@@ -387,8 +387,8 @@ def isin(comps, values):
387387
388388 Parameters
389389 ----------
390- comps: array-like
391- values: array-like
390+ comps : array-like
391+ values : array-like
392392
393393 Returns
394394 -------
@@ -856,8 +856,8 @@ def rank(values, axis=0, method='average', na_option='keep',
856856 The method by which tiebreaks are broken during the ranking.
857857 na_option : {'keep', 'top'}, default 'keep'
858858 The method by which NaNs are placed in the ranking.
859- - ``keep``: rank each NaN value with a NaN ranking
860- - ``top``: replace each NaN with either +/- inf so that they
859+ - ``keep`` : rank each NaN value with a NaN ranking
860+ - ``top`` : replace each NaN with either +/- inf so that they
861861 there are ranked at the top
862862 ascending : boolean, default True
863863 Whether or not the elements should be ranked in ascending order.
@@ -1473,10 +1473,10 @@ def take(arr, indices, axis=0, allow_fill=False, fill_value=None):
14731473 allow_fill : bool, default False
14741474 How to handle negative values in `indices`.
14751475
1476- * False: negative values in `indices` indicate positional indices
1476+ * False : negative values in `indices` indicate positional indices
14771477 from the right (the default). This is similar to :func:`numpy.take`.
14781478
1479- * True: negative values in `indices` indicate
1479+ * True : negative values in `indices` indicate
14801480 missing values. These values are set to `fill_value`. Any other
14811481 other negative values raise a ``ValueError``.
14821482
0 commit comments