Skip to content

Commit dbea5bb

Browse files
carmoccaawaelchli
andauthored
Add typing to ModelPruning callback (#7529)
Co-authored-by: Adrian Wälchli <[email protected]>
1 parent 608de6a commit dbea5bb

File tree

3 files changed

+58
-39
lines changed

3 files changed

+58
-39
lines changed

pytorch_lightning/callbacks/pruning.py

Lines changed: 54 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -19,12 +19,14 @@
1919
import logging
2020
from copy import deepcopy
2121
from functools import partial
22-
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
22+
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
2323

2424
import torch
2525
import torch.nn.utils.prune as pytorch_prune
2626
from torch import nn
27+
from typing_extensions import TypedDict
2728

29+
import pytorch_lightning as pl
2830
from pytorch_lightning.callbacks.base import Callback
2931
from pytorch_lightning.core.lightning import LightningModule
3032
from pytorch_lightning.utilities.distributed import rank_zero_debug, rank_zero_only
@@ -47,8 +49,9 @@
4749
}
4850

4951
_PARAM_TUPLE = Tuple[nn.Module, str]
50-
_PARAM_LIST = Union[List[_PARAM_TUPLE], Tuple[_PARAM_TUPLE]]
52+
_PARAM_LIST = Sequence[_PARAM_TUPLE]
5153
_MODULE_CONTAINERS = (LightningModule, nn.Sequential, nn.ModuleList, nn.ModuleDict)
54+
_LayerRef = TypedDict('_LayerRef', {'data': nn.Module, 'names': List[Tuple[int, str]]})
5255

5356

5457
class ModelPruning(Callback):
@@ -57,7 +60,7 @@ class ModelPruning(Callback):
5760
def __init__(
5861
self,
5962
pruning_fn: Union[Callable, str],
60-
parameters_to_prune: Optional[_PARAM_LIST] = None,
63+
parameters_to_prune: _PARAM_LIST = (),
6164
parameter_names: Optional[List[str]] = None,
6265
use_global_unstructured: bool = True,
6366
amount: Union[int, float, Callable[[int], Union[int, float]]] = 0.5,
@@ -153,9 +156,9 @@ def __init__(
153156
self._use_lottery_ticket_hypothesis = use_lottery_ticket_hypothesis
154157
self._resample_parameters = resample_parameters
155158
self._parameter_names = parameter_names or self.PARAMETER_NAMES
156-
self._global_kwargs = {}
157-
self._original_layers = None
158-
self._pruning_fn_name = None
159+
self._global_kwargs: Dict[str, Any] = {}
160+
self._original_layers: Optional[Dict[int, _LayerRef]] = None
161+
self._pruning_fn_name: Optional[str] = None
159162

160163
for name in self._parameter_names:
161164
if name not in self.PARAMETER_NAMES:
@@ -196,17 +199,18 @@ def __init__(
196199
" HINT: if passing a `BasePruningMethod`, pass the the class, not an instance"
197200
)
198201

199-
if use_global_unstructured and pruning_fn.PRUNING_TYPE != "unstructured":
202+
# need to ignore typing here since pytorch base class does not define the PRUNING_TYPE attribute
203+
if use_global_unstructured and pruning_fn.PRUNING_TYPE != "unstructured": # type: ignore
200204
raise MisconfigurationException(
201-
'Only the "unstructured" PRUNING_TYPE is supported with `use_global_unstructured=True`.'
205+
'Only the "unstructured" PRUNING_TYPE is supported with `use_global_unstructured=True`.' # type: ignore
202206
f" Found method {pruning_fn} of type {pruning_fn.PRUNING_TYPE}. "
203207
)
204208

205209
self.pruning_fn = pruning_fn
206210
self._apply_pruning = apply_pruning
207211
self._make_pruning_permanent = make_pruning_permanent
208212

209-
if not isinstance(amount, (int, float, Callable)):
213+
if not (isinstance(amount, (int, float)) or callable(amount)):
210214
raise MisconfigurationException(
211215
"`amount` should be provided and be either an int, a float or Callable function."
212216
)
@@ -218,25 +222,27 @@ def __init__(
218222

