-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtyphoon_analysis.py
1445 lines (1219 loc) · 58.6 KB
/
typhoon_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import dash
import plotly.graph_objects as go
import plotly.express as px
import pickle
import tropycal.tracks as tracks
import pandas as pd
import numpy as np
import cachetools
import functools
import hashlib
import os
import argparse
from dash import dcc, html
from dash.dependencies import Input, Output, State
from dash.exceptions import PreventUpdate
from plotly.subplots import make_subplots
from datetime import datetime, timedelta
from datetime import date, datetime
from scipy import stats
from scipy.optimize import minimize, curve_fit
from sklearn.linear_model import LinearRegression
from sklearn.cluster import KMeans
from scipy.interpolate import interp1d
from fractions import Fraction
from concurrent.futures import ThreadPoolExecutor
from sklearn.metrics import mean_squared_error
import statsmodels.api as sm
import schedule
import time
import threading
import requests
from io import StringIO
import tempfile
import csv
from collections import defaultdict
import shutil
import filecmp
# Add command-line argument parsing
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
# Use the command-line argument for data path
DATA_PATH = args.data_path
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1
last_oni_update = None
def should_update_oni():
today = datetime.now()
# Beginning of the month: 1st day
if today.day == 1:
return True
# Middle of the month: 15th day
if today.day == 15:
return True
# End of the month: last day
if today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day:
return True
return False
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)', # Red
'C4 Very Strong Typhoon': 'rgb(255, 63, 0)', # Red-Orange
'C3 Strong Typhoon': 'rgb(255, 127, 0)', # Orange
'C2 Typhoon': 'rgb(255, 191, 0)', # Orange-Yellow
'C1 Typhoon': 'rgb(255, 255, 0)', # Yellow
'Tropical Storm': 'rgb(0, 255, 255)', # Cyan
'Tropical Depression': 'rgb(173, 216, 230)' # Light Blue
}
def convert_typhoondata(input_file, output_file):
with open(input_file, 'r') as infile:
# Skip the title and the unit line.
next(infile)
next(infile)
reader = csv.reader(infile)
# Used for storing data for each SID
sid_data = defaultdict(list)
for row in reader:
if not row: # Skip the blank lines
continue
sid = row[0]
iso_time = row[6]
sid_data[sid].append((row, iso_time))
with open(output_file, 'w', newline='') as outfile:
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
writer.writeheader()
for sid, data in sid_data.items():
start_date = min(data, key=lambda x: x[1])[1]
end_date = max(data, key=lambda x: x[1])[1]
for row, iso_time in data:
writer.writerow({
'SID': row[0],
'ISO_TIME': iso_time,
'LAT': row[8],
'LON': row[9],
'SEASON': row[1],
'NAME': row[5],
'WMO_WIND': row[10].strip() or ' ',
'WMO_PRES': row[11].strip() or ' ',
'USA_WIND': row[23].strip() or ' ',
'USA_PRES': row[24].strip() or ' ',
'START_DATE': start_date,
'END_DATE': end_date
})
def download_oni_file(url, filename):
print(f"Downloading file from {url}...")
try:
response = requests.get(url)
response.raise_for_status() # Raises an exception for non-200 status codes
with open(filename, 'wb') as f:
f.write(response.content)
print(f"File successfully downloaded and saved as {filename}")
return True
except requests.RequestException as e:
print(f"Download failed. Error: {e}")
return False
def convert_oni_ascii_to_csv(input_file, output_file):
data = defaultdict(lambda: [''] * 12)
season_to_month = {
'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11
}
print(f"Attempting to read file: {input_file}")
try:
with open(input_file, 'r') as f:
lines = f.readlines()
print(f"Successfully read {len(lines)} lines")
if len(lines) <= 1:
print("Error: File is empty or contains only header")
return
for line in lines[1:]: # Skip header
parts = line.split()
if len(parts) >= 4:
season, year = parts[0], parts[1]
anom = parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year) - 1)
data[year][month-1] = anom
else:
print(f"Warning: Unknown season: {season}")
else:
print(f"Warning: Skipping invalid line: {line.strip()}")
print(f"Processed data for {len(data)} years")
except Exception as e:
print(f"Error reading file: {e}")
return
print(f"Attempting to write file: {output_file}")
try:
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
for year in sorted(data.keys()):
row = [year] + data[year]
writer.writerow(row)
print(f"Successfully wrote {len(data)} rows of data")
except Exception as e:
print(f"Error writing file: {e}")
return
print(f"Conversion complete. Data saved to {output_file}")
def update_oni_data():
global last_oni_update
current_date = date.today()
# Check if already updated today
if last_oni_update == current_date:
print("ONI data already checked today. Skipping update.")
