
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/249772541

Message Passing, Remote Procedure Calls and Distributed Shared Memory as

Communication Paradigms for Distributed Systems

Article

CITATIONS

8
READS

6,012

2 authors, including:

Andrzej Goscinski

Deakin University

256 PUBLICATIONS 2,980 CITATIONS

SEE PROFILE

All content following this page was uploaded by Andrzej Goscinski on 09 December 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/249772541_Message_Passing_Remote_Procedure_Calls_and_Distributed_Shared_Memory_as_Communication_Paradigms_for_Distributed_Systems?enrichId=rgreq-6e6fbd3243fa91bb37ed341ef1415289-XXX&enrichSource=Y292ZXJQYWdlOzI0OTc3MjU0MTtBUzoxNzI1NjkyODE5NjYwODBAMTQxODE1NTEzMTc5Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/249772541_Message_Passing_Remote_Procedure_Calls_and_Distributed_Shared_Memory_as_Communication_Paradigms_for_Distributed_Systems?enrichId=rgreq-6e6fbd3243fa91bb37ed341ef1415289-XXX&enrichSource=Y292ZXJQYWdlOzI0OTc3MjU0MTtBUzoxNzI1NjkyODE5NjYwODBAMTQxODE1NTEzMTc5Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6e6fbd3243fa91bb37ed341ef1415289-XXX&enrichSource=Y292ZXJQYWdlOzI0OTc3MjU0MTtBUzoxNzI1NjkyODE5NjYwODBAMTQxODE1NTEzMTc5Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrzej-Goscinski?enrichId=rgreq-6e6fbd3243fa91bb37ed341ef1415289-XXX&enrichSource=Y292ZXJQYWdlOzI0OTc3MjU0MTtBUzoxNzI1NjkyODE5NjYwODBAMTQxODE1NTEzMTc5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrzej-Goscinski?enrichId=rgreq-6e6fbd3243fa91bb37ed341ef1415289-XXX&enrichSource=Y292ZXJQYWdlOzI0OTc3MjU0MTtBUzoxNzI1NjkyODE5NjYwODBAMTQxODE1NTEzMTc5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Deakin-University?enrichId=rgreq-6e6fbd3243fa91bb37ed341ef1415289-XXX&enrichSource=Y292ZXJQYWdlOzI0OTc3MjU0MTtBUzoxNzI1NjkyODE5NjYwODBAMTQxODE1NTEzMTc5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrzej-Goscinski?enrichId=rgreq-6e6fbd3243fa91bb37ed341ef1415289-XXX&enrichSource=Y292ZXJQYWdlOzI0OTc3MjU0MTtBUzoxNzI1NjkyODE5NjYwODBAMTQxODE1NTEzMTc5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrzej-Goscinski?enrichId=rgreq-6e6fbd3243fa91bb37ed341ef1415289-XXX&enrichSource=Y292ZXJQYWdlOzI0OTc3MjU0MTtBUzoxNzI1NjkyODE5NjYwODBAMTQxODE1NTEzMTc5Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Message Passing, Remote Procedure Calls and
Distributed Shared Memory as Communication

Paradigms for Distributed Systems

J. Silcock and A. Goscinski

{jackie, ang@deakin.edu.au}

School of Computing and Mathematics
Deakin University
Geelong, Australia.

Abstract

Message passing and remote procedure calls are the most commonly used
communication paradigms for interprocess communication in distributed systems. Distributed
shared memory is an equally valuable but less often used paradigm. The advantage offered by
distributed shared memory is that it abstracts away from the fact that the memory is distributed
and allows the programmer to use the familiar shared memory model. However, this ease of
use comes at a price, the overheads of DSM, at the operating system level, are significant
compared with those of the other two paradigms. In order to establish whether DSM is worth
implementing these overheads need to weighed up against the advantages offered by the
paradigm. To this end we have evaluated and compared the three paradigms. In particular they
are evaluated at the programming and operating system level and then compared based on their
performance when used to solve the producer-consumer problem.

