|
| 1 | +module EnzymeJAX |
| 2 | + |
| 3 | +using ..Reactant: Reactant, Compiler, MLIR |
| 4 | + |
| 5 | +const NUMPY_SIMPLE_TYPES = Dict( |
| 6 | + Bool => "np.bool_", |
| 7 | + Int8 => "np.int8", |
| 8 | + Int16 => "np.int16", |
| 9 | + Int32 => "np.int32", |
| 10 | + Int64 => "np.int64", |
| 11 | + UInt8 => "np.uint8", |
| 12 | + UInt16 => "np.uint16", |
| 13 | + UInt32 => "np.uint32", |
| 14 | + UInt64 => "np.uint64", |
| 15 | + Float16 => "np.float16", |
| 16 | + Float32 => "np.float32", |
| 17 | + Float64 => "np.float64", |
| 18 | + ComplexF16 => "np.complex64", # Note: NumPy doesn't have float16 complex |
| 19 | + ComplexF32 => "np.complex64", |
| 20 | + ComplexF64 => "np.complex128", |
| 21 | +) |
| 22 | + |
| 23 | +""" |
| 24 | + export_to_enzymeax( |
| 25 | + f, |
| 26 | + args...; |
| 27 | + output_dir::String=".", |
| 28 | + function_name::String="exported_function", |
| 29 | + ) |
| 30 | +
|
| 31 | +Export a Julia function to EnzymeJAX format for use in Python/JAX. |
| 32 | +
|
| 33 | +This function: |
| 34 | +1. Compiles the function to StableHLO via `Reactant.@code_hlo` |
| 35 | +2. Saves the MLIR/StableHLO code to a `.mlir` file |
| 36 | +3. Saves input arrays to `.npy` files (transposed to account for row-major vs column-major) |
| 37 | +4. Generates a Python script with the function wrapped for EnzymeJAX's `hlo_call` |
| 38 | +
|
| 39 | +## Arguments |
| 40 | +
|
| 41 | + - `f`: The Julia function to export |
| 42 | + - `args...`: The arguments to the function (used to infer types and shapes) |
| 43 | +
|
| 44 | +## Keyword Arguments |
| 45 | +
|
| 46 | + - `output_dir::String="."`: Directory where output files will be saved |
| 47 | + - `function_name::String="exported_function"`: Base name for generated files |
| 48 | +
|
| 49 | +## Returns |
| 50 | +
|
| 51 | +A tuple `(mlir_path, python_path, input_paths)` containing paths to: |
| 52 | + - The generated `.mlir` file |
| 53 | + - The generated `.py` file |
| 54 | + - A vector of paths to input `.npy` files |
| 55 | +
|
| 56 | +## Example |
| 57 | +
|
| 58 | +```julia |
| 59 | +using Reactant |
| 60 | +
|
| 61 | +# Define a simple function |
| 62 | +function my_function(x, y) |
| 63 | + return x .+ y |
| 64 | +end |
| 65 | +
|
| 66 | +# Create some example inputs |
| 67 | +x = Reactant.to_rarray(Float32[1, 2, 3]) |
| 68 | +y = Reactant.to_rarray(Float32[4, 5, 6]) |
| 69 | +
|
| 70 | +# Export to EnzymeJAX |
| 71 | +mlir_path, python_path, input_paths = Reactant.Serialization.export_to_enzymeax( |
| 72 | + my_function, x, y; |
| 73 | + output_dir="/tmp/exported", |
| 74 | + function_name="my_function" |
| 75 | +) |
| 76 | +``` |
| 77 | +
|
| 78 | +Then in Python: |
| 79 | +```python |
| 80 | +# Run the generated Python script |
| 81 | +from exported.my_function import run_my_function |
| 82 | +import jax |
| 83 | +
|
| 84 | +result = jax.jit(run_my_function)(*inputs) |
| 85 | +``` |
| 86 | +""" |
| 87 | +function export_to_enzymeax( |
| 88 | + f, |
| 89 | + args...; |
| 90 | + output_dir::String=".", |
| 91 | + function_name::String="exported_function", |
| 92 | +) |
| 93 | + # Create output directory if it doesn't exist |