return
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file, shallow=False):
# File doesn't exist or has been updated
os.replace(temp_file, input_file)
print("New ONI data detected. Converting to CSV.")
convert_oni_ascii_to_csv(input_file, output_file)
print("ONI data updated successfully.")
else:
print("ONI data is up to date. No conversion needed.")
os.remove(temp_file) # Remove temporary file
last_oni_update = current_date
else:
print("Failed to download ONI data.")
if os.path.exists(temp_file):
os.remove(temp_file) # Ensure cleanup of temporary file
def load_ibtracs_data():
if os.path.exists(CACHE_FILE):
cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))
if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS):
print("Loading data from cache...")
with open(CACHE_FILE, 'rb') as f:
return pickle.load(f)
if os.path.exists(LOCAL_iBtrace_PATH):
print("Using local IBTrACS file...")
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
else:
print("Local IBTrACS file not found. Fetching data from remote server...")
try:
response = requests.get(iBtrace_uri)
response.raise_for_status()
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
temp_file.write(response.text)
temp_file_path = temp_file.name
# Save the downloaded data as the local file
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}")
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
except requests.RequestException as e:
print(f"Error downloading data: {e}")
print("No local file available and download failed. Unable to load IBTrACS data.")
return None
with open(CACHE_FILE, 'wb') as f:
pickle.dump(ibtracs, f)
return ibtracs
def update_ibtracs_data():
global ibtracs
print("Checking for IBTrACS data updates...")
try:
# Get the last-modified time of the remote file
response = requests.head(iBtrace_uri)
remote_last_modified = datetime.strptime(response.headers['Last-Modified'], '%a, %d %b %Y %H:%M:%S GMT')
# Get the last-modified time of the local file
if os.path.exists(LOCAL_iBtrace_PATH):
local_last_modified = datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH))
else:
local_last_modified = datetime.min
# Compare the modification times
if remote_last_modified <= local_last_modified:
print("Local IBTrACS data is up to date. No update needed.")
if os.path.exists(CACHE_FILE):
# Update the cache file's timestamp to extend its validity
os.utime(CACHE_FILE, None)
print("Cache file timestamp updated.")
return
print("Remote data is newer. Updating IBTrACS data...")
# Download the new data
response = requests.get(iBtrace_uri)
response.raise_for_status()
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
temp_file.write(response.text)
temp_file_path = temp_file.name
# Save the downloaded data as the local file
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}")
# Update the last modified time of the local file to match the remote file
os.utime(LOCAL_iBtrace_PATH, (remote_last_modified.timestamp(), remote_last_modified.timestamp()))
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
with open(CACHE_FILE, 'wb') as f:
pickle.dump(ibtracs, f)
print("IBTrACS data updated and cache refreshed.")
except requests.RequestException as e:
print(f"Error checking or downloading data: {e}")
if os.path.exists(LOCAL_iBtrace_PATH):
print("Using existing local file.")
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
if os.path.exists(CACHE_FILE):
# Update the cache file's timestamp even when using existing local file
os.utime(CACHE_FILE, None)
print("Cache file timestamp updated.")
else:
print("No local file available. Update failed.")