219223
self._verbose = verbose
220224

221-
def filter_parameters_to_prune(self, parameters_to_prune: Optional[_PARAM_LIST] = None) -> Optional[_PARAM_LIST]:
225+
def filter_parameters_to_prune(self, parameters_to_prune: _PARAM_LIST = ()) -> _PARAM_LIST:
222226
"""
223227
This function can be overridden to control which module to prune.
224228
"""
225229
return parameters_to_prune
226230

227-
def _create_pruning_fn(self, pruning_fn: str, **kwargs) -> Union[Callable, pytorch_prune.BasePruningMethod]:
231+
def _create_pruning_fn(self, pruning_fn: str, **kwargs: Any) -> Union[Callable, pytorch_prune.BasePruningMethod]:
228232
"""
229233
This function takes `pruning_fn`, a function name.
230234
231235
IF use_global_unstructured, pruning_fn will be resolved into its associated ``PyTorch BasePruningMethod``
232236
ELSE, pruning_fn will be resolved into its function counterpart from `torch.nn.utils.prune`.
233237
234238
"""
239+
pruning_fn = (
240+
_PYTORCH_PRUNING_METHOD[pruning_fn]
241+
if self._use_global_unstructured else _PYTORCH_PRUNING_FUNCTIONS[pruning_fn]
242+
)
243+
assert callable(pruning_fn)
235244
if self._use_global_unstructured:
236-
pruning_fn = _PYTORCH_PRUNING_METHOD[pruning_fn]
237245
self._global_kwargs = kwargs
238-
else:
239-
pruning_fn = _PYTORCH_PRUNING_FUNCTIONS[pruning_fn]
240246
# save the function __name__ now because partial does not include it
241247
# and there are issues setting the attribute manually in ddp.
242248
self._pruning_fn_name = pruning_fn.__name__
@@ -245,10 +251,10 @@ def _create_pruning_fn(self, pruning_fn: str, **kwargs) -> Union[Callable, pytor
245251
return ModelPruning._wrap_pruning_fn(pruning_fn, **kwargs)
246252

247253
@staticmethod
248-
def _wrap_pruning_fn(pruning_fn, **kwargs):
254+
def _wrap_pruning_fn(pruning_fn: Callable, **kwargs: Any) -> Callable:
249255
return partial(pruning_fn, **kwargs)
250256

251-
def make_pruning_permanent(self, pl_module: LightningModule):
257+
def make_pruning_permanent(self, pl_module: LightningModule) -> None:
252258
"""
253259
Removes pruning buffers from any pruned modules
254260
@@ -261,14 +267,14 @@ def make_pruning_permanent(self, pl_module: LightningModule):
261267
hook.remove(module)
262268
del module._forward_pre_hooks[k]
263269

264-
def _restore_original_weights(self, module: nn.Module, orig_module: nn.Module, tensor_name: str):
270+
def _restore_original_weights(self, module: nn.Module, orig_module: nn.Module, tensor_name: str) -> None:
265271
trained = getattr(module, tensor_name)
266272
orig = getattr(orig_module, tensor_name)
267273
if trained is None or orig is None:
268274
return
269275
trained.data = orig.data.to(trained.device)
270276

271-
def apply_lottery_ticket_hypothesis(self):
277+
def apply_lottery_ticket_hypothesis(self) -> None:
272278
r"""
273279
Lottery ticket hypothesis algorithm (see page 2 of the paper):
274280
@@ -282,33 +288,35 @@ def apply_lottery_ticket_hypothesis(self):
282288
The ``resample_parameters`` argument can be used to reset the parameters with a new :math:`\theta_z \sim \mathcal{D}_\theta`
283289
""" # noqa: E501
284290

285-
def copy_param(new, old, name: str) -> None:
291+
def copy_param(new: nn.Module, old: nn.Module, name: str) -> None:
286292
dst = getattr(new, name)
287293
src = getattr(old, name)
288294
if dst is None or src is None or not isinstance(dst, torch.Tensor) or not isinstance(src, torch.Tensor):
289295
return
290296
dst.data = src.data.to(dst.device)
291297