Table of Contents

1 Introduction ... 1

2 Message Passing .. 1
2.1 Syntax .. 1
2.2 Semantics ... 2

3 Remote Procedure Calls ... 3
3.1 Syntax .. 3
3.2 Semantics ... 3

4 Distributed Shared Memory .. 4
4.1 Syntax .. 4
4.2 Semantics ... 5

5 Producer-Consumer Example .. 6
5.1 Producer-Consumer on a Centralised System ... 6
5.2 Producer-Consumer supported by Message Passing on a Distributed System 7
5.3 Producer-Consumer supported by RPC on a Distributed System 7
5.4 Producer-Consumer supported by DSM at system level on a Distributed System 9
5.5 Producer-Consumer supported by DSM at user level on a Distributed System 9

6 Analysis .. 9
6.1 Ease of Implementation for System Designer ... 10
6.2 Ease of Use at Application Programming Level ... 12
6.3 Performance ... 12

7 Conclusion .. 12

8 Bibliography .. 13

28 May 1997

1

1 Introduction
Processes often need to communicate with each other. This is complicated in distributed
systems by the fact that the communicating processes may be on different workstations.
Interprocess communication provides a means for processes to cooperate and compete. This
includes synchronized access to shared variables. Message passing and remote procedure calls
are the most common methods of interprocess communication in distributed systems. A less
frequently used but no less valuable method is distributed shared memory. Message passing
involves the passing of messages between processes using simple primitives to send and
receive messages. It requires the programmer to know the message and the names of the source
and destination processes. Remote procedure calls represent higher abstraction than message
passing; remote procedures are called in a similar way to local procedures with the operating
system taking care of the details of locating the remote procedure and preparing the arguments
for inclusion in the message which calls the remote procedure. Distributed shared memory
shares variables between computers on a network transparently. The user is unaware that the
underlying mechanism for communication is message passing and is able to use the well
known shared memory paradigm. However it is important to evaluate distributed shared
memory and compare it with the other two communication paradigms in order to assess its
usefulness. It is also important to assess whether the ease of programming that comes with
distributed shared memory outweighs the complexity of its addition to the operating system.

The goal of this report is to evaluate and compare message passing, remote procedure
calls and distributed shared memory as communication paradigms. The three paradigms will
be evaluated first at operating system level using the following criteria:

— their basic concepts, syntax and semantics;

— issues at the logical level; and

— implementation issues.

Secondly they will be evaluated at the programming level based on the implications for the
programmer of using these paradigms, i.e. ease of use, particularly with regard to
synchronization.

2 Message Passing
Message passing is the basis of most interprocess communication in distributed systems. It is
at the lowest level of abstraction and requires the application programmer to be able to identify
the destination process, the message, the source process and the data types expected from these
processes.

2.1 Syntax
Communication in the message passing paradigm, in its simplest form, is performed using the
send() and receive() primitives. The syntax is generally of the form:

send(receiver, message)

receive(sender, message)

The send() primitive requires the name of the destination process and the message data as
parameters. The addition of the name of the sender as a parameter for the send() primitive
would enable the receiver to acknowledge the message. The receive() primitive requires the

28 May 1997

2

name of the anticipated sender and should provide a storage buffer for the message.

2.2 Semantics
Decisions have to be made, at the operating system level, regarding the semantics of the send()
and receive() primitives. The most fundamental of these are the choices between blocking and
non-blocking primitives and reliable and unreliable primitives [Goscinski 91], [Tanenbaum
85].

Blocking/non-blocking — A blocking send() blocks the process and does not execute the
following instruction until the message has been sent and the message buffer has been cleared.
In the same way a blocking receive blocks at the receive() until the message arrives. A non-
blocking send returns control to the caller immediately. The message transmission is then
executed concurrently with the sending process. This has the advantage of not leaving the CPU
idle while the send is being completed. However, the disadvantage of this approach is that the
sender does not know and will not be informed when the message buffer has been cleared. To
overcome this the kernel can either make a copy of the message buffer or send an interrupt to
the sender when the message buffer has been cleared. At the implementation level, although
non-blocking primitives are flexible they make programming and debugging very difficult,
hence, for the sake of easier programming, blocking primitives are often chosen.

Buffered/unbuffered messages — An unbuffered receive() means that the sending
process sends the message directly to the receiving process rather than a message buffer. The
address, receiver, in the send() is the address of the process, but in the case of an buffered
send() the address is that of the buffer. There is a problem, in the unbuffered case, if the send()
is called before the receive() because the address in the send does not refer to any existing
process on the server machine. Buffered messages are saved in a buffer until the server process
is ready to receive them. They can best be implemented through a mechanism in the operating
system which can keep a backlog of sends, a port in which messages are queued waiting until
requested by the receiver. The buffer capacity can either be bounded, where a predetermined
number of messages can be stored, or unbounded. An unbounded buffer could be implemented
using dynamic memory allocation, thus its capacity would be fixed only by the size of
available memory.