def run_schedule():
while True:
schedule.run_pending()
time.sleep(1)
def analyze_typhoon_generation(merged_data, start_date, end_date):
filtered_data = merged_data[
(merged_data['ISO_TIME'] >= start_date) &
(merged_data['ISO_TIME'] <= end_date)
]
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
typhoon_counts = filtered_data['ENSO_Phase'].value_counts().to_dict()
month_counts = filtered_data.groupby(['ENSO_Phase', filtered_data['ISO_TIME'].dt.month]).size().unstack(fill_value=0)
concentrated_months = month_counts.idxmax(axis=1).to_dict()
return typhoon_counts, concentrated_months
def cache_key_generator(*args, **kwargs):
key = hashlib.md5()
for arg in args:
key.update(str(arg).encode())
for k, v in sorted(kwargs.items()):
key.update(str(k).encode())
key.update(str(v).encode())
return key.hexdigest()
def categorize_typhoon(wind_speed):
wind_speed_kt = wind_speed / 2 # Convert kt to m/s
# Add category classification
if wind_speed_kt >= 137/2.35:
return 'C5 Super Typhoon'
elif wind_speed_kt >= 113/2.35:
return 'C4 Very Strong Typhoon'
elif wind_speed_kt >= 96/2.35:
return 'C3 Strong Typhoon'
elif wind_speed_kt >= 83/2.35:
return 'C2 Typhoon'
elif wind_speed_kt >= 64/2.35:
return 'C1 Typhoon'
elif wind_speed_kt >= 34/2.35:
return 'Tropical Storm'
else:
return 'Tropical Depression'
@functools.lru_cache(maxsize=None)
def process_oni_data_cached(oni_data_hash):
return process_oni_data(oni_data)
def process_oni_data(oni_data):
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
oni_long['Month'] = oni_long['Month'].map({
'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'
})
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_oni_data_with_cache(oni_data):
oni_data_hash = cache_key_generator(oni_data.to_json())
return process_oni_data_cached(oni_data_hash)
@functools.lru_cache(maxsize=None)
def process_typhoon_data_cached(typhoon_data_hash):
return process_typhoon_data(typhoon_data)
def process_typhoon_data(typhoon_data):
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND': 'max',
'USA_PRES': 'min',
'ISO_TIME': 'first',
'SEASON': 'first',
'NAME': 'first',
'LAT': 'first',
'LON': 'first'
}).reset_index()
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
return typhoon_max
def process_typhoon_data_with_cache(typhoon_data):
typhoon_data_hash = cache_key_generator(typhoon_data.to_json())
return process_typhoon_data_cached(typhoon_data_hash)
def merge_data(oni_long, typhoon_max):
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
def calculate_logistic_regression(merged_data):
data = merged_data.dropna(subset=['USA_WIND', 'ONI'])
# Create binary outcome for severe typhoons
data['severe_typhoon'] = (data['USA_WIND'] >= 51).astype(int)
# Create binary predictor for El Niño
data['el_nino'] = (data['ONI'] >= 0.5).astype(int)
X = data['el_nino']
X = sm.add_constant(X) # Add constant term
y = data['severe_typhoon']
model = sm.Logit(y, X).fit()
beta_1 = model.params['el_nino']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['el_nino']
return beta_1, exp_beta_1, p_value
@cachetools.cached(cache={})
def fetch_oni_data_from_csv(file_path):
df = pd.read_csv(file_path, sep=',', header=0, na_values='-99.90')
df.columns = ['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
df = df.set_index('Date')
return df
def classify_enso_phases(oni_value):
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
def load_data(oni_data_path, typhoon_data_path):
oni_data = pd.read_csv(oni_data_path)
typhoon_data = pd.read_csv(typhoon_data_path, low_memory=False)