| 94 | + mkpath(output_dir) |
| 95 | + |
| 96 | + # Generate the StableHLO/MLIR code using compile_mlir directly |
| 97 | + mod, mlir_fn_res = Compiler.compile_mlir( |
| 98 | + f, args; |
| 99 | + shardy_passes=:none |
| 100 | + ) |
| 101 | + hlo_code = string(mod) |
| 102 | + |
| 103 | + # Save MLIR code |
| 104 | + mlir_path = joinpath(output_dir, "$(function_name).mlir") |
| 105 | + write(mlir_path, hlo_code) |
| 106 | + |
| 107 | + # Process and save inputs |
| 108 | + input_paths = String[] |
| 109 | + input_info = [] |
| 110 | + |
| 111 | + for (i, arg) in enumerate(args) |
| 112 | + # Convert to array if needed |
| 113 | + arr = _to_array(arg) |
| 114 | + |
| 115 | + # Save the input (transposed for row-major Python/NumPy) |
| 116 | + input_path = joinpath(output_dir, "$(function_name)_input_$(i).npy") |
| 117 | + _save_transposed_array(input_path, arr) |
| 118 | + push!(input_paths, input_path) |
| 119 | + |
| 120 | + # Store shape and dtype info (in Julia's column-major ordering) |
| 121 | + push!(input_info, (shape=size(arr), dtype=eltype(arr))) |
| 122 | + end |
| 123 | + |
| 124 | + # Generate Python script |
| 125 | + python_path = joinpath(output_dir, "$(function_name).py") |
| 126 | + _generate_python_script(python_path, function_name, mlir_path, input_paths, input_info) |
| 127 | + |
| 128 | + return (mlir_path, python_path, input_paths) |
| 129 | +end |
| 130 | + |
| 131 | +""" |
| 132 | +Convert Reactant types to regular Julia arrays for saving. |
| 133 | +""" |
| 134 | +function _to_array(x::Reactant.ConcreteRArray) |
| 135 | + return Array(x) |
| 136 | +end |
| 137 | + |
| 138 | +function _to_array(x::Reactant.ConcreteRNumber) |
| 139 | + return [x.data] |
| 140 | +end |
| 141 | + |
| 142 | +function _to_array(x::AbstractArray) |
| 143 | + return Array(x) |
| 144 | +end |
| 145 | + |
| 146 | +function _to_array(x::Number) |
| 147 | + return [x] |
| 148 | +end |
| 149 | + |
| 150 | +function _to_array(x::Tuple) |
| 151 | + error("Tuple arguments are not yet supported. Please flatten your arguments.") |
| 152 | +end |
| 153 | + |
| 154 | +function _to_array(x::NamedTuple) |
| 155 | + error("NamedTuple arguments are not yet supported. Please flatten your arguments.") |
| 156 | +end |
| 157 | + |
| 158 | +""" |
| 159 | +Save an array to a .npy file, transposing to account for row-major vs column-major ordering. |
| 160 | +""" |
| 161 | +function _save_transposed_array(path::String, arr::AbstractArray) |
| 162 | + # For multi-dimensional arrays, we need to reverse the dimensions for Python/NumPy |
| 163 | + # Julia: column-major (fastest changing index first) |
| 164 | + # Python: row-major (fastest changing index last) |
| 165 | + transposed = permutedims(arr, reverse(1:ndims(arr))) |
| 166 | + |
| 167 | + # Use a simple .npy writer |
| 168 | + # NPY format v1.0: magic (6 bytes) + version (2 bytes) + header_len (2 bytes) + header + data |
| 169 | + open(path, "w") do io |
| 170 | + # Magic number for .npy format |
| 171 | + write(io, UInt8[0x93, 0x4E, 0x55, 0x4D, 0x50, 0x59]) |
| 172 | + # Version 1.0 |
| 173 | + write(io, UInt8[0x01, 0x00]) |
| 174 | + |
| 175 | + # Prepare header |