Reliable/unreliable send — Unreliable send() sends a message to the receiver and does
not expect acknowledgement of receipt, nor does it automatically retransmit the message to
ensure receipt. A reliable send() guarantees that, by the time the send() is complete, the
message has been received. The primitive itself handles acknowledgements and retransmission
in response to lost messages. At the implementation level the operating system must wait only
for a specified length of time, so that a process does not remain blocked indefinitely waiting for
a response from a receiver that has terminated. Lost messages are handled either by the
operating system retransmitting the message or informing the sender of the message’s loss or
by the sender detecting the loss itself [Silberschatz 85].

Direct/indirect communication — Ports allow indirect communication. Messages are
sent to the port by the sender and received from the port by the receiver. Direct communication
involves the message being sent direct to the process itself, which is named explicitly in the
send, rather than to the intermediate port.

Fixed/variable size messages — Fixed size messages have their size restricted by the
system. The implementation of variable size messages is more difficult but makes
programming easier; the reverse is true for fixed size messages.

Passing data by reference/value/address mapping — Data, in message passing, is often

28 May 1997

3

passed by value, since the processes execute in separate address spaces [Goscinski 91].
However, another parameter passing mechanism is available which would be suitable for a
message passing system. This is referred to as call-by-copy/restore. The variable is essentially
passed by value but the returned value overwrites the original value so that the final result is
the same as if it were passed by reference [Tanenbaum 95].

In message passing systems the onus is on the application programmer to control data
movement between processes and to control the synchronization of these processes, where
they have access to shared data.

3 Remote Procedure Calls
Message passing leaves the programmer with the burden of the explicit control of the
movement of data. Remote procedure calls (RPC) relieves this burden by increasing the level
of abstraction and providing semantics similar to a local procedure call.

3.1 Syntax
The syntax of a remote procedure call is generally of the form:

call procedure_name(value_arguments; result_arguments)

The client process blocks at the call() until the reply is received. The remote procedure is the
server processes which has already begun executing on a remote machine. It blocks at the
receive() until it receives a message and parameters from the sender. The server then sends a
reply() when it has finished its task. The syntax is as follows:

receive procedure_name(in value_parameters; out result_parameters)

reply(caller, result_parameters)

3.2 Semantics
The semantics of RPC are the same as those of a local procedure call — the calling process
calls and passes arguments to the procedure and it blocks while the procedure executes. When
the procedure completes it can return results to the calling process. In the simplest case, the
execution of the call() generates a client stub which marshals the arguments into a message and
sends the message to the server machine. On the server machine the server is blocked awaiting
the message. On receipt of the message the server stub is generated and extracts the parameters
from the message and passes the parameters and control to the procedure. The results are
returned to the client with the same procedure in reverse [Mullender 89].

The following issues regarding the properties of remote procedure calls need to be
considered in the design of an RPC system if the distributed system is to achieve transparency
[Birrell et al. 84], [Mullender 89], [Goscinski 91]:

Binding — Binding provides a connection between the name used by the calling process
and the location of the remote procedure. Binding can be implemented, at the operating system
level, using a static or dynamic linker extension which binds the procedure name with its
location on another machine. Another method is to use procedure variables which contain a
value which is linked to the procedure location.

Communication transparency — The users should be unaware that the procedure they
are calling is remote. The three difficulties when attempting to achieve transparency are: the

28 May 1997

4

detection and correction of errors due to communication and site failures, the passing of
parameters, and exception handling. Communication and site failures can result in inconsistent
data because of partially completed processes. The solution to this problem is often left to the
application programmer. Parameter passing in most systems is restricted to the use of value
parameters. Exception handling is a problem also associated with heterogeneity. The
exceptions available in different languages vary and have to be limited to the lowest common
denominator.

Concurrency — Concurrency mechanisms should not interfere with communication
mechanisms. Single threaded clients and servers, when blocked while waiting for the results
from a RPC, can cause significant delays. These delays can be exacerbated by further remote
procedure calls made in the server. Lightweight processes allow the server to execute calls
from more than one client concurrently [Mullender 89].

Heterogeneity — Different machines may have different data representations, the
machines may be running different operating system or the remote procedure may have been
written using a different language. Static interface declarations of remote procedures serve to
establish agreement between the communicating processes on argument types, exception types
(if included), type checking and automatic conversion from one data representation to another,
where required.

Generally RPC proves a simpler means for an application programmer to construct
distributed programs than simple message passing because it abstracts away from the details of
communication and transmission. However, the achievement of true transparency is a problem
which has not been completely resolved for RPC, still leaving much of the work and
responsibility for the application programmer.

