Skip to content

Replace calls of toList() on Arrays with asList() to improve performance of the affected functions by reducing the overhead of copying the array elements for once #217

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -61,19 +61,19 @@ inline fun <reified T> SparkSession.toDF(list: List<T>, vararg colNames: String)
* Utility method to create dataset from *array or vararg arguments
*/
inline fun <reified T> SparkSession.dsOf(vararg t: T): Dataset<T> =
createDataset(t.toList(), encoder<T>())
createDataset(t.asList(), encoder<T>())

/**
* Utility method to create dataframe from *array or vararg arguments
*/
inline fun <reified T> SparkSession.dfOf(vararg t: T): Dataset<Row> =
createDataset(t.toList(), encoder<T>()).toDF()
createDataset(t.asList(), encoder<T>()).toDF()

/**
* Utility method to create dataframe from *array or vararg arguments with given column names
*/
inline fun <reified T> SparkSession.dfOf(colNames: Array<String>, vararg t: T): Dataset<Row> =
createDataset(t.toList(), encoder<T>())
createDataset(t.asList(), encoder<T>())
.run { if (colNames.isEmpty()) toDF() else toDF(*colNames) }

/**
Expand All @@ -92,7 +92,7 @@ inline fun <reified T> List<T>.toDF(spark: SparkSession, vararg colNames: String
* Utility method to create dataset from list
*/
inline fun <reified T> Array<T>.toDS(spark: SparkSession): Dataset<T> =
toList().toDS(spark)
asList().toDS(spark)

/**
* Utility method to create dataframe from list
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ import java.io.Serializable
fun <T> JavaSparkContext.rddOf(
vararg elements: T,
numSlices: Int = defaultParallelism(),
): JavaRDD<T> = parallelize(elements.toList(), numSlices)
): JavaRDD<T> = parallelize(elements.asList(), numSlices)

/**
* Utility method to create an RDD from a list.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ class KSparkSession(val spark: SparkSession) {
* NOTE: [T] must be [Serializable].
*/
fun <T> rddOf(vararg elements: T, numSlices: Int = sc.defaultParallelism()): JavaRDD<T> =
sc.toRDD(elements.toList(), numSlices)
sc.toRDD(elements.asList(), numSlices)

/**
* A collection of methods for registering user-defined functions (UDF).
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -215,7 +215,7 @@ class TypeInferenceTest : ShouldSpec({
should("generate valid serializer schema") {
expect(encoder<Sample>().schema()) {
this
.feature("data type", { this.fields()?.toList() }) {
.feature("data type", { this.fields()?.asList() }) {
this.notToEqualNull().toContain.inOrder.only.entry {
this
.feature("element name", { name() }) { toEqual("optionList") }
Expand Down