|
| 1 | +""" |
| 2 | +Categorical Cross-Entropy Loss |
| 3 | +
|
| 4 | +This function calculates the Categorical Cross-Entropy Loss between true class |
| 5 | +labels and predicted class probabilities. |
| 6 | +
|
| 7 | +Formula: |
| 8 | +Categorical Cross-Entropy Loss = -Σ(y_true * log(y_pred)) |
| 9 | +
|
| 10 | +Resources: |
| 11 | +- [Wikipedia - Cross entropy](https://en.wikipedia.org/wiki/Cross_entropy) |
| 12 | +""" |
| 13 | + |
| 14 | +import numpy as np |
| 15 | + |
| 16 | +def categorical_crossentropy( |
| 17 | + y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15 |
| 18 | +) -> float: |
| 19 | + """ |
| 20 | + Calculate Categorical Cross-Entropy Loss between true class labels and |
| 21 | + predicted class probabilities. |
| 22 | +
|
| 23 | + Parameters: |
| 24 | + - y_true: True class labels (one-hot encoded) as a NumPy array. |
| 25 | + - y_pred: Predicted class probabilities as a NumPy array. |
| 26 | + - epsilon: Small constant to avoid numerical instability. |
| 27 | +
|
| 28 | + Returns: |
| 29 | + - ce_loss: Categorical Cross-Entropy Loss as a floating-point number. |
| 30 | +
|
| 31 | + Example: |
| 32 | + >>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) |
| 33 | + >>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]]) |
| 34 | + >>> categorical_crossentropy(true_labels, pred_probs) |
| 35 | + 0.18913199175146167 |
| 36 | +
|
| 37 | + >>> y_true = np.array([[1, 0], [0, 1]]) |
| 38 | + >>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]]) |
| 39 | + >>> categorical_crossentropy(y_true, y_pred) |
| 40 | + Traceback (most recent call last): |
| 41 | + ... |
| 42 | + ValueError: Input arrays must have the same length. |
| 43 | + """ |
| 44 | + if y_true.shape != y_pred.shape: |
| 45 | + raise ValueError("Input arrays must have the same length.") |
| 46 | + |
| 47 | + # Clip predicted probabilities to avoid log(0) |
| 48 | + y_pred = np.clip(y_pred, epsilon, 1 - epsilon) |
| 49 | + |
| 50 | + # Calculate categorical cross-entropy loss |
| 51 | + return -np.sum(y_true * np.log(y_pred)) / len(y_true) |
| 52 | + |
| 53 | +if __name__ == "__main__": |
| 54 | + import doctest |
| 55 | + doctest.testmod() |
0 commit comments