4 Distributed Shared Memory
The next step towards higher abstraction is Distributed Shared Memory (DSM). DSM
increases the complexity of the operating system but makes the job of application
programmers far easier by allowing them to use the concept of shared memory when writing
programs. Distributed shared memory is memory which, although distributed over a network
of autonomous computers, gives the appearance of being centralized. The memory is accessed
through virtual addresses, thus processes are able to communicate by reading and modifying
data which are directly addressable. DSM allows programmers to use shared memory style
programming, which makes application programming considerably easier. Programmers are
able to access complex data structures and are relieved of the concerns of message passing.
However, message passing cannot be avoided altogether. The operating system has to send
messages between machines with requests for memory not available locally and to make
replicated memory consistent.

4.1 Syntax
The syntax used for DSM is the same as that of normal centralized memory multiprocessor
systems.

read(shared_variable)

write(data, shared_variable)

The read() primitive requires the name of the variable to be read as its argument and the

28 May 1997

5

write() primitive requires the data and the name of the variable to which the data is to be
written. The operating system locates the variable through its virtual address and, if necessary,
moves the portion of memory containing the variable to the machine requiring it.

4.2 Semantics
There are several issues related to the semantics of DSM [Coulouris et al. 89], [Nitzberg et al.
94], [Tanenbaum 95].

Structure and granularity of the shared memory — These two issues are closely related.
The memory can take the form of an unstructured linear array of words or the structured forms
of objects, language types or an associative memory [Nitzberg et al. 94]. The granularity
relates to the size of the chunks of the shared data. A decision has to be made whether it should
be fine or coarse grained and whether data should be shared at the bit, word, complex data
structure or page level. A coarse grained solution, page-based distributed memory
management, is an attempt to implement a virtual memory model where paging takes place
over the network instead of to disk. It offers a model which is similar to the shared memory
model and is familiar to programmers, with sequential consistency at the cost of performance.
Finer grained models can lead to higher network traffic.

Consistency — In the simplest implementation of shared memory a request for a non-
local piece of data results in a trap, which causes the single copy of the data to be fetched. If a
piece of data was required by more than one machine the data could be moved backwards and
forwards between the machines. This is very similar to thrashing in virtual memory and has the
effect of considerably lowering performance. The problem of thrashing is overcome by
allowing multiple copies of data on the distributed machines. The problem then becomes one
of maintaining the consistency of the replicated data. The cache coherence protocols of tightly
coupled multiprocessors are a well researched topic [Mosberger 94], however many of these
protocols are thought to be unsuitable for distributed systems because the strict consistency
models used cause too much network traffic [Nitzberg et al. 94]. Consistency models
determine the conditions under which memory updates will be propagated through the system.
These models can be divided into those with and those without synchronization operations.
The former include strict, sequential, causal, processor and PRAM consistency models, while
models with synchronization operations include weak, release and entry consistency models.
There is a weakening of the consistency models from strict to entry consistency. Weaker
models reduce the amount of network traffic hence the performance of the system improves.
Thus, weaker consistency models have been used in an attempt to achieve better performance
in distributed systems. However, this makes the programming model more complicated and
makes weaker consistency the concern of operating systems and language designers
[Mosberger 94].

Synchronization — Shared data must be protected by synchronization primitives,
semaphores, eventcounts, monitors or locks. There are three methods of managing
synchronization. Firstly, it can be managed by a synchronization manager, as in the case of
page-based systems, or secondly, it can be made the responsibility of the application
programmer, using explicit synchronization primitives, as in the shared variable
implementation. Finally, it can be made the responsibility of the system developer, as in object
based implementations, with synchronization being implicit at application level.

Heterogeneity — Sharing data between heterogeneous machines is an important problem
for distributed shared memory designers. Data shared at the page level is not typed, hence

28 May 1997

6

accommodating different data representations of different machines, languages or operating
systems is a very difficult problem. The Mermaid approach mentioned in [Li et al. 88] is to
only allow one type of data on an appropriately tagged page. The overhead of converting the
data might be too high to make DSM on a heterogeneous system worth implementing.

Scalability — One of the benefits of DSM systems mentioned in much of the literature
[Nitzberg et al.94], [Tanenbaum 95] is that they scale better than many tightly-coupled shared-
memory multiprocessors. However, scalability is limited by physical bottlenecks, e.g., buses in
tightly-coupled multiprocessor systems and operations which require global information or
distribute information globally, e.g. broadcast messages [Nitzberg et al. 94].

5 Producer-Consumer Example
The best method of measuring the value of the DSM paradigm is to measure its performance
against the other communication paradigms. This can be done by using all three paradigms to
solve the same problem and measuring their relative performance using well defined
performance criteria. We have chosen the producer-consumer problem because it is a well
known problem which involves shared variables and requires synchronized access to these
variables. The performance criteria we will use in our analysis are:

— ease of implementation for system designer;

— ease of use at application programming level; and

— relative performance.