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
print(f"Typhoon data shape after cleaning: {typhoon_data.shape}")
print(f"Year range: {typhoon_data['ISO_TIME'].dt.year.min()} - {typhoon_data['ISO_TIME'].dt.year.max()}")
return oni_data, typhoon_data
def preprocess_data(oni_data, typhoon_data):
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year
typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month
monthly_max_wind_speed = typhoon_data.groupby(['Year', 'Month'])['USA_WIND'].max().reset_index()
oni_data_long = pd.melt(oni_data, id_vars=['Year'], var_name='Month', value_name='ONI')
oni_data_long['Month'] = oni_data_long['Month'].apply(lambda x: pd.to_datetime(x, format='%b').month)
merged_data = pd.merge(monthly_max_wind_speed, oni_data_long, on=['Year', 'Month'])
return merged_data
def calculate_max_wind_min_pressure(typhoon_data):
max_wind_speed = typhoon_data['USA_WIND'].max()
min_pressure = typhoon_data['WMO_PRES'].min()
return max_wind_speed, min_pressure
@functools.lru_cache(maxsize=None)
def get_storm_data(storm_id):
return ibtracs.get_storm(storm_id)
def filter_west_pacific_coordinates(lons, lats):
mask = (100 <= lons) & (lons <= 180) & (0 <= lats) & (lats <= 40)
return lons[mask], lats[mask]
def polynomial_exp(x, a, b, c, d):
return a * x**2 + b * x + c + d * np.exp(x)
def exponential(x, a, b, c):
return a * np.exp(b * x) + c
def generate_cluster_equations(cluster_center):
X = cluster_center[:, 0] # Longitudes
y = cluster_center[:, 1] # Latitudes
x_min = X.min()
x_max = X.max()
equations = []
# Fourier Series (up to 4th order)
def fourier_series(x, a0, a1, b1, a2, b2, a3, b3, a4, b4):
return (a0 + a1*np.cos(x) + b1*np.sin(x) +
a2*np.cos(2*x) + b2*np.sin(2*x) +
a3*np.cos(3*x) + b3*np.sin(3*x) +
a4*np.cos(4*x) + b4*np.sin(4*x))
# Normalize X to the range [0, 2π]
X_normalized = 2 * np.pi * (X - x_min) / (x_max - x_min)
params, _ = curve_fit(fourier_series, X_normalized, y)
a0, a1, b1, a2, b2, a3, b3, a4, b4 = params
# Create the equation string
fourier_eq = (f"y = {a0:.4f} + {a1:.4f}*cos(x) + {b1:.4f}*sin(x) + "
f"{a2:.4f}*cos(2x) + {b2:.4f}*sin(2x) + "
f"{a3:.4f}*cos(3x) + {b3:.4f}*sin(3x) + "
f"{a4:.4f}*cos(4x) + {b4:.4f}*sin(4x)")
equations.append(("Fourier Series", fourier_eq))
equations.append(("X Range", f"x goes from 0 to {2*np.pi:.4f}"))
equations.append(("Longitude Range", f"Longitude goes from {x_min:.4f}°E to {x_max:.4f}°E"))
return equations, (x_min, x_max)
#oni_df = fetch_oni_data_from_csv(ONI_DATA_PATH)
#ibtracs = load_ibtracs_data()
#oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
#oni_long = process_oni_data_with_cache(oni_data)
#typhoon_max = process_typhoon_data_with_cache(typhoon_data)
#merged_data = merge_data(oni_long, typhoon_max)
#data = preprocess_data(oni_data, typhoon_data)
#max_wind_speed, min_pressure = calculate_max_wind_min_pressure(typhoon_data)
#
## Schedule the update to run daily at 1:00 AM
#schedule.every().day.at("01:00").do(update_ibtracs_data)
#
## Run the scheduler in a separate thread
#scheduler_thread = threading.Thread(target=run_schedule)
#scheduler_thread.start()
app = dash.Dash(__name__)
# First, add the classification standards
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'}, # >= 51.0 m/s
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'}, # 33.7-50.9 m/s
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'}, # 17.2-33.6 m/s
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'} # < 17.2 m/s
}
app.layout = html.Div([
html.H1("Typhoon Analysis Dashboard"),
