|
| 1 | +import yaml |
| 2 | +import os |
| 3 | +from pathlib import Path |
| 4 | +import pandas as pd |
| 5 | +import json |
| 6 | + |
| 7 | +from loguru import logger as eval_logger |
| 8 | +from lmms_eval.tasks.mmbench.mmbench_evals import MMBench_Evaluator |
| 9 | +from lmms_eval.tasks._task_utils.file_utils import generate_submission_file |
| 10 | + |
| 11 | +with open(Path(__file__).parent / "mmbench.yaml", "r") as f: |
| 12 | + raw_data = f.readlines() |
| 13 | + safe_data = [] |
| 14 | + for i, line in enumerate(raw_data): |
| 15 | + # remove function definition since yaml load cannot handle it |
| 16 | + if "!function" not in line: |
| 17 | + safe_data.append(line) |
| 18 | + |
| 19 | + config = yaml.safe_load("".join(safe_data)) |
| 20 | + |
| 21 | +GPT_EVAL_MODEL_NAME = config["metadata"]["gpt_eval_model_name"] |
| 22 | +API_TYPE = os.getenv("API_TYPE", "openai") |
| 23 | + |
| 24 | +if API_TYPE == "openai": |
| 25 | + API_URL = os.getenv("OPENAI_API_URL", "https://api.openai.com/v1/chat/completions") |
| 26 | + API_KEY = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY") |
| 27 | +elif API_TYPE == "azure": |
| 28 | + API_URL = os.getenv("AZURE_ENDPOINT", "https://api.cognitive.microsoft.com/sts/v1.0/issueToken") |
| 29 | + API_KEY = os.getenv("AZURE_API_KEY", "YOUR_API_KEY") |
| 30 | +else: |
| 31 | + API_URL = "YOUR_API_URL" |
| 32 | + API_KEY = "YOUR_API_KEY" |
| 33 | + |
| 34 | + |
| 35 | +mmbench_evaluator = MMBench_Evaluator(sys_prompt=config["metadata"]["sys_prompt"], API_KEY=API_KEY, API_URL=API_URL, model_version=GPT_EVAL_MODEL_NAME) |
| 36 | + |
| 37 | + |
| 38 | +def mmbench_doc_to_visual(doc): |
| 39 | + return [doc["image"].convert("RGB")] |
| 40 | + |
| 41 | + |
| 42 | +def mmbench_doc_to_text(doc, model_specific_prompt_kwargs=None): |
| 43 | + option_candidate = ["A", "B", "C", "D", "E"] |
| 44 | + options_prompt, options_dict = mmbench_evaluator.create_options_prompt(doc, option_candidate) |
| 45 | + |
| 46 | + data = { |
| 47 | + # "img": doc["image"], |
| 48 | + "question": doc["question"], |
| 49 | + "answer": doc.get("answer", None), |
| 50 | + "options": options_prompt, |
| 51 | + "category": doc["category"], |
| 52 | + "L2-category": doc["l2-category"], |
| 53 | + "options_dict": options_dict, |
| 54 | + "index": doc["index"], |
| 55 | + "hint": doc["hint"], |
| 56 | + "source": doc["source"], |
| 57 | + "split": doc["split"], |
| 58 | + } |
| 59 | + |
| 60 | + query_prompt = f"{data['hint']} {data['question']} {data['options']}" if pd.notna(data["hint"]) and data["hint"] != "nan" else f"{data['question']} {data['options']}" |
| 61 | + |
| 62 | + if model_specific_prompt_kwargs: |
| 63 | + query_prompt = f"{query_prompt}\n{model_specific_prompt_kwargs['post_prompt']}" |
| 64 | + |
| 65 | + return query_prompt |
| 66 | + |
| 67 | + |
| 68 | +def mmbench_process_results(doc, results): |
| 69 | + model_response = results[0].strip() |
| 70 | + data = { |
| 71 | + "gpt_eval_score": { |
| 72 | + "index": doc["index"], |
| 73 | + "question": doc["question"], |
| 74 | + "answer": doc["answer"], |
| 75 | + "prediction": model_response, |
| 76 | + "hint": doc["hint"], |
| 77 | + "source": doc["source"], |
| 78 | + "split": doc["split"], |
| 79 | + "category": doc["category"], |
| 80 | + "L2-category": doc["l2-category"], |
| 81 | + }, |
| 82 | + "submission": { |
| 83 | + "index": doc["index"], |
| 84 | + "question": doc["question"], |
| 85 | + "answer": doc["answer"], |
| 86 | + "prediction": model_response, |
| 87 | + "hint": doc["hint"], |
| 88 | + "source": doc["source"], |
| 89 | + "split": doc["split"], |
| 90 | + "category": doc["category"], |
| 91 | + "L2-category": doc["l2-category"], |
| 92 | + }, |
| 93 | + } |
| 94 | + option_candidate = ["A", "B", "C", "D", "E"] |
| 95 | + for c in option_candidate: |
| 96 | + data["submission"][c] = doc.get(c, "nan") |
| 97 | + data["gpt_eval_score"][c] = doc.get(c, "nan") |
| 98 | + return data |
| 99 | + |
| 100 | + |
| 101 | +def mmbench_aggregate_dev_results_eval(results, args): |
| 102 | + print(f"============= MMBench-RU(Dev) Detailed Results =============") |
| 103 | + overall_acc, category_acc, l2_category_acc = mmbench_evaluator.eval_result(results, eval_method="openai") |
| 104 | + file = generate_submission_file("mmbench_ru_dev_results.json", args) |
| 105 | + details_info = { |
| 106 | + "overall_acc": overall_acc, |
| 107 | + "category_acc": category_acc, |
| 108 | + "l2_category_acc": l2_category_acc, |
| 109 | + } |
| 110 | + with open(file, "w") as f: |
| 111 | + json.dump(details_info, f) |
| 112 | + return overall_acc * 100 |
| 113 | + |
| 114 | + |
| 115 | +def mmbench_aggregate_dev_results_submission(results, args): |
| 116 | + df = pd.DataFrame(results) |
| 117 | + excel_write_path = generate_submission_file("mmbench_ru_dev_results.xlsx", args) |
| 118 | + with pd.ExcelWriter(excel_write_path) as writer: |
| 119 | + df.to_excel(writer, index=False) |
| 120 | + eval_logger.info(f"Saved results to {excel_write_path}") |
| 121 | + |
| 122 | + |
| 123 | +def mmbench_aggregate_test_results(results, args): |
| 124 | + df = pd.DataFrame(results) |
| 125 | + excel_write_path = generate_submission_file("mmbench_ru_test_results.xlsx", args) |
| 126 | + with pd.ExcelWriter(excel_write_path) as writer: |
| 127 | + df.to_excel(writer, index=False) |
| 128 | + eval_logger.info(f"Saved results to {excel_write_path}") |
0 commit comments