The following sections describe the underlying actions taken by the operating system in
response to the commands of the producer-consumer code for a centralized system, and a
distributed system. The latter includes code for implementations using message passing, RPC
and for DSM implemented at system and user level.

5.1 Producer-Consumer on a Centralised System
The producer and consumer physically exist in the same centralized memory and the address
of the variable next is the same for both processes. Access to next is controlled by a semaphore
(sem) variable. The only allowable operations on a semaphore variable are wait(sem),
signal(sem) and initialise(sem) [Ben-Ari 82]. As depicted in Figure 1, the producer executes
the primitive operation wait(sem), which is, in effect, requesting a lock on the semaphore sem.
In this case, since there are only two processes trying to access next the semaphore, sem, is a
binary semaphore which can only have two values zero or one, i.e., locked or unlocked. This
lock is achieved at the operating system level. If the value of sem is one it is decremented to
zero and the lock is granted, if it is zero the lock will be refused. In the latter case the
requesting process is suspended. A wait(sem) should precede and a signal(sem) should follow
all accesses to next, defining a critical region. When the lock is obtained the producer can
safely change next as it will be the only process with access to the critical region. The producer
produces an item and places it in the shared variable next, and then executes the signal(sem)
call which causes the operating system to check the variable process_waiting, if true it
indicates a process is waiting which is made executable, if false the semaphore is simply
unlocked.

The consumer also requests a lock on sem by executing a wait(sem). When it gains
access to the critical region it consumes the item in next and releases the lock by executing a
signal(sem).

28 May 1997

7

5.2 Producer-Consumer supported by Message Passing on a Distributed
System

In a distributed system the producer and the consumer have disjoint address spaces. Thus to
share a variable using message passing the value of that variable must be sent from one process
to another explicitly. The producer produces an item and places it in the variable next. It then
executes a send(consumer, next) which results in the operating system constructing a message
and sending it to the consumer (Figure 2). It then blocks pending the clearing of the message
buffer, in which the message is held until it is sent.

 The consumer executes a receive(producer, next) which causes the consumer to be
blocked, at the operating system level, awaiting a message from the producer. When the
message is received the operating system removes the data from the message and places it in
next.

5.3 Producer-Consumer supported by RPC on a Distributed System
In the RPC version of the producer-consumer (Figure 3) the producer produces an item and
places it in next. It then issues a remote procedure call to the consumer. The operating system
generates a client stub which marshals next for transmission. The call is then sent to the
consumer. The producer is suspended while awaiting a reply from the consumer. When the
return message is received from the consumer, the producer is made executable and control is
passed back to the programmer level.

The consumer executes a receive(producer, next) which at operating system level blocks
the consumer awaiting the procedure call. When the call arrives the operating system generates

Producer

repeat
 wait(sem)

 produce an item in next

 signal(sem)
until false;

Consumer

repeat
 wait(sem)

 consume the item in next

 signal(sem)
until false;

Programming
level

Operating
System Level

next

if (process_waiting) then
 make waiting process executable
 process_waiting == false
else
 increment sem /*unlock semaphore*/
return

if sem > 0 then
 decrement sem /*lock thesemaphore*/
 return
else
 suspend calling process

process_waiting == true

Figure 1. Producer-Consumer on a Centralized System

Application
programming

code

28 May 1997

8

the server stub which unmarshals next and passes it to the consumer. Control is then passed
back to the programmer level where next is consumed and a reply(producer) is executed
acknowledging receipt of the call.

Programing
level

Operating
System Level

send message to consumer
while (message buffer not

cleared)
 block producer
unblock producer
return

Producer

repeat

 produce an item in next

 send(consumer, next)
until false;

Consumer

repeat
 receive(producer, next)

 consume next item in
next

until false;

while (no message)
 suspend consumer
remove data from message
place data in next
unblock consumer
return

Figure 2. Producer-Consumer supported by Message Passing System.

Application
programming

code

Producer
repeat

 produce an item in next

 call consumer(next)
until false;

generate client stub
 marshal next
locate consumer using name
server
send message to consumer
while (no reply)
 block producer
receive reply from consumer
if (results returned) then
 place in results field
unblock producer
return

Consumer
repeat
 receive(producer, next)

 consume next
 reply(producer)
until false;

while (no message)
 block consumer
generate server stub
 remove data from message
 place data in next
return

reply (producer)
return

Programming
level

Operating
System Level

 Figure 3. Producer-Consumer supported by Remote Procedure Call

Application
programming

code

28 May 1997

9

5.4 Producer-Consumer supported by DSM at system level on a
Distributed System

The syntax of the code using DSM is the same as that for centralized memory but the
implications for the operating system are quite different (Figure 4).