html.Div([
dcc.Input(id='start-year', type='number', placeholder='Start Year', value=2000, min=1900, max=2024, step=1),
dcc.Input(id='start-month', type='number', placeholder='Start Month', value=1, min=1, max=12, step=1),
dcc.Input(id='end-year', type='number', placeholder='End Year', value=2024, min=1900, max=2024, step=1),
dcc.Input(id='end-month', type='number', placeholder='End Month', value=6, min=1, max=12, step=1),
dcc.Dropdown(
id='enso-dropdown',
options=[
{'label': 'All Years', 'value': 'all'},
{'label': 'El Niño Years', 'value': 'el_nino'},
{'label': 'La Niña Years', 'value': 'la_nina'},
{'label': 'Neutral Years', 'value': 'neutral'}
],
value='all'
),
html.Button('Analyze', id='analyze-button', n_clicks=0),
]),
html.Div([
dcc.Input(id='typhoon-search', type='text', placeholder='Search Typhoon Name'),
html.Button('Find Typhoon', id='find-typhoon-button', n_clicks=0),
]),
html.Div([
html.Div(id='correlation-coefficient'),
html.Div(id='max-wind-speed'),
html.Div(id='min-pressure'),
]),
dcc.Graph(id='typhoon-tracks-graph'),
html.Div([
html.P("Number of Clusters"),
dcc.Input(id='n-clusters', type='number', placeholder='Number of Clusters', value=5, min=1, max=20, step=1),
html.Button('Show Clusters', id='show-clusters-button', n_clicks=0),
html.Button('Show Typhoon Routes', id='show-routes-button', n_clicks=0),
]),
dcc.Graph(id='typhoon-routes-graph'),
html.Div([
html.Button('Fourier Series', id='fourier-series-button', n_clicks=0),
]),
html.Div(id='cluster-equation-results'),
html.Div([
html.Button('Wind Speed Logistic Regression', id='wind-regression-button', n_clicks=0),
html.Button('Pressure Logistic Regression', id='pressure-regression-button', n_clicks=0),
html.Button('Longitude Logistic Regression', id='longitude-regression-button', n_clicks=0),
]),
html.Div(id='logistic-regression-results'),
html.H2("Typhoon Path Analysis"),
html.Div([
dcc.Dropdown(
id='year-dropdown',
options=[{'label': str(year), 'value': year} for year in range(1950, 2025)],
value=2024,
style={'width': '200px'}
),
dcc.Dropdown(
id='typhoon-dropdown',
style={'width': '300px'}
),
dcc.Dropdown(
id='classification-standard',
options=[
{'label': 'Atlantic Standard', 'value': 'atlantic'},
{'label': 'Taiwan Standard', 'value': 'taiwan'}
],
value='atlantic',
style={'width': '200px'}
)
], style={'display': 'flex', 'gap': '10px'}),
dcc.Graph(id='typhoon-path-animation'),
dcc.Graph(id='all-years-regression-graph'),
dcc.Graph(id='wind-oni-scatter-plot'),
dcc.Graph(id='pressure-oni-scatter'),
html.Div(id='regression-graphs'),
html.Div(id='slopes'),
html.Div([
html.H3("Correlation Analysis"),
html.Div(id='wind-oni-correlation'),
html.Div(id='pressure-oni-correlation'),
]),
html.Div([
html.H3("Typhoon Generation Analysis"),
html.Div(id='typhoon-count-analysis'),
html.Div(id='concentrated-months-analysis'),
]),
html.Div(id='cluster-info'),
html.Div([
dcc.Dropdown(
id='classification-standard',
options=[
{'label': 'Atlantic Standard', 'value': 'atlantic'},
{'label': 'Taiwan Standard', 'value': 'taiwan'}
],
value='atlantic',
style={'width': '200px'}
)
], style={'margin': '10px'}),
], style={'font-family': 'Arial, sans-serif'})
@app.callback(
Output('year-dropdown', 'options'),
Input('typhoon-tracks-graph', 'figure')
)
def initialize_year_dropdown(_):
try:
years = typhoon_data['ISO_TIME'].dt.year.unique()
years = years[~np.isnan(years)]
years = sorted(years)
options = [{'label': str(int(year)), 'value': int(year)} for year in years]
print(f"Generated options: {options[:5]}...")