298+
assert self._original_layers is not None
292299
for d in self._original_layers.values():
293-
copy, names = d["data"], d["names"]
294-
if self._resample_parameters and hasattr(copy, "reset_parameters"):
300+
copy = d["data"]
301+
names = d["names"]
302+
if self._resample_parameters and hasattr(copy, "reset_parameters") and callable(copy.reset_parameters):
295303
copy = deepcopy(copy) # keep the original parameters
296304
copy.reset_parameters()
297305
for i, name in names:
298306
new, new_name = self._parameters_to_prune[i]
299307
copy_param(new, copy, name)
300308

301-
def _apply_local_pruning(self, amount: float):
309+
def _apply_local_pruning(self, amount: float) -> None:
302310
for module, name in self._parameters_to_prune:
303311
self.pruning_fn(module, name=name, amount=amount)
304312

305-
def _resolve_global_kwargs(self, amount: float):
313+
def _resolve_global_kwargs(self, amount: float) -> Dict[str, Any]:
306314
self._global_kwargs["amount"] = amount
307315
params = set(inspect.signature(self.pruning_fn).parameters)
308316
params.discard("self")
309317
return {k: v for k, v in self._global_kwargs.items() if k in params}
310318

311-
def _apply_global_pruning(self, amount: float):
319+
def _apply_global_pruning(self, amount: float) -> None:
312320
pytorch_prune.global_unstructured(
313321
self._parameters_to_prune, pruning_method=self.pruning_fn, **self._resolve_global_kwargs(amount)
314322
)
@@ -321,7 +329,7 @@ def _get_pruned_stats(module: nn.Module, name: str) -> Tuple[int, int]:
321329
mask = getattr(module, attr)
322330
return (mask == 0).sum().item(), mask.numel()
323331

324-
def apply_pruning(self, amount: Union[int, float]):
332+
def apply_pruning(self, amount: Union[int, float]) -> None:
325333
""" Applies pruning to ``parameters_to_prune``. """
326334
if self._verbose:
327335
prev_stats = [self._get_pruned_stats(m, n) for m, n in self._parameters_to_prune]
@@ -338,7 +346,7 @@ def apply_pruning(self, amount: Union[int, float]):
338346
@rank_zero_only
339347
def _log_sparsity_stats(
340348
self, prev: List[Tuple[int, int]], curr: List[Tuple[int, int]], amount: Union[int, float] = 0
341-
):
349+
) -> None:
342350
total_params = sum(p.numel() for layer, _ in self._parameters_to_prune for p in layer.parameters())
343351
prev_total_zeros = sum(zeros for zeros, _ in prev)
344352
curr_total_zeros = sum(zeros for zeros, _ in curr)
@@ -357,7 +365,7 @@ def _log_sparsity_stats(
357365
f" {curr_mask_zeros} ({curr_mask_zeros / curr_mask_size:.2%})"
358366
)
359367

360-
def on_before_accelerator_backend_setup(self, trainer, pl_module: LightningModule):
368+
def on_before_accelerator_backend_setup(self, trainer: 'pl.Trainer', pl_module: LightningModule) -> None:
361369
parameters_to_prune = self.sanitize_parameters_to_prune(
362370
pl_module, self._parameters_to_prune, parameter_names=self._parameter_names
363371
)
@@ -370,29 +378,34 @@ def on_before_accelerator_backend_setup(self, trainer, pl_module: LightningModul
370378
self._original_layers = {}
371379
for i, (module, name) in enumerate(self._parameters_to_prune):
372380
id_ = id(module)
373-
self._original_layers.setdefault(id_, {"data": deepcopy(module), "names": []})
381+
self._original_layers.setdefault(id_, _LayerRef(data=deepcopy(module), names=[]))
374382
self._original_layers[id_]["names"].append((i, name))
375383

376-
def on_train_epoch_end(self, trainer, pl_module: LightningModule):
377-
current_epoch = trainer.current_epoch
378-
prune = self._apply_pruning(current_epoch) if isinstance(self._apply_pruning, Callable) else self._apply_pruning
379-
amount = self.amount(current_epoch) if isinstance(self.amount, Callable) else self.amount
384+
def on_train_epoch_end(self, trainer: 'pl.Trainer', pl_module: LightningModule) -> None: # type: ignore
385+
current_epoch = pl_module.current_epoch
386+
prune = self._apply_pruning(current_epoch) if callable(self._apply_pruning) else self._apply_pruning
387+
amount = self.amount(current_epoch) if callable(self.amount) else self.amount
380388
if not prune or not amount:
381389
return
382390
self.apply_pruning(amount)
383391

