Skip to content

Commit 67e256a

Browse files
2024-09-01-trained_polish_en (#14387)
* Add model 2024-09-03-sentiment_analysis_app_review_en * Add model 2024-09-03-triplets_e5_base_500_484c6c_pipeline_en * Add model 2024-09-03-e5_base_banking77_10000_en * Add model 2024-09-02-sent_arbert_ar * Add model 2024-09-03-triplets_e5_base_500_2183ce_3be9a5_pipeline_en * Add model 2024-09-02-dummy_model_mbearss_pipeline_en * Add model 2024-09-03-gujibert_jian_pipeline_en * Add model 2024-09-02-roberta_classifier_financial_large_sentiment_en * Add model 2024-09-02-gilberto_uncased_from_camembert_fast_tokenizer_pipeline_en * Add model 2024-09-02-e2m_dataset_tags_900_pipeline_en * Add model 2024-09-02-esperberto_small_pipeline_eo * Add model 2024-09-02-adlhw1qa_roberta_large_pipeline_en * Add model 2024-09-03-finetuned_twitter_xlm_roberta_base_emotion_pipeline_en * Add model 2024-09-02-legal_camembert_base_pipeline_fr * Add model 2024-09-02-burmese_awesome_wnut_model_ymgong_pipeline_en * Add model 2024-09-02-translate_model_v3_1_en * Add model 2024-09-02-opus_maltese_english_russian_finetuned_english_tonga_tonga_islands_russian_niktiuk_en * Add model 2024-09-03-sent_less_300000_xlm_roberta_mmar_recipe_10_128_en * Add model 2024-09-02-emotion_text_classification_en * Add model 2024-09-03-deberta_v2_small_japanese_pipeline_ja * Add model 2024-09-02-legalbert_pipeline_en * Add model 2024-09-02-emotion_recognition_pipeline_en * Add model 2024-09-02-urdish_roberta_base_sentiment_pipeline_ur * Add model 2024-09-02-opus_maltese_english_bengali_en * Add model 2024-09-02-maltese_coref_english_french_gender_exp_pipeline_en * Add model 2024-09-02-baseroberta_finetuned_squadcovid_pipeline_en * Add model 2024-09-03-vietnamese_deberta_small_pipeline_en * Add model 2024-09-02-mformer_fairness_en * Add model 2024-09-02-roberta_qa_roberta_base_biomedical_spanish_squad2_hackathon_pln_pipeline_es * Add model 2024-09-03-roberta_small_pun_detector_v2_en * Add model 2024-09-01-bionlp13cg_clinicalbert_ner_en * Add model 2024-09-02-ner_phi0108_pipeline_en * Add model 2024-09-03-tosrobertav2_en * Add model 2024-09-02-bge_small_bioasq_1epoch_batch32_100steps_en * Add model 2024-09-02-dummy_model_katrin_kc_pipeline_en * Add model 2024-09-03-xlm_roberta_base_finetuned_panx_italian_saqidr_en * Add model 2024-09-03-roberta_classifier_autonlp_persian_farsi_473312409_en * Add model 2024-09-03-roberta_base_offensive_en * Add model 2024-09-03-n_roberta_twitterfin_padding60model_pipeline_en * Add model 2024-09-03-roberta_base_offensive_pipeline_en * Add model 2024-09-03-distilroberta_spam_comments_detection_pipeline_en * Add model 2024-09-03-sent_entitycs_39_pep_malay_xlmr_base_xx * Add model 2024-09-03-roberta_classifier_large_wanli_en * Add model 2024-09-03-roberta_base_sentiment_cardiffnlp_pipeline_en * Add model 2024-09-02-marcel_customer_service_xlarge_masked_pipeline_en * Add model 2024-09-03-distilroberta_base_mic_en * Add model 2024-09-03-citation_classifier_roberta_base_pipeline_en * Add model 2024-09-02-modelo_qa_beto_squad_spanish_pdqa_en * Add model 2024-09-03-gptfuzz_en * Add model 2024-09-02-albert_base_arabic_ar * Add model 2024-09-02-albert_turkish_qa_turkish_squad_pipeline_tr * Add model 2024-09-02-roberta_long_answer_nq_en * Add model 2024-09-02-distilbert_uncased_names_pipeline_en * Add model 2024-09-02-streetclip_en * Add model 2024-09-02-distilbert_base_uncased_finetuned_emotions_jakeclark_en * Add model 2024-09-03-clip_base_patch16_supervised_mulitilingual_800_en * Add model 2024-09-03-custom_clip_en * Add model 2024-09-03-drawify_snapsearch_pipeline_en * Add model 2024-09-03-flip_base_16_en * Add model 2024-09-03-deberta_embeddings_v3_large_dapt_scientific_papers_pubmed_pipeline_en * Add model 2024-09-03-fashion_pattern_clip_pipeline_en * Add model 2024-09-02-e2m_marianmt_tags_pipeline_en * Add model 2024-09-02-tatar_pipeline_en * Add model 2024-09-03-sent_checkpoint_23200_pipeline_en * Add model 2024-09-03-fashion_clip_emaghakyan_en * Add model 2024-09-03-fashion_clip_emaghakyan_pipeline_en * Add model 2024-09-03-clip_base_patch16_supervised_mulitilingual_400_en * Add model 2024-09-03-sent_xlm_roberta_base_finetuned_on_runaways_dutch_pipeline_en * Add model 2024-09-02-sent_medbit_r3_plus_pipeline_it * Add model 2024-09-03-deepdanbooruclip_pipeline_en * Add model 2024-09-02-xlm_roberta_base_finetuned_panx_english_heerak_en * Add model 2024-09-03-mi_roberta_base_finetuned_mental_health_en * Add model 2024-09-01-hindi_albert_pipeline_hi * Add model 2024-09-02-635_a2_albert_pipeline_en * Add model 2024-09-03-clip_fashion_attribute_model_try_2_base32_pipeline_en * Add model 2024-09-03-clip_vit_large_patch14_krnl_en * Add model 2024-09-02-dummy_model_deva2_en * Add model 2024-09-03-final_luna_sentiment_analysis_pipeline_en * Add model 2024-09-02-norwegian_bokml_whisper_small_nbailab_no * Add model 2024-09-02-distilbert_emotion_narapuram_en * Add model 2024-09-02-spark_name_korean_tonga_tonga_islands_english_pipeline_en * Add model 2024-09-02-e5_base_arguana_10000_pipeline_en * Add model 2024-09-02-clip_seed_vit_noval_pipeline_en * Add model 2024-09-03-clip_vit_tjklein_en * Add model 2024-09-03-tools_a6000_0_00003_en * Add model 2024-09-03-gptfuzz_pipeline_en * Add model 2024-09-02-fine_tuned_bert_pipeline_en * Add model 2024-09-02-4_datasets_fake_news_with_balanced_en * Add model 2024-09-02-classify_clickbait_titles_en * Add model 2024-09-02-distilbert_ner_wnut_model_pipeline_en * Add model 2024-09-03-with_e5_small_v2_pipeline_en * Add model 2024-09-03-with_e5_small_v2_en * Add model 2024-09-03-e5_small_v2_vectoriseai_en * Add model 2024-09-03-e5_small_v2_vectoriseai_pipeline_en * Add model 2024-09-01-clinicalbertprqab_280_992_czech_en * Add model 2024-09-01-roberta_base_bulgarian_pipeline_bg * Add model 2024-09-02-xlm_roberta_base_finetuned_augument_visquad2_14_3_2023_1_en * Add model 2024-09-02-frpile_gpl_test_pipeline_all_mpnet_base_v2_14000_pipeline_en * Add model 2024-09-02-norwegian_bokml_whisper_small_nbailab_pipeline_no * Add model 2024-09-03-e5_large_unsupervised_pseudo_genq_1_pipeline_en * Add model 2024-09-02-dummy_model_kprashanth_pipeline_en * Add model 2024-09-02-fn_jll_hackathon_fine_tuned_qa_albert_squad_pipeline_en * Add model 2024-09-03-embedded_e5_base_50_10_pipeline_en * Add model 2024-09-03-gpl_e5_base_unsupervised_scifact_k10_en * Add model 2024-09-02-testhelsinkimulenjpth02_en * Add model 2024-09-02-darija_tonga_tonga_islands_english_full_en * Add model 2024-09-03-embedded_e5_large_500_correct_en * Add model 2024-09-03-gpl_e5_base_unsupervised_arguana_1_en * Add model 2024-09-03-clip_ft_sim_en * Add model 2024-09-02-translation_english_lug_v6_en * Add model 2024-09-03-albert_base_qa_2_batch_1_en * Add model 2024-09-03-albert_base_qa_2_batch_1_pipeline_en * Add model 2024-09-02-dummy_model_bishgupp_en * Add model 2024-09-01-emo_mobilebert_lordtt13_en * Add model 2024-09-02-translation_english_vietnamese_official_pipeline_en * Add model 2024-09-03-albert_base_qa_1_lr_1_en * Add model 2024-09-03-albert_base_qa_2_k_fold_3_pipeline_en * Add model 2024-09-03-albert_base_qa_coqa_2_k_fold_1_pipeline_en * Add model 2024-09-03-albert_base_qa_coqa_2_k_fold_1_en * Add model 2024-09-02-darija_tonga_tonga_islands_english_en * Add model 2024-09-02-e5_base_arguana_10000_en * Add model 2024-09-02-deberta_v3_large__sst2__train_16_2_en * Add model 2024-09-02-xlm_robert_finetune_model_vn_ver2_pipeline_en * Add model 2024-09-02-xlm_roberta_base_finetuned_panx_german_scionk_en * Add model 2024-09-03-sent_xlm_roberta_base_indonesian_en * Add model 2024-09-01-refpydst_1p_referredstates_split_v2_en * Add model 2024-09-01-hinglish_distilbert_pipeline_en * Add model 2024-09-03-tools_a6000_0_00003_pipeline_en * Add model 2024-09-01-distilbert_base_uncased_finetuned_ner_hfdsajkfd_en * Add model 2024-09-02-ner_phi0108_en * Add model 2024-09-03-furina_with_transliteration_average_en * Add model 2024-09-03-2_finetuned_xlm_r_masakhaner_swahili_macrolanguage_whole_word_phonetic_pipeline_en * Add model 2024-09-02-marian_rinconada_tonga_tonga_islands_english_pipeline_en * Add model 2024-09-02-dummy_model_lyla_pipeline_en * Add model 2024-09-03-glot500_with_transliteration_minangkabau_en * Add model 2024-09-03-xlmr_finetuned_en * Add model 2024-09-03-xlmr_finetuned_pipeline_en * Add model 2024-09-02-opus_maltese_english_romanian_finetuned_english_tonga_tonga_islands_romanian_pontifexmaximus_en * Add model 2024-09-02-dummy_model_plan_9_en * Add model 2024-09-02-finetuning_sentiment_model_3000_samples_thp99_pipeline_en * Add model 2024-09-03-xlm_roberta_base_finetuned_arabic_en * Add model 2024-09-03-deberta_embeddings_v3_large_dapt_scientific_papers_pubmed_en * Add model 2024-09-03-cleaned_e5_base_500_pipeline_en * Add model 2024-09-03-checkpoint_12600_pipeline_en * Add model 2024-09-03-xlm_roberta_base_finetuned_arabic_pipeline_en * Add model 2024-09-02-bert_embeddings_custom_legalbert_en * Add model 2024-09-03-checkpoint_12600_en * Add model 2024-09-03-embedded_e5_large_500_correct_pipeline_en * Add model 2024-09-03-clip_ft_sim_pipeline_en * Add model 2024-09-02-albert_base_qa_coqa_2_k_fold_2_en * Add model 2024-09-03-roberta_small_pun_detector_v2_pipeline_en * Add model 2024-09-01-graphcodebert_base_pipeline_en * Add model 2024-09-03-glot500_with_transliteration_max_pipeline_en * Add model 2024-09-01-clipmd_pipeline_en * Add model 2024-09-03-albert_base_qa_1_lr_1_pipeline_en * Add model 2024-09-02-legal_roberta_base_lexlms_en * Add model 2024-09-02-ukr_roberta_base_uk * Add model 2024-09-02-dummy_model_nestornav_en * Add model 2024-09-02-bsc_bio_ehr_spanish_cantemist_pipeline_es * Add model 2024-09-03-e5_base_vectoriseai_en * Add model 2024-09-03-wikipedia_categories_setfit_en * Add model 2024-09-03-embedded_e5_base_500_en * Add model 2024-09-03-wikipedia_categories_setfit_pipeline_en * Add model 2024-09-03-dirty_e5_base_unsupervised_en * Add model 2024-09-02-translation_en2zh_pipeline_en * Add model 2024-09-01-deberta_v3_base_finetuned_squadv2_pipeline_en * Add model 2024-09-03-m_e5_base_v2_e_2_t_llama_index_nan * Add model 2024-09-03-m_e5_base_v2_e_2_t_llama_index_pipeline_nan * Add model 2024-09-03-e5_100k_en * Add model 2024-09-03-e5_base_unsupervised_scifact_5000_en * Add model 2024-09-02-cuad_roberta_base_en * Add model 2024-09-03-e5_base_scifact_10000_en * Add model 2024-09-02-dummy_model_omenndt_pipeline_en * Add model 2024-09-02-dummy_model_spaceman23_en * Add model 2024-09-02-dummy_model_jonathanlin0707_en * Add model 2024-09-03-distilroberta_nsfw_prompt_stable_diffusion_en * Add model 2024-09-03-flip_base_16_pipeline_en * Add model 2024-09-01-deberta_v3_base_company_names_pipeline_en * Add model 2024-09-01-detect_acoso_twitter_spanish_pipeline_es * Add model 2024-09-02-opus_maltese_english_romanian_finetuned_english_tonga_tonga_islands_romanian_devyanikoshal_en * Add model 2024-09-03-lab1_random_minhngca_en * Add model 2024-09-03-lab1_random_minhngca_pipeline_en * Add model 2024-09-02-indic_hindi_bengali_mlm_squad_tydi_mlqa_hi * Add model 2024-09-02-squeezebert_finetuned_squadv2_pipeline_en * Add model 2024-09-03-crossencoder_camembert_l2_mmarcofr_fr * Add model 2024-09-03-e5_large_unsupervised_pseudo_genq_1_en * Add model 2024-09-01-burmese_ws_extraction_model_pipeline_en * Add model 2024-09-03-marian_finetuned_kde4_english_tonga_tonga_islands_portuguese_breton_en * Add model 2024-09-03-finetuned_kde4_english_tonga_tonga_islands_french_pipeline_en * Add model 2024-09-03-terjman_large_v2_ar * Add model 2024-09-02-sent_bert_base_arabertv02_twitter_pipeline_ar * Add model 2024-09-03-ancient_greek_to_1453_alignment_pipeline_en * Add model 2024-09-03-opus_maltese_german_icelandic_finetuned_german_tonga_tonga_islands_icelandic_en * Add model 2024-09-03-hel_english_french_4_layers_en * Add model 2024-09-03-opus_maltese_english_dutch_finetuned__marian_theirs_train_val_en * Add model 2024-09-03-opus_maltese_english_dutch_finetuned__marian_theirs_train_val_pipeline_en * Add model 2024-09-03-marianmt_tatoeba_enru_pipeline_en * Add model 2024-09-03-shanghainese_opus_chinese_serbocroatian_4000_pipeline_en * Add model 2024-09-03-e5_base_v2_vectoriseai_en * Add model 2024-09-03-spanish_finnish_all_pipeline_en * Add model 2024-09-03-terjman_nano_pipeline_ar * Add model 2024-09-03-vis_genome_fine_tuned_opus_maltese_english_hausa_pipeline_en * Add model 2024-09-03-transmodel_arabic_english_en * Add model 2024-09-03-opus_maltese_english_bkm_10e4encdec_en * Add model 2024-09-03-opus_maltese_english_bkm_10e4encdec_pipeline_en * Add model 2024-09-03-mariancg_conala_en * Add model 2024-09-03-opus_maltese_urdu_english_finetuned_persian_farsi_tonga_tonga_islands_english_pipeline_en * Add model 2024-09-03-mariancg_conala_pipeline_en * Add model 2024-09-02-xlm_roberta_base_finetuned_panx_german_maxfrax_pipeline_en * Add model 2024-09-03-cleaned_e5_large_unsupervised_8_en * Add model 2024-09-03-opus_maltese_english_romanian_finetuned_english_tonga_tonga_islands_romanian_dwayne_en * Add model 2024-09-03-opus_maltese_english_italian_finetuned_english_tonga_tonga_islands_italian_vfiona_en * Add model 2024-09-02-albert_base_qa_2_lr_1_pipeline_en * Add model 2024-09-03-gpl_e5_base_unsupervised_curated_2_small_en * Add model 2024-09-02-n_distilbert_imdb_padding10model_realgon_pipeline_en * Add model 2024-09-03-xlmroberta_ner_xlm_roberta_base_finetuned_amharic_finetuned_ner_amharic_am * Add model 