The simplest method of implementing synchronization on a distributed system with
distributed shared memory is to use a centralized synchronization manager. This is the method
depicted in Figure 4. It is probably not the most efficient method since the use of any
centralized system or manager such as this can cause a bottleneck. However, it gives an
indication of the large number of messages required to implement synchronization in DSM.

The process requiring a lock on the semaphore executes a wait(sem). In response to this
the system executes a remote procedure call to the synchronization manager which grants
access if the semaphore variable, sem, is one or if not able to grant access sets the variable
process_waiting and blocks the process. In Figure 4 the consistency model being used is entry
consistency, a weak model in which replicated memory is made consistent on entry into a
critical region. The messages required to make memory consistent are not depicted in this
diagram for simplicity. If the synchronization manager is granting access to the critical region
it decrements sem to zero and sends a message back to the requesting process granting access.
In the calling process, when the access message is received, control is passed back to the
programming level. The process then attempts to access the shared variable, next. If the
memory containing next is not local to that machine a trap will occur which will be caught by
the operating system. The operating system will use some mechanism to locate and fetch a
copy of the required piece of memory on the network, this mechanism will not be discussed
here. When the process has completed the critical section it will execute a signal(sem) which
will cause the operating system to send an RPC to the synchronization manager releasing the
lock on the semaphore. In the synchronization manager, if the process_waiting variable is set
to true this indicates that a process is blocked waiting for access to the critical region. The
synchronization manager will send a message granting access to this waiting process.

5.5 Producer-Consumer supported by DSM at user level on a Distributed
System

The producer-consumer code with user level DSM depicted in Figure 5 is based on an
implementation described in [Libes 85]. In this implementation the shared memory exists at
user level in the memory space of a server, the central memory manager (cmm), the clients
maintain a local copy of the shared variable, called local_next. Because this implementation
has only a single producer and consumer consistency maintenance between these local copies
and the actual variable is trivial. The producer and consumer both use remote procedure calls
to call the cmm. The variable consumed determines whether the producer can produce another
item (if consumed is true) or the consumer can consume an item (consumed is false). The two
processes are suspended until they receive this acknowledgement. If a call cannot be
acknowledged the variables producer_waiting and consumer_waiting are set to true to indicate
which process is waiting. This mechanism synchronizes the processes.

6 Analysis
This analysis of the implementations of the producer-consumer problem (Table 1) using
message passing, RPC and DSM at user and operating system level will be based on the

28 May 1997

10

following three criteria:

— Ease of implementation for system designer. This will be a discussion of the implications
for the system designer of the implementation of the syntax.

— Ease of use at application programming level. In this section we will discuss how easy the
paradigm is to use at programming level. This criterion is difficult to evaluate as it
involves attempting to measure programmer satisfaction. To an extent a quantitative
measure of programmer satisfaction can be made by measuring the performance of the
code written to solve the same problem using the three paradigms. The final criterion is a
measure of this.

— Performance. The number of messages sent between processes is used as a measure of
performance, since programmer satisfaction is often related to the execution speed of
code.

6.1 Ease of Implementation for System Designer
When using the message passing paradigm for communication between processes the system
must provide a mechanism for passing messages between processes. The simplest form of
message passing, unstructured message passing requires the system to simply send the message
to the location given as a parameter in the send primitive and to pass control back to the user
level once the message buffer has been cleared. At the receive end the system expects a message

Producer
repeat
 wait(sem)

 produce an item in next

 signal(sem)
until false;

if (next not in local memory)
 send message to fetch next
 while (next not received)
 block producer
 unblock producer
 return
if (next in local memory)
 send (next to consumer)
send (RPC releasing lock on
sem)
return
send (RPC to synchronization
 manager requesting lock on
sem)
while (access != granted)
 suspend producer
make producer executable
return

if (next in local memory)
 send (next to consumer)
if (next not in local memory)
 send message to fetch next
 while (next not received)
 block consumer
 unblock consumer
 return
send (RPC releasing lock on
sem)
return
send (RPC to synchronization
 manager requesting lock on
sem)
while (access != granted)
 block consumer
unblock consumer
return

Consumer
repeat
 wait(sem)

 consume the item in next

 signal(sem)
until false;

Programing
level

Operating
System
Level

 Figure 4. Producer-Consumer supported by DSM at Operating System Level on a
Distributed System.