| 176 | + dtype_str = _numpy_dtype_string(eltype(arr)) |
| 177 | + shape_str = join(size(transposed), ", ") |
| 178 | + header = "{'descr': '$(dtype_str)', 'fortran_order': False, 'shape': ($(shape_str),)}" |
| 179 | + |
| 180 | + # Pad header to be aligned on 64 bytes |
| 181 | + header_len = length(header) + 1 # +1 for newline |
| 182 | + total_len = 10 + header_len # 10 = magic(6) + version(2) + header_len(2) |
| 183 | + padding = (64 - (total_len % 64)) % 64 |
| 184 | + header = header * " "^padding * "\n" |
| 185 | + header_len = length(header) |
| 186 | + |
| 187 | + # Write header length (little-endian UInt16) |
| 188 | + write(io, UInt16(header_len)) |
| 189 | + # Write header |
| 190 | + write(io, header) |
| 191 | + # Write data |
| 192 | + write(io, vec(transposed)) |
| 193 | + end |
| 194 | +end |
| 195 | + |
| 196 | +""" |
| 197 | +Get NumPy dtype string for a Julia type. |
| 198 | +""" |
| 199 | +function _numpy_dtype_string(::Type{Bool}) |
| 200 | + return "|b1" |
| 201 | +end |
| 202 | + |
| 203 | +function _numpy_dtype_string(::Type{Int8}) |
| 204 | + return "|i1" |
| 205 | +end |
| 206 | + |
| 207 | +function _numpy_dtype_string(::Type{UInt8}) |
| 208 | + return "|u1" |
| 209 | +end |
| 210 | + |
| 211 | +function _numpy_dtype_string(::Type{Int16}) |
| 212 | + return "<i2" |
| 213 | +end |
| 214 | + |
| 215 | +function _numpy_dtype_string(::Type{UInt16}) |
| 216 | + return "<u2" |
| 217 | +end |
| 218 | + |
| 219 | +function _numpy_dtype_string(::Type{Int32}) |
| 220 | + return "<i4" |
| 221 | +end |
| 222 | + |
| 223 | +function _numpy_dtype_string(::Type{UInt32}) |
| 224 | + return "<u4" |
| 225 | +end |
| 226 | + |
| 227 | +function _numpy_dtype_string(::Type{Int64}) |
| 228 | + return "<i8" |
| 229 | +end |
| 230 | + |
| 231 | +function _numpy_dtype_string(::Type{UInt64}) |
| 232 | + return "<u8" |
| 233 | +end |
| 234 | + |
| 235 | +function _numpy_dtype_string(::Type{Float16}) |
| 236 | + return "<f2" |
| 237 | +end |
| 238 | + |
| 239 | +function _numpy_dtype_string(::Type{Float32}) |
| 240 | + return "<f4" |
| 241 | +end |
| 242 | + |
| 243 | +function _numpy_dtype_string(::Type{Float64}) |
| 244 | + return "<f8" |
| 245 | +end |
| 246 | + |
| 247 | +function _numpy_dtype_string(::Type{ComplexF32}) |
| 248 | + return "<c8" |
| 249 | +end |
| 250 | + |
| 251 | +function _numpy_dtype_string(::Type{ComplexF64}) |
| 252 | + return "<c16" |
| 253 | +end |
| 254 | + |
| 255 | +""" |
| 256 | +Generate a Python script that uses EnzymeJAX to call the exported function. |
| 257 | +""" |
| 258 | +function _generate_python_script( |
| 259 | + python_path::String, |
| 260 | + function_name::String, |
| 261 | + mlir_path::String, |
| 262 | + input_paths::Vector{String}, |
| 263 | + input_info::Vector, |
| 264 | +) |
| 265 | + # Get relative paths for the Python script |
| 266 | + output_dir = dirname(python_path) |
| 267 | + mlir_rel = relpath(mlir_path, output_dir) |
| 268 | + input_rels = [relpath(p, output_dir) for p in input_paths] |
| 269 | + |
| 270 | + # Start building the Python script |
| 271 | + script = """ |
| 272 | + \"\"\" |
| 273 | + Auto-generated Python script for calling exported Julia/Reactant function via EnzymeJAX. |
