Skip to content

Commit 4abccaf

Browse files
authored
bump version to v0.11.0 (#4155)
* bump version to v0.11.0 * fix * fix sm70 sm75 compilation * update according to comments
1 parent 91e8414 commit 4abccaf

File tree

9 files changed

+9
-21
lines changed

9 files changed

+9
-21
lines changed

CMakeLists.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -222,7 +222,7 @@ if(ARCH STREQUAL "x86_64")
222222
if (NOT CMAKE_CUDA_ARCHITECTURES)
223223
set(CMAKE_CUDA_ARCHITECTURES "")
224224
if (${CMAKE_CUDA_COMPILER_VERSION} VERSION_LESS "13.0")
225-
list(APPEND CMAKE_CUDA_ARCHITECTURES 70-real 75-real) # V100, 2080
225+
list(APPEND CMAKE_CUDA_ARCHITECTURES 70-real 75-real) # V100, 2080
226226
endif()
227227
if (${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL "11")
228228
list(APPEND CMAKE_CUDA_ARCHITECTURES 80-real) # A100

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -214,7 +214,7 @@ The default prebuilt package is compiled on **CUDA 12** since v0.3.0.
214214
For the GeForce RTX 50 series, please install the LMDeploy prebuilt package complied with **CUDA 12.8**
215215

216216
```shell
217-
export LMDEPLOY_VERSION=0.10.2
217+
export LMDEPLOY_VERSION=0.11.0
218218
export PYTHON_VERSION=310
219219
pip install https://github.com/InternLM/lmdeploy/releases/download/v${LMDEPLOY_VERSION}/lmdeploy-${LMDEPLOY_VERSION}+cu128-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux2014_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu128
220220
```

README_zh-CN.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -215,7 +215,7 @@ pip install lmdeploy
215215
若使用 GeForce RTX 50 系列显卡,请安装基于 **CUDA 12.8** 编译的 LMDeploy 预编译包。
216216

217217
```shell
218-
export LMDEPLOY_VERSION=0.10.2
218+
export LMDEPLOY_VERSION=0.11.0
219219
export PYTHON_VERSION=310
220220
pip install https://github.com/InternLM/lmdeploy/releases/download/v${LMDEPLOY_VERSION}/lmdeploy-${LMDEPLOY_VERSION}+cu128-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux2014_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu128
221221
```

docs/en/faq.md

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -20,8 +20,6 @@ It may have been caused by the following reasons.
2020
pip install lmdeploy[all]
2121
```
2222

23-
If you want to install the nightly build of LMDeploy's whl package, you can download and install it from the latest release at https://github.com/zhyncs/lmdeploy-build according to your CUDA and Python versions. Currently the update frequency of whl is once a day.
24-
2523
2. If you have installed it and still encounter this issue, it is probably because you are executing turbomind-related command in the root directory of lmdeploy source code. Switching to another directory will fix it.
2624

2725
But if you are a developer, you often need to develop and compile locally. The efficiency of installing whl every time is too low. You can specify the path of lib after compilation through symbolic links.

docs/en/get_started/installation.md

Lines changed: 2 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -23,15 +23,11 @@ pip install lmdeploy
2323
The default prebuilt package is compiled on **CUDA 12**. If CUDA 11+ (>=11.3) is required, you can install lmdeploy by:
2424

2525
```shell
26-
export LMDEPLOY_VERSION=0.10.2
26+
export LMDEPLOY_VERSION=0.11.0
2727
export PYTHON_VERSION=310
2828
pip install https://github.com/InternLM/lmdeploy/releases/download/v${LMDEPLOY_VERSION}/lmdeploy-${LMDEPLOY_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux2014_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118
2929
```
3030

31-
## Install nightly-build package with pip
32-
33-
The release frequency of LMDeploy is approximately once or twice monthly. If your desired feature has been merged to LMDeploy main branch but hasn't been published yet, you can experiment with the nightly-built package available [here](https://github.com/zhyncs/lmdeploy-build) according to your CUDA and Python versions
34-
3531
## Install from source
3632

3733
By default, LMDeploy will build with NVIDIA CUDA support, utilizing both the Turbomind and PyTorch backends. Before installing LMDeploy, ensure you have successfully installed the CUDA Toolkit.
@@ -51,7 +47,7 @@ DISABLE_TURBOMIND=1 pip install git+https://github.com/InternLM/lmdeploy.git
5147
If you prefer a specific version instead of the `main` branch of LMDeploy, you can specify it in your command:
5248

5349
```shell
54-
pip install https://github.com/InternLM/lmdeploy/archive/refs/tags/v0.10.2.zip
50+
pip install https://github.com/InternLM/lmdeploy/archive/refs/tags/v0.11.0.zip
5551
```
5652

5753
If you want to build LMDeploy with support for Ascend, Cambricon, or MACA, install LMDeploy with the corresponding `LMDEPLOY_TARGET_DEVICE` environment variable.

docs/zh_cn/faq.md

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -20,8 +20,6 @@ pip install --upgrade mmengine
2020
pip install lmdeploy[all]
2121
```
2222

