number from a normal distribution with mean 0 and variance 1
var u1 = random.NextSingle(); // Uniform(0,1) random number
var u2 = random.NextSingle(); // Uniform(0,1) random number
var radius = MathF.Sqrt(-2.0f * MathF.Log(u1)); // Radius of polar coordinates
var theta = 2.0f * MathF.PI * u2; // Angle of polar coordinates
var standardNormalRand = radius * MathF.Cos(theta); // Standard normal random number
latents.SetValue(i, standardNormalRand * initNoiseSigma);
}
return latents;
}

/// <summary>
/// Repeats the specified Tensor along the 0 axis.
/// </summary>
Expand Down
5 changes: 0 additions & 5 deletions OnnxStack.StableDiffusion/Common/DiffusionProgress.cs
Original file line number Diff line number Diff line change
@@ -1,9 +1,4 @@
using Microsoft.ML.OnnxRuntime.Tensors;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace OnnxStack.StableDiffusion.Common
{
Expand Down
9 changes: 0 additions & 9 deletions OnnxStack.StableDiffusion/Config/ModelOptions.cs

This file was deleted.

4 changes: 1 addition & 3 deletions OnnxStack.StableDiffusion/Diffusers/DiffuserBase.cs
Original file line number Diff line number Diff line change
@@ -1,12 +1,10 @@
using Microsoft.Extensions.Logging;
using Microsoft.ML.OnnxRuntime.Tensors;
using OnnxStack.Core;
using OnnxStack.Core.Image;
using OnnxStack.Core.Model;
using OnnxStack.StableDiffusion.Common;
using OnnxStack.StableDiffusion.Config;
using OnnxStack.StableDiffusion.Enums;
using OnnxStack.StableDiffusion.Helpers;
using OnnxStack.StableDiffusion.Models;
using System;
using System.Collections.Generic;
Expand Down Expand Up @@ -158,7 +156,7 @@ protected virtual async Task<DenseTensor<float>> DecodeLatentsAsync(PromptOption
/// <returns></returns>
protected static DenseTensor<float> CreateTimestepTensor(int timestep)
{
return TensorHelper.CreateTensor(new float[] { timestep }, new int[] { 1 });
return new DenseTensor<float>(new float[] { timestep }, new int[] { 1 });
}


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
using OnnxStack.StableDiffusion.Common;
using OnnxStack.StableDiffusion.Config;
using OnnxStack.StableDiffusion.Enums;
using OnnxStack.StableDiffusion.Helpers;
using OnnxStack.StableDiffusion.Models;
using System;
using System.Collections.Generic;
Expand Down Expand Up @@ -190,7 +189,7 @@ protected override Task<DenseTensor<float>> PrepareLatentsAsync(PromptOptions pr
/// <returns></returns>
protected static DenseTensor<double> CreateConditioningScaleTensor(float conditioningScale)
{
return TensorHelper.CreateTensor(new double[] { conditioningScale }, new int[] { 1 });
return new DenseTensor<double>(new double[] { conditioningScale }, new int[] { 1 });
}


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
using OnnxStack.StableDiffusion.Common;
using OnnxStack.StableDiffusion.Config;
using OnnxStack.StableDiffusion.Enums;
using OnnxStack.StableDiffusion.Helpers;
using OnnxStack.StableDiffusion.Models;
using System;
using System.Collections.Generic;
Expand Down Expand Up @@ -188,7 +187,7 @@ protected override Task<DenseTensor<float>> PrepareLatentsAsync(PromptOptions pr
/// <returns></returns>
protected static DenseTensor<double> CreateConditioningScaleTensor(float conditioningScale)
{
return TensorHelper.CreateTensor(new double[] { conditioningScale }, new int[] { 1 });
return new DenseTensor<double>(new double[] { conditioningScale }, new int[] { 1 });
}


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
using OnnxStack.StableDiffusion.Common;
using OnnxStack.StableDiffusion.Config;
using OnnxStack.StableDiffusion.Enums;
using OnnxStack.StableDiffusion.Helpers;
using OnnxStack.StableDiffusion.Models;
using System;
using System.Collections.Generic;
Expand Down Expand Up @@ -192,7 +191,7 @@ protected override Task<DenseTensor<float>> PrepareLatentsAsync(PromptOptions pr
/// <returns></returns>
protected static DenseTensor<double> CreateConditioningScaleTensor(float conditioningScale)
{
return TensorHelper.CreateTensor(new double[] { conditioningScale }, new int[] { 1 });
return new DenseTensor<double>(new double[] { conditioningScale }, new int[] { 1 });
}


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
using OnnxStack.StableDiffusion.Common;
using OnnxStack.StableDiffusion.Config;
using OnnxStack.StableDiffusion.Enums;
using OnnxStack.StableDiffusion.Helpers;
using OnnxStack.StableDiffusion.Models;
using System;
using System.Collections.Generic;
Expand Down Expand Up @@ -184,7 +183,7 @@ protected override Task<DenseTensor<float>> PrepareLatentsAsync(PromptOptions pr
/// <returns></returns>
protected static DenseTensor<double> CreateConditioningScaleTensor(float conditioningScale)
{
return TensorHelper.CreateTensor(new double[] { conditioningScale }, new int[] { 1 });
return new DenseTensor<double>(new double[] { conditioningScale }, new int[] { 1 });
}


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
using OnnxStack.StableDiffusion.Common;
using OnnxStack.StableDiffusion.Config;
using OnnxStack.StableDiffusion.Enums;
using OnnxStack.StableDiffusion.Helpers;
using OnnxStack.StableDiffusion.Models;
using System;
using System.Collections.Generic;
Expand Down Expand Up @@ -194,7 +193,7 @@ protected override Task<DenseTensor<float>> PrepareLatentsAsync(PromptOptions pr
/// <returns></returns>
protected static DenseTensor<double> CreateConditioningScaleTensor(float conditioningScale)
{
return TensorHelper.CreateTensor(new double[] { conditioningScale }, new int[] { 1 });
return new DenseTensor<double>(new double[] { conditioningScale }, new int[] { 1 });
}


Expand Down
Loading