| 274 | + |
| 275 | + This script was generated by Reactant.Serialization.export_to_enzymeax(). |
| 276 | + \"\"\" |
| 277 | + |
| 278 | + from enzyme_ad.jax import hlo_call |
| 279 | + import jax |
| 280 | + import jax.numpy as jnp |
| 281 | + import numpy as np |
| 282 | + import os |
| 283 | + |
| 284 | + # Get the directory of this script |
| 285 | + _script_dir = os.path.dirname(os.path.abspath(__file__)) |
| 286 | + |
| 287 | + # Load the MLIR/StableHLO code |
| 288 | + with open(os.path.join(_script_dir, "$(mlir_rel)"), "r") as f: |
| 289 | + _hlo_code = f.read() |
| 290 | + |
| 291 | + """ |
| 292 | + |
| 293 | + # Add function to load inputs |
| 294 | + script *= """ |
| 295 | + def load_inputs(): |
| 296 | + \"\"\"Load the example inputs that were exported from Julia.\"\"\" |
| 297 | + inputs = [] |
| 298 | + """ |
| 299 | + |
| 300 | + for (i, input_rel) in enumerate(input_rels) |
| 301 | + script *= """ |
| 302 | + inputs.append(np.load(os.path.join(_script_dir, "$(input_rel)"))) |
| 303 | + """ |
| 304 | + end |
| 305 | + |
| 306 | + script *= """ |
| 307 | + return tuple(inputs) |
| 308 | + |
| 309 | + """ |
| 310 | + |
| 311 | + # Add the main function that calls the HLO code |
| 312 | + arg_names = ["arg$i" for i in 1:length(input_paths)] |
| 313 | + arg_list = join(arg_names, ", ") |
| 314 | + |
| 315 | + script *= """ |
| 316 | + def run_$(function_name)($(arg_list)): |
| 317 | + \"\"\" |
| 318 | + Call the exported Julia function via EnzymeJAX. |
| 319 | + |
| 320 | + Args: |
| 321 | + """ |
| 322 | + |
| 323 | + for (i, info) in enumerate(input_info) |
| 324 | + # Note: shapes are already transposed for Python |
| 325 | + python_shape = reverse(info.shape) |
| 326 | + script *= """ |
| 327 | + $(arg_names[i]): Array of shape $(python_shape) and dtype $(NUMPY_SIMPLE_TYPES[info.dtype]) |
| 328 | + """ |
| 329 | + end |
| 330 | + |
| 331 | + script *= """ |
| 332 | + |
| 333 | + Returns: |
| 334 | + The result of calling the exported function. |
| 335 | + |
| 336 | + Note: |
| 337 | + All inputs must be in row-major (Python/NumPy) order. If you're passing |
| 338 | + arrays from Julia, make sure to transpose them first using: |
| 339 | + `permutedims(arr, reverse(1:ndims(arr)))` |
| 340 | + \"\"\" |
| 341 | + return hlo_call( |
| 342 | + $(arg_list), |
| 343 | + source=_hlo_code, |
| 344 | + ) |
| 345 | + |
| 346 | + """ |
| 347 | + |
| 348 | + # Add a main block for testing |
| 349 | + script *= """ |
| 350 | + if __name__ == "__main__": |
| 351 | + # Load the example inputs |
| 352 | + inputs = load_inputs() |
| 353 | + |
| 354 | + # Run the function (with JIT compilation) |
| 355 | + print("Running $(function_name) with JIT compilation...") |
| 356 | + result = jax.jit(run_$(function_name))(*inputs) |
| 357 | + print("Result:", result) |
| 358 | + print("Result shape:", result.shape if hasattr(result, 'shape') else 'scalar') |
| 359 | + print("Result dtype:", result.dtype if hasattr(result, 'dtype') else type(result)) |
| 360 | + """ |
| 361 | + |
| 362 | + write(python_path, script) |
| 363 | +end |
| 364 | + |
| 365 | +end # module |
0 commit comments