2024-09-03-xlmroberta_ner_mertyrgn_base_finetuned_panx_de * Add model 2024-09-03-xlmroberta_ner_xlm_roberta_base_finetuned_amharic_finetuned_ner_amharic_pipeline_am * Add model 2024-09-01-deberta_v3_large_fewnerd_fine_ner_en * Add model 2024-09-03-xlmroberta_ner_robkayinto_base_finetuned_panx_en * Add model 2024-09-03-xlm_roberta_base_finetuned_panx_german_natnova_pipeline_en * Add model 2024-09-03-xlmroberta_ner_victen_base_finetuned_panx_de * Add model 2024-09-02-deberta_v3_large_survey_fluency_rater_gpt4_en * Add model 2024-09-03-xlmroberta_ner_robkayinto_base_finetuned_panx_pipeline_en * Add model 2024-09-03-xlmroberta_ner_jboever_base_finetuned_panx_de * Add model 2024-09-03-burmese_translation_helsinki_pipeline_en * Add model 2024-09-03-xlm_roberta_base_finetuned_panx_german_tieincred_pipeline_en * Add model 2024-09-03-sent_memo_model_4200_en * Add model 2024-09-03-finetuned_polish_tonga_tonga_islands_szl_siling_corrected_aligned_20e_en * Add model 2024-09-03-xlm_r_galen_meddocan_pipeline_es * Add model 2024-09-03-xlmroberta_ner_flood_base_finetuned_panx_xx * Add model 2024-09-03-xlmroberta_ner_flood_base_finetuned_panx_pipeline_xx * Add model 2024-09-03-xlmroberta_ner_naam_base_finetuned_panx_pipeline_de * Add model 2024-09-03-terjman_nano_ar * Add model 2024-09-01-deberta_v3_base_fine_tuned_food_ner_en * Add model 2024-09-03-wangchanberta_base_att_spm_uncased_finetuned_thainewspbs_th * Add model 2024-09-02-balu94distilbert_en * Add model 2024-09-03-spanish_finnish_all_en * Add model 2024-09-02-bge_base_financial_matryoshka_test_4_pipeline_en * Add model 2024-09-03-xlm_roberta_base_romanian_ner_ronec_pipeline_ro * Add model 2024-09-02-finetuning_sentiment_model_3000_samples_bloodyaca_en * Add model 2024-09-03-xlm_roberta_base_finetuned_panx_german_ffalcao_pipeline_en * Add model 2024-09-02-learn_hf_food_not_food_text_classifier_distilbert_base_uncased_pipeline_en * Add model 2024-09-02-all_mpnet_base_newtriplets_v2_lr_1e_8_m_1_e_3_en * Add model 2024-09-03-xlmroberta_ner_jonfrank_base_finetuned_panx_de * Add model 2024-09-03-turkish_tonga_tonga_islands_english_finetuned_model_pipeline_en * Add model 2024-09-03-xlmroberta_ner_jonfrank_base_finetuned_panx_pipeline_de * Add model 2024-09-02-bert_italian_uncased_question_answering_it * Add model 2024-09-03-e5_100k_pipeline_en * Add model 2024-09-03-swahili_english_en --------- Co-authored-by: ahmedlone127 <[email protected]>
1 parent 23dc7e3 commit 67e256a

File tree

2,586 files changed

+211390
-0
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

2,586 files changed

+211390
-0
lines changed
Lines changed: 94 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,94 @@
1+
---
2+
layout: model
3+
title: English 012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000 DeBertaForSequenceClassification from diogopaes10
4+
author: John Snow Labs
5+
name: 012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000
6+
date: 2024-09-01
7+
tags: [en, open_source, onnx, sequence_classification, deberta]
8+
task: Text Classification
9+
language: en
10+
edition: Spark NLP 5.5.0
11+
spark_version: 3.0
12+
supported: true
13+
engine: onnx
14+
annotator: DeBertaForSequenceClassification
15+
article_header:
16+
type: cover
17+
use_language_switcher: "Python-Scala-Java"
18+
---
19+
20+
## Description
21+
22+