23-
如果您想安装 LMDeploy 预编译包的 nightly 版本,可以根据您的 CUDA 和 Python 版本从 https://github.com/zhyncs/lmdeploy-build 下载并安装最新发布的包。目前更新频率是每天一次。
24-
2523
2. 如果已经安装了,还是出现这个问题,请检查下执行目录。不要在 lmdeploy 的源码根目录下执行 python -m lmdeploy.turbomind.\*下的package,换到其他目录下执行。
2624

2725
但是如果您是开发人员,通常需要在本地进行开发和编译。每次安装 whl 的效率太低了。您可以通过符号链接在编译后指定 lib 的路径。

docs/zh_cn/get_started/installation.md

Lines changed: 2 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -23,15 +23,11 @@ pip install lmdeploy
2323
默认的预构建包是在 **CUDA 12** 上编译的。如果需要 CUDA 11+ (>=11.3),你可以使用以下命令安装 lmdeploy:
2424

2525
```shell
26-
export LMDEPLOY_VERSION=0.10.2
26+
export LMDEPLOY_VERSION=0.11.0
2727
export PYTHON_VERSION=310
2828
pip install https://github.com/InternLM/lmdeploy/releases/download/v${LMDEPLOY_VERSION}/lmdeploy-${LMDEPLOY_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux2014_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118
2929
```
3030

31-
## 使用 pip 安装夜间构建包
32-
33-
LMDeploy 的发布频率大约是每月一次或两次。如果你所需的功能已经被合并到 LMDeploy 的主分支但还没有发布,你可以环境中的 CUDA 和 Python 版本,尝试使用[这里](https://github.com/zhyncs/lmdeploy-build)提供的夜间构建包。
34-
3531
## 从源码安装
3632

3733
默认情况下,LMDeploy 将面向 NVIDIA CUDA 环境进行编译安装,并同时启用 Turbomind 和 PyTorch 两种后端引擎。在安装 LMDeploy 之前,请确保已成功安装 CUDA 工具包。
@@ -51,7 +47,7 @@ DISABLE_TURBOMIND=1 pip install git+https://github.com/InternLM/lmdeploy.git
5147
如果您希望使用特定版本,而不是 LMDeploy 的 `main` 分支,可以在命令行中指定:
5248

5349
```shell
54-
pip install https://github.com/InternLM/lmdeploy/archive/refs/tags/v0.10.2.zip
50+
pip install https://github.com/InternLM/lmdeploy/archive/refs/tags/v0.11.0.zip
5551
```
5652

5753
如果您希望构建支持昇腾、寒武纪或沐熙的 LMDeploy,请使用相应的 `LMDEPLOY_TARGET_DEVICE` 环境变量进行安装。

lmdeploy/serve/async_engine.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -842,7 +842,7 @@ async def generate(
842842
gen_config.max_new_tokens = max(0, self.session_len - self.id2step[session_id] - len(input_ids))
843843
if gen_config.max_new_tokens == 0:
844844
logger.error(f'run out of tokens. session={session_id}.')
845-
yield GenOut(response='run out of tokens',
845+
yield GenOut(response='',
846846
history_token_len=self.id2step[session_id],
847847
input_token_len=len(input_ids),
848848
generate_token_len=0,

lmdeploy/version.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Copyright (c) OpenMMLab. All rights reserved.
22
from typing import Tuple
33

4-
__version__ = '0.10.2'
4+
__version__ = '0.11.0'
55
short_version = __version__
66

77

0 commit comments

Comments
 (0)