Synchronization Manager
if (process_waiting) then
 access = granted
 send access to process
else
 sem= sem + 1 /*unlock sem*/

if (sem = 1) then
sem =0/*lock sem*/

 make next consistent
 access = granted
 send access to process
else
 process_waiting = true

Application
programming

code

28 May 1997

11

containing data of a known type from a known location.
The RPC paradigm requires the system designer to implement mechanisms to generate

the client and server stub at the user level. These stubs have to be able to marshal and
unmarshal parameters. The mechanism to send the message is, at this point, the same as that
used in message passing, except the calling process must be blocked pending a reply. This
represents an increase in abstraction which, in turn, means that the system programmer has
extra work to do to add a layer over message passing making it easier for the application
programmer to use.

The producer-consumer example for DSM, implemented at operating system level,
shows that the system must now provide primitives, semaphores in this case, to allow
application programmers synchronize the processes. In message passing and RPC
synchronization is implicit in the organization of the code. The system must provide the
mechanism to locate and fetch non-local data. If the data fetched is replicated, a mechanism
must exist to make the multiple copies of the data consistent based on some protocol decided
before implementation. This represents a further increase in abstraction over RPC. The system
designer is still using message passing and RPC but their use is completely hidden at

Producer
repeat

 produce an item in
local_next
 call cmm (local_next)

until false;

Consumer
repeat

 call cmm ()
 consume the item in
local_next

 until false;

generate client stub
locate cmm using name
server
send message to cmm
while (no acknowledgement)
 block consumer
receive ack from cmm
place next into local_next
unblock consumer
return

Programing
level

generate client stub
 marshal local_next
locate cmm using name
server
send message to cmm
while (no ack)
 block producer
receive ack from cmm
if (results returned) then
 place in results field
unblock producer
return

Central Memory Manager (cmm)
repeat

 receive(anyprocess)
 if (anyprocess == consumer)
 if (next not consumed)
 send(consumer, next)
 else

consumer_waiting = true
 if (producer_waiting)
 send(ack, producer)

producer_waiting = false
 else if (anyprocess == producer)
 if (next consumed)
 send(ack, producer)
 else

producer_waiting = true
 if (consumer_waiting)
 send (next, consumer)

producer_waiting = false
until false;

send message to process
while (message buffer not cleared)
 block cmm
unblock cmm
return

while (no message)
 block consumer
generate server stub
 remove data from message
 place data in next
return

Figure 5. Producer-consumer supported by DSM at user level on a Distributed System

Operating
System Level

Application
programming

code

28 May 1997

12

application level. The code written at system level is complex compared with that for message
passing and RPC.

In the final example, DSM implemented at user level the system designer must provide
message passing and RPC and then use these two mechanisms to implement a central memory
manager. The latter is a user level server which is accessed by the producer and consumer
using RPC. The additional messages that are required to locate a copy of the required memory
and to make multiple copies coherent in the system level DSM are not required in this
implementation. The central memory manager maintains the single valid copy of the variable,
however, this represents a bottleneck and for any more processes than a single producer and
consumer would affect performance.

6.2 Ease of Use at Application Programming Level
In the case of message passing application programmers must be aware of the semantics of the
implementation of the send and receive primitives and must take care of acknowledgements
and synchronization. Application programmers must organize their code to ensure the correct
synchronization of the processes.

When using RPC application programmers can call a procedure without knowing that it
is remote and can program as they would when using local procedures.

DSM at system level, is the easiest paradigm to use at programming level, since it
provides a familiar programming model for application programmers. The code is the same as
that for a centralized system. The only indication that the system is not a centralized system
might be the performance. Similarly DSM at user level is simple for the application
programmer to use as the producer produces the item and calls the central memory manager
and the consumer calls the central memory manager when it is ready to consume an item. The
central memory manager takes care of synchronization and mutual exclusion.

6.3 Performance
Since interprocess communication consumes a large amount of time, a relative measure of
performance between the three paradigms can be realized by comparing the number of
messages required to be sent between processes. The message passing implementation requires
only one message to be passed between the communicating processes while RPC requires two
messages, ignoring the messages which would be required to locate the server using the name
server in both cases. DSM implemented at operating system level, on the other hand, requires
twelve messages, ignoring the messages required to make the replicated data consistent. The
DSM implemented at user level requires four messages, the consumer and producer each call
the cmm and receive a reply. Thus DSM has a large overhead which must be minimised as
much as possible if it is to be tolerable.

7 Conclusion
In this report we have discussed and compared three high level communication paradigms
message passing, remote procedure calls and distributed shared memory. We have based this
discussion on their syntax and semantics and then discussed the implications of the
implementation and use of these paradigms for the application programmer and the operating
system designer.