Pretrained DeBertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000` is a English model originally trained by diogopaes10.
23+
24+
{:.btn-box}
25+
<button class="button button-orange" disabled>Live Demo</button>
26+
<button class="button button-orange" disabled>Open in Colab</button>
27+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000_en_5.5.0_3.0_1725210154954.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
28+
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000_en_5.5.0_3.0_1725210154954.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
29+
30+
## How to use
31+
32+
33+
34+
<div class="tabs-box" markdown="1">
35+
{% include programmingLanguageSelectScalaPythonNLU.html %}
36+
```python
37+
38+
documentAssembler = DocumentAssembler() \
39+
.setInputCol('text') \
40+
.setOutputCol('document')
41+
42+
tokenizer = Tokenizer() \
43+
.setInputCols(['document']) \
44+
.setOutputCol('token')
45+
46+
sequenceClassifier = DeBertaForSequenceClassification.pretrained("012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000","en") \
47+
.setInputCols(["documents","token"]) \
48+
.setOutputCol("class")
49+
50+
pipeline = Pipeline().setStages([documentAssembler, tokenizer, sequenceClassifier])
51+
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
52+
pipelineModel = pipeline.fit(data)
53+
pipelineDF = pipelineModel.transform(data)
54+
55+
```
56+
```scala
57+
58+
val documentAssembler = new DocumentAssembler()
59+
.setInputCols("text")
60+
.setOutputCols("document")
61+
62+
val tokenizer = new Tokenizer()
63+
.setInputCols(Array("document"))
64+
.setOutputCol("token")
65+
66+
val sequenceClassifier = DeBertaForSequenceClassification.pretrained("012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000", "en")
67+
.setInputCols(Array("documents","token"))
68+
.setOutputCol("class")
69+
70+
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
71+
val data = Seq("I love spark-nlp").toDS.toDF("text")
72+
val pipelineModel = pipeline.fit(data)
73+
val pipelineDF = pipelineModel.transform(data)
74+
75+
```
76+
</div>
77+
78+
{:.model-param}
79+
## Model Information
80+
81+
{:.table-model}
82+
|---|---|
83+
|Model Name:|012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000|
84+
|Compatibility:|Spark NLP 5.5.0+|
85+
|License:|Open Source|
86+
|Edition:|Official|
87+
|Input Labels:|[document, token]|
88+
|Output Labels:|[class]|
89+
|Language:|en|
90+
|Size:|615.4 MB|
91+
92+
## References
93+
94+
https://huggingface.co/diogopaes10/012-microsoft-deberta-v3-base-finetuned-yahoo-8000_2000
Lines changed: 70 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,70 @@
1+
---
2+
layout: model
3+
title: English 012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000_pipeline pipeline DeBertaForSequenceClassification from diogopaes10
4+
author: John Snow Labs
5+
name: 012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000_pipeline
6+
date: 2024-09-01
7+
tags: [en, open_source, pipeline, onnx]
8+
task: Text Classification
9+
language: en
10+
edition: Spark NLP 5.5.0
11+
spark_version: 3.0
12+
supported: true
13+
annotator: PipelineModel
14+
article_header:
15+
type: cover
16+
use_language_switcher: "Python-Scala-Java"
17+
---
18+
19+
## Description
20+
21+
Pretrained DeBertaForSequenceClassification, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000_pipeline` is a English model originally trained by diogopaes10.