return options
except Exception as e:
print(f"Error in initialize_year_dropdown: {str(e)}")
return [{'label': 'Error', 'value': 'error'}]
@app.callback(
[Output('typhoon-dropdown', 'options'),
Output('typhoon-dropdown', 'value')],
[Input('year-dropdown', 'value')]
)
def update_typhoon_dropdown(selected_year):
if not selected_year:
raise PreventUpdate
selected_year = int(selected_year)
season = ibtracs.get_season(selected_year)
storm_summary = season.summary()
typhoon_options = []
for i in range(storm_summary['season_storms']):
storm_id = storm_summary['id'][i]
storm_name = storm_summary['name'][i]
typhoon_options.append({'label': f"{storm_name} ({storm_id})", 'value': storm_id})
selected_typhoon = typhoon_options[0]['value'] if typhoon_options else None
return typhoon_options, selected_typhoon
@app.callback(
Output('typhoon-path-animation', 'figure'),
[Input('year-dropdown', 'value'),
Input('typhoon-dropdown', 'value'),
Input('classification-standard', 'value')]
)
def update_typhoon_path(selected_year, selected_sid, standard):
if not selected_year or not selected_sid:
raise PreventUpdate
storm = ibtracs.get_storm(selected_sid)
return create_typhoon_path_figure(storm, selected_year, standard)
def create_typhoon_path_figure(storm, selected_year, standard='atlantic'):
fig = go.Figure()
fig.add_trace(
go.Scattergeo(
lon=storm.lon,
lat=storm.lat,
mode='lines',
line=dict(width=2, color='gray'),
name='Path',
showlegend=False,
)
)
fig.add_trace(
go.Scattergeo(
lon=[storm.lon[0]],
lat=[storm.lat[0]],
mode='markers',
marker=dict(size=10, color='green', symbol='star'),
name='Starting Point',
text=storm.time[0].strftime('%Y-%m-%d %H:%M'),
hoverinfo='text+name',
)
)
frames = []
for i in range(len(storm.time)):
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
r34_ne = storm.dict['USA_R34_NE'][i] if 'USA_R34_NE' in storm.dict else None
r34_se = storm.dict['USA_R34_SE'][i] if 'USA_R34_SE' in storm.dict else None
r34_sw = storm.dict['USA_R34_SW'][i] if 'USA_R34_SW' in storm.dict else None
r34_nw = storm.dict['USA_R34_NW'][i] if 'USA_R34_NW' in storm.dict else None
rmw = storm.dict['USA_RMW'][i] if 'USA_RMW' in storm.dict else None
eye_diameter = storm.dict['USA_EYE'][i] if 'USA_EYE' in storm.dict else None
radius_info = f"R34: NE={r34_ne}, SE={r34_se}, SW={r34_sw}, NW={r34_nw}<br>"
radius_info += f"RMW: {rmw}<br>"
radius_info += f"Eye Diameter: {eye_diameter}"
frame_data = [
go.Scattergeo(
lon=storm.lon[:i+1],
lat=storm.lat[:i+1],
mode='lines',
line=dict(width=2, color='blue'),
name='Path Traveled',
showlegend=False,
),
go.Scattergeo(
lon=[storm.lon[i]],
lat=[storm.lat[i]],
mode='markers+text',
marker=dict(size=10, color=color, symbol='star'),
text=category,
textposition="top center",
textfont=dict(size=12, color=color),
name='Current Location',
hovertext=f"{storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>"
f"Category: {category}<br>"
f"Wind Speed: {storm.vmax[i]:.1f} m/s<br>"
f"{radius_info}",
hoverinfo='text',
),
]
frames.append(go.Frame(data=frame_data, name=f"frame{i}"))
fig.frames = frames
fig.update_layout(
title=f"{selected_year} Year {storm.name} Typhoon Path",
showlegend=False,
geo=dict(
projection_type='natural earth',
showland=True,
landcolor='rgb(243, 243, 243)',
countrycolor='rgb(204, 204, 204)',
coastlinecolor='rgb(100, 100, 100)',
showocean=True,
oceancolor='rgb(230, 250, 255)',
),
updatemenus=[{
"buttons": [
{
"args": [None, {"frame": {"duration": 100, "redraw": True},
"fromcurrent": True,
"transition": {"duration": 0}}],
"label": "Play",
"method": "animate"
},
{
"args": [[None], {"frame": {"duration": 0, "redraw": True},
"mode": "immediate",
"transition": {"duration": 0}}],
"label": "Pause",
"method": "animate"
}
],
"direction": "left",
"pad": {"r": 10, "t": 87},
"showactive": False,
"type": "buttons",
"x": 0.1,
"xanchor": "right",
"y": 0,
"yanchor": "top"
}],
sliders=[{
"active": 0,
"yanchor": "top",
"xanchor": "left",
"currentvalue": {
"font": {"size": 20},
"prefix": "Time: ",
"visible": True,
"xanchor": "right"
},
"transition": {"duration": 100, "easing": "cubic-in-out"},
"pad": {"b": 10, "t": 50},