384392
if (
385393
self._use_lottery_ticket_hypothesis(current_epoch)
386-
if isinstance(self._use_lottery_ticket_hypothesis, Callable) else self._use_lottery_ticket_hypothesis
394+
if callable(self._use_lottery_ticket_hypothesis) else self._use_lottery_ticket_hypothesis
387395
):
388396
self.apply_lottery_ticket_hypothesis()
389397

390-
def on_train_end(self, trainer, pl_module: LightningModule):
398+
def on_train_end(self, trainer: 'pl.Trainer', pl_module: LightningModule) -> None:
391399
if self._make_pruning_permanent:
392400
rank_zero_debug("`ModelPruning.on_train_end`. Pruning is made permanent for this checkpoint.")
393401
self.make_pruning_permanent(pl_module)
394402

395-
def on_save_checkpoint(self, trainer, pl_module: LightningModule, checkpoint: Dict[str, Any]):
403+
def on_save_checkpoint(
404+
self,
405+
trainer: 'pl.Trainer',
406+
pl_module: LightningModule,
407+
checkpoint: Dict[str, Any],
408+
) -> Dict[str, Any]:
396409
if self._make_pruning_permanent:
397410
rank_zero_debug("`ModelPruning.on_save_checkpoint`. Pruning is made permanent for this checkpoint.")
398411
prev_device = pl_module.device
@@ -402,11 +415,13 @@ def on_save_checkpoint(self, trainer, pl_module: LightningModule, checkpoint: Di
402415
checkpoint["state_dict"] = copy.state_dict()
403416
pl_module.to(prev_device)
404417

418+
return checkpoint
419+
405420
@staticmethod
406421
def sanitize_parameters_to_prune(
407422
pl_module: LightningModule,
408-
parameters_to_prune: Optional[_PARAM_LIST] = None,
409-
parameter_names: Optional[List[str]] = None,
423+
parameters_to_prune: _PARAM_LIST = (),
424+
parameter_names: Sequence[str] = (),
410425
) -> _PARAM_LIST:
411426
"""
412427
This function is responsible of sanitizing ``parameters_to_prune`` and ``parameter_names``.
@@ -415,13 +430,13 @@ def sanitize_parameters_to_prune(
415430
Raises:
416431
MisconfigurationException:
417432
If ``parameters_to_prune`` doesn't exist in the model, or
418-
if ``parameters_to_prune`` is neither a list of tuple nor ``None``.
433+
if ``parameters_to_prune`` is neither a list nor a tuple.
419434
"""
420435
parameters = parameter_names or ModelPruning.PARAMETER_NAMES
421436

422437
current_modules = [m for m in pl_module.modules() if not isinstance(m, _MODULE_CONTAINERS)]
423438

424-
if parameters_to_prune is None:
439+
if not parameters_to_prune:
425440
parameters_to_prune = [(m, p) for p in parameters for m in current_modules
426441
if getattr(m, p, None) is not None]
427442
elif (

requirements.txt

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,3 +10,4 @@ tensorboard>=2.2.0, !=2.5.0 # 2.5.0 GPU CI error: 'Couldn't build proto file in
1010
torchmetrics>=0.2.0
1111
pyDeprecate==0.3.0
1212
packaging
13+
typing-extensions # TypedDict support for python<3.8

setup.cfg

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -117,6 +117,9 @@ disable_error_code = attr-defined
117117
# todo: add proper typing to this module...
118118
[mypy-pytorch_lightning.callbacks.*]
119119
ignore_errors = True
120+
# whitelist
121+
[mypy-pytorch_lightning.callbacks.pruning]
122+
ignore_errors = False
120123

121124
# todo: add proper typing to this module...
122125
[mypy-pytorch_lightning.core.*]

0 commit comments

Comments
 (0)