22+
23+
{:.btn-box}
24+
<button class="button button-orange" disabled>Live Demo</button>
25+
<button class="button button-orange" disabled>Open in Colab</button>
26+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000_pipeline_en_5.5.0_3.0_1725210205867.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
27+
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000_pipeline_en_5.5.0_3.0_1725210205867.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
28+
29+
## How to use
30+
31+
32+
33+
<div class="tabs-box" markdown="1">
34+
{% include programmingLanguageSelectScalaPythonNLU.html %}
35+
```python
36+
37+
pipeline = PretrainedPipeline("012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000_pipeline", lang = "en")
38+
annotations = pipeline.transform(df)
39+
40+
```
41+
```scala
42+
43+
val pipeline = new PretrainedPipeline("012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000_pipeline", lang = "en")
44+
val annotations = pipeline.transform(df)
45+
46+
```
47+
</div>
48+
49+
{:.model-param}
50+
## Model Information
51+
52+
{:.table-model}
53+
|---|---|
54+
|Model Name:|012_microsoft_deberta_v3_base_finetuned_yahoo_8000_2000_pipeline|
55+
|Type:|pipeline|
56+
|Compatibility:|Spark NLP 5.5.0+|
57+
|License:|Open Source|
58+
|Edition:|Official|
59+
|Language:|en|
60+
|Size:|615.4 MB|
61+
62+
## References
63+
64+
https://huggingface.co/diogopaes10/012-microsoft-deberta-v3-base-finetuned-yahoo-8000_2000
65+
66+
## Included Models
67+
68+
- DocumentAssembler
69+
- TokenizerModel
70+
- DeBertaForSequenceClassification
Lines changed: 94 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,94 @@
1+
---
2+
layout: model
3+
title: English abert_test AlbertEmbeddings from hizella
4+
author: John Snow Labs
5+
name: abert_test
6+
date: 2024-09-01
7+
tags: [en, open_source, onnx, embeddings, albert]
8+
task: Embeddings
9+
language: en
10+
edition: Spark NLP 5.4.2
11+
spark_version: 3.0
12+
supported: true
13+
engine: onnx
14+
annotator: AlbertEmbeddings
15+
article_header:
16+
type: cover
17+
use_language_switcher: "Python-Scala-Java"
18+
---
19+
20+
## Description
21+
22+
Pretrained AlbertEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`abert_test` is a English model originally trained by hizella.