 Message passing is the least abstract of the paradigms and requires the least work from
the operating system. It is, however, the most difficult for the application programmer to use

28 May 1997

13

since it requires the programmer to have knowledge of the semantics of the implementation of
the primitives it uses. Remote procedures are called in the same way as local procedures. This
demonstrates an increase in the level of abstraction compared to message passing, where
programmers need not be aware of that procedure they are calling is remote. RPC requires
mechanisms at the operating system level for marshalling the parameters, transporting them
and unmarshalling them and likewise for the returned results. Finally in distributed shared
memory the level of abstraction is increased even further and the application programmer
accesses distributed memory in the same way as they would access centralized memory. This
makes DSM easy for the application programmer to use, however, the price is the addition of
mechanisms to the operating system which can add overheads to the system. These overheads
have to measured against the gains to assess their value.

The producer-consumer example serves to give a direct comparison between the
different paradigms using the same problem. The number of messages required show that, if
message passing is assumed to be the major overhead, that DSM implementations could take
in the order of six times as long as RPC. However, the obvious ease of use makes it worth
further investigation, especially into techniques that may serve to reduce the number of
messages required to implement DSM. A suite of communication paradigms made up of
message passing, remote procedure calls and distributed shared memory would give
application programmers complete flexibility to write programs specifically for their
applications.

8 Bibliography
[Ben-Ari 82] M. Ben-Ari, Principles of Concurrent Programming, Prentice-Hall

Table 1: Comparison of Message Passing, RPC and DSM

Message
Passing

RPC
DSM

(OS Level)
DSM

(User Level)

Ease of Implemen-
tation for System
Designer

Mechanisms
required:
- send given data

to given location;
- receive given

data type from
given location.

Mechanisms
required:
- generate client

and server stub;
- marshal and

unmarshal
parameters;

- send message.

Mechanisms
required:
- synchronize

processes;
- fetch non-local

data;
- maintaining con-

sistency of repli-
cated memory.

Mechanisms
required:
- Remote Proce-

dure Calls.
- Central Memory

Manager

Ease of Use at
Application Pro-
gramming Level

Programmer must
be aware of
semantics of mes-
sage passing
implementation,
and must organize
code to include
acknowledgement
and synchroniza-
tion.

Programmer calls
procedure without
knowing whether
it is local or
remote, call will
block until reply
received.

Programmer can
use memory as
though it were
local.

Programmer uses
RPC to access
Central memory
Manager.

Relative Perform-
ance

1 message 2 messages 12 messages 4 messages

28 May 1997

14

International., 1982.
[Birrell et al. 84] A. Birrell, B. Nelson, Implementing Remote Procedure Calls, ACM

Transactions on Computer Systems, Vol. 2, No. 1, February 1984, Pages 39-59.
[Coulouris et al. 89] G. F. Coulouris, J. Dollimore, Distributed Systems. Concepts and Design.

Addison-Wesley Publishing Company.
[Goscinski 91] A. Goscinski, Distributed Operating Systems. The Logical Design., Addison-

Wesley Publishing Company.
[Li et al. 88] K. Li, M. Stumm, D. Wortman., Shared Virtual Memory Accomodating

Heterogeneity, Technical Report CS-TR-210-89, February 1989.
[Libes 85] Don Libes, User-Level Shared Variables, Proceedings, Tenth USENIX Conference,

Summer 1985.
[Mosberger 93] D. Mosberger, Memory Consistency Models, Tech. Report TR 93/11, Dept. of

Computer Science, Univ. of Arizona, 1993.
[Mullender 89] S. Mullender, Interprocess Communication. Distributed Systems, ACM Press,

Addison-Wesley Publishing Company, 1989.
[Nitzberg et al. 94] B. Nitzberg, V. Lo, Distributed Shared Memory: A Survey of Issues and

Algorithms, In Casavant T.L. and Singal M. (eds), Readings in Distributed Computing
Systems, IEEE Press, 1994, pp 375-386.

[Silberschatz 85] A. Silberschatz, Operating System Concepts., Addison-Wesley Publishing
Company, 1985.

[Tam et al. 90] M. Tam, J. Smith, D. Farber, A Survey of Distributed Shared Memory Systems,
ACM SIGOPS, June 1990.

[Tanenbaum 85] A. Tanenbaum, R. Van Renesse, Distributed Operating Systems, Computing
Surveys, Vol. 17, No.4, December 1985.

[Tanenbaum 95] A. Tanenbaum, Distributed Operating Systems., Prentice Hall, 1995.

View publication stats

https://www.researchgate.net/publication/249772541

