@@ -172,6 +172,7 @@ def tria_compute_gradient(tria, vfunc):
172172 .. math::
173173 grad(f) &= [ (f_j - f_i) (vi-vk)' + (f_k - f_i) (vj-vi)' ] / (2 A) \\
174174 &= [ f_i (vk-vj)' + f_j (vi-vk)' + f_k (vj-vi)' ] / (2 A)
175+
175176 for triangle (vi,vj,vk) with area A, where (.)' is 90 degrees rotated
176177 edge, which is equal to cross(n,vec).
177178
@@ -661,14 +662,15 @@ def tet_compute_gradient(tet, vfunc):
661662 r"""Compute gradient of a vertex function f (for each tetra).
662663
663664 For a tetrahedron (vi,vj,vk,vh) with volume V we have:
665+
664666 .. math::
665667 grad(f) &= [ (f_j - f_i) (vi-vk) x (vh-vk) \\
666- & + (f_k - f_i) (vi-vh) x (vj-vh) \\
667- & + (f_h - f_i) (vk-vi) x (vj-vi) ] / (2 V) \\
668- &= [ f_i (?-?) x ( ? -?) \\
669- & + f_j (vi-vk) x (vh-vk) \\
670- & + f_k (vi-vh) x (vj-vh) \\
671- & + f_h (vk-vi) x (vj-vi) ] / (2 V).
668+ & + (f_k - f_i) (vi-vh) x (vj-vh) \\
669+ & + (f_h - f_i) (vk-vi) x (vj-vi) ] / (2 V) \\
670+ &= [ f_i (?-?) x ( ? -?) \\
671+ & + f_j (vi-vk) x (vh-vk) \\
672+ & + f_k (vi-vh) x (vj-vh) \\
673+ & + f_h (vk-vi) x (vj-vi) ] / (2 V).
672674
673675 Parameters
674676 ----------
0 commit comments