23+
24+
{:.btn-box}
25+
<button class="button button-orange" disabled>Live Demo</button>
26+
<button class="button button-orange" disabled>Open in Colab</button>
27+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/abert_test_en_5.4.2_3.0_1725205737924.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
28+
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/abert_test_en_5.4.2_3.0_1725205737924.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
29+
30+
## How to use
31+
32+
33+
34+
<div class="tabs-box" markdown="1">
35+
{% include programmingLanguageSelectScalaPythonNLU.html %}
36+
```python
37+
38+
documentAssembler = DocumentAssembler() \
39+
.setInputCol("text") \
40+
.setOutputCol("document")
41+
42+
tokenizer = Tokenizer() \
43+
.setInputCols("document") \
44+
.setOutputCol("token")
45+
46+
embeddings = AlbertEmbeddings.pretrained("abert_test","en") \
47+
.setInputCols(["document", "token"]) \
48+
.setOutputCol("embeddings")
49+
50+
pipeline = Pipeline().setStages([documentAssembler, tokenizer, embeddings])
51+
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
52+
pipelineModel = pipeline.fit(data)
53+
pipelineDF = pipelineModel.transform(data)
54+
55+
```
56+
```scala
57+
58+
val documentAssembler = new DocumentAssembler()
59+
.setInputCol("text")
60+
.setOutputCol("document")
61+
62+
val tokenizer = new Tokenizer()
63+
.setInputCols(Array("document"))
64+
.setOutputCol("token")
65+
66+
val embeddings = AlbertEmbeddings.pretrained("abert_test","en")
67+
.setInputCols(Array("document", "token"))
68+
.setOutputCol("embeddings")
69+
70+
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
71+
val data = Seq("I love spark-nlp").toDF("text")
72+
val pipelineModel = pipeline.fit(data)
73+
val pipelineDF = pipelineModel.transform(data)
74+
75+
```
76+
</div>
77+
78+
{:.model-param}
79+
## Model Information
80+
81+
{:.table-model}
82+
|---|---|
83+
|Model Name:|abert_test|
84+
|Compatibility:|Spark NLP 5.4.2+|
85+
|License:|Open Source|
86+
|Edition:|Official|
87+
|Input Labels:|[sentence, token]|
88+
|Output Labels:|[albert]|
89+
|Language:|en|
90+
|Size:|41.6 MB|
91+
92+
## References
93+
94+
https://huggingface.co/hizella/aBERT_test
Lines changed: 70 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,70 @@
1+
---
2+
layout: model
3+
title: English abert_test_pipeline pipeline AlbertEmbeddings from hizella
4+
author: John Snow Labs
5+
name: abert_test_pipeline
6+
date: 2024-09-01
7+
tags: [en, open_source, pipeline, onnx]
8+
task: Embeddings
9+
language: en
10+
edition: Spark NLP 5.4.2
11+
spark_version: 3.0
12+
supported: true
13+
annotator: PipelineModel
14+
article_header:
15+
type: cover
16+
use_language_switcher: "Python-Scala-Java"
17+
---
18+
19+
## Description
20+
21+
Pretrained AlbertEmbeddings, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`abert_test_pipeline` is a English model originally trained by hizella.
22+
23+
{:.btn-box}
24+
<button class="button button-orange" disabled>Live Demo</button>
25+
<button class="button button-orange" disabled>Open in Colab</button>
26+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/abert_test_pipeline_en_5.4.2_3.0_1725205740253.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
27+
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/abert_test_pipeline_en_5.4.2_3.0_1725205740253.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
28+
29+
## How to use
30+
31+
32+
33+
<div class="tabs-box" markdown="1">
34+
{% include programmingLanguageSelectScalaPythonNLU.html %}
35+
```python
36+
37+
pipeline = PretrainedPipeline("abert_test_pipeline", lang = "en")
38+
annotations = pipeline.transform(df)
39+
40+
```
41+
```scala
42+
43+
val pipeline = new PretrainedPipeline("abert_test_pipeline", lang = "en")
44+
val annotations = pipeline.transform(df)
45+
46+
```
47+
</div>
48+
49+
{:.model-param}
50+
## Model Information
51+
52+
{:.table-model}
53+
|---|---|
54+
|Model Name:|abert_test_pipeline|
55+
|Type:|pipeline|
56+
|Compatibility:|Spark NLP 5.4.2+|
57+
|License:|Open Source|
58+
|Edition:|Official|
59+
|Language:|en|
60+
|Size:|41.6 MB|
61+
62+
## References
63+
64+
https://huggingface.co/hizella/aBERT_test
65+
66+
## Included Models
67+
68+
- DocumentAssembler
69+
- TokenizerModel
70+
- AlbertEmbeddings

0 commit comments

Comments
 (0)