"len": 0.9,
"x": 0.1,
"y": 0,
"steps": [
{
"args": [[f"frame{k}"],
{"frame": {"duration": 100, "redraw": True},
"mode": "immediate",
"transition": {"duration": 0}}
],
"label": storm.time[k].strftime('%Y-%m-%d %H:%M'),
"method": "animate"
}
for k in range(len(storm.time))
]
}]
)
return fig
@app.callback(
[Output('typhoon-routes-graph', 'figure'),
Output('cluster-equation-results', 'children')],
[Input('analyze-button', 'n_clicks'),
Input('show-clusters-button', 'n_clicks'),
Input('show-routes-button', 'n_clicks'),
Input('fourier-series-button', 'n_clicks')],
[State('start-year', 'value'),
State('start-month', 'value'),
State('end-year', 'value'),
State('end-month', 'value'),
State('n-clusters', 'value'),
State('enso-dropdown', 'value')]
)
def update_route_clusters(analyze_clicks, show_clusters_clicks, show_routes_clicks,
fourier_clicks, start_year, start_month, end_year, end_month,
n_clusters, enso_value):
ctx = dash.callback_context
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
fig_routes = go.Figure()
clusters = np.array([]) # Initialize as empty NumPy array
cluster_equations = []
# Clustering analysis
west_pacific_storms = []
for year in range(start_year, end_year + 1):
season = ibtracs.get_season(year)
for storm_id in season.summary()['id']:
storm = get_storm_data(storm_id)
storm_date = storm.time[0]
storm_oni = oni_df.loc[storm_date.strftime('%Y-%b')]['ONI']
if isinstance(storm_oni, pd.Series):
storm_oni = storm_oni.iloc[0]
storm_phase = classify_enso_phases(storm_oni)
if enso_value == 'all' or \
(enso_value == 'el_nino' and storm_phase == 'El Nino') or \
(enso_value == 'la_nina' and storm_phase == 'La Nina') or \
(enso_value == 'neutral' and storm_phase == 'Neutral'):
lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat))
if len(lons) > 1: # Ensure the storm has a valid path in West Pacific
west_pacific_storms.append((lons, lats))
max_length = max(len(storm[0]) for storm in west_pacific_storms)
standardized_routes = []
for lons, lats in west_pacific_storms:
if len(lons) < 2: # Skip if not enough points
continue
t = np.linspace(0, 1, len(lons))
t_new = np.linspace(0, 1, max_length)
lon_interp = interp1d(t, lons, kind='linear')(t_new)
lat_interp = interp1d(t, lats, kind='linear')(t_new)
route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
standardized_routes.append(route_vector)
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
clusters = kmeans.fit_predict(standardized_routes)
# Count the number of typhoons in each cluster
cluster_counts = np.bincount(clusters)
for lons, lats in west_pacific_storms:
fig_routes.add_trace(go.Scattergeo(
lon=lons, lat=lats,
mode='lines',
line=dict(width=1, color='lightgray'),
showlegend=False,
hoverinfo='none',
visible=(button_id == 'show-routes-button')
))
equations_output = []
for i in range(n_clusters):
cluster_center = kmeans.cluster_centers_[i].reshape(-1, 2)
cluster_equations, (lon_min, lon_max) = generate_cluster_equations(cluster_center)
#equations_output.append(html.H4(f"Cluster {i+1} (Typhoons: {cluster_counts[i]})"))
equations_output.append(html.H4([
f"Cluster {i+1} (Typhoons: ",
html.Span(f"{cluster_counts[i]}", style={'color': 'blue'}),
")"
]))
for name, eq in cluster_equations:
equations_output.append(html.P(f"{name}: {eq}"))
equations_output.append(html.P("To use in GeoGebra:"))
equations_output.append(html.P(f"1. Set x-axis from 0 to {2*np.pi:.4f}"))
equations_output.append(html.P(f"2. Use the equation as is"))
equations_output.append(html.P(f"3. To convert x back to longitude: lon = {lon_min:.4f} + x * {(lon_max - lon_min) / (2*np.pi):.4f}"))
equations_output.append(html.Hr())
fig_routes.add_trace(go.Scattergeo(
lon=cluster_center[:, 0],
lat=cluster_center[:, 1],
mode='lines',
name=f'Cluster {i+1} (n={cluster_counts[i]})',
line=dict(width=3),
visible=(button_id == 'show-clusters-button')
))
enso_phase_text = {
'all': 'All Years',
'el_nino': 'El Niño Years',
'la_nina': 'La Niña Years',
'neutral': 'Neutral Years'
}
fig_routes.update_layout(
title=f'Typhoon Routes Clustering in West Pacific ({start_year}-{end_year}) - {enso_phase_text[enso_value]}',
geo=dict(