
1

Algorithm Design Architecture
The algorithm for generating Alien House Music is built on a modular framework combining
symbolic and audio-domain processes. It leverages a hierarchical Variational Autoencoder
(MusicVAE) for interpolation and blending of musical ideas in latent space, complemented by
custom diffusion-based methods for timbral and textural synthesis[1]. The core pipeline consists
of an Audio Encoder/Decoder, a Text Encoder, a Fusion Network, and a Generation Engine,
each optimized for two-minute track creation. To ensure genre fidelity, the model integrates
genre-specific rhythmic templates derived from Wavelet-based Beat Histograms which capture
periodicities in the 40-200 BPM range characteristic of House music[2]. Finally, a post-generation
Diversity Controller layer evaluates novelty metrics such as inter-track spectral variance and
Self-BLEU-inspired diversity scores on note sequences to prevent monotony[3].

Model Components

▪ MusicVAE Latent Space: Uses a bidirectional LSTM encoder and hierarchical LSTM decoder
to process 2-bar and 16-bar segments, yielding a continuous Z-space for interpolation tasks[4]

.

▪ Text and Audio Embeddings: Text prompts are encoded via Facebook’s CLAP model for text-
audio alignment, while raw audio features (mfccs, spectrograms) are extracted using
Torchaudio’s Spectrogram and MelSpectrogram transforms[5].

▪ Diffusion Backbone: A UNet-like Conditional Diffusion Model denoises audio spectrograms
guided by multi-modal controls, inspired by Music ControlNet’s time-varying control strategy
for melody, rhythm, and dynamics[1].

▪ Novel Genre Filter: Implements a Gaussian Mixture Model over beat and spectral features
(e.g., spectral centroid, rolloff) to enforce “alien” textures by sampling from out-of-
distribution regions of the learned latent distribution[3].

1.

Input Mapping
The input mapping translates three user-specified modalities-text, audio, and sound choice-into
embeddings compatible with our generative backbone. This ensures a coherent fusion of lyrical,
contextual, and timbral cues.

Text-to-Embedding
Text prompts detailing mood, style, or narrative cues are processed by a pre-trained LLM (T5) to
obtain 512-dimensional contextual embeddings. We further refine these via a Retrieval-
Augmented Text-to-Music encoder using Spotify’s Annoy library to query similar captions from
the MusicCaps dataset, enhancing genre adherence and diversity.

from transformers import AutoTokenizer, AutoModel
import annoy

https://www.copilot.com/?utm_source=dr_pdf_footer

2

tokenizer = AutoTokenizer.from_pretrained("UMT5")
model = AutoModel.from_pretrained("UMT5")

Pre-compute text embeddings
text_embeddings = model(**tokenizer(prompts, return_tensors="pt")).last_hidden_state
index = annoy.AnnoyIndex(512, 'euclidean')
for i, emb in enumerate(text_embeddings):
index.add_item(i, emb.numpy())
index.build(10)

Audio Feature Extraction
Raw audio inputs-such as a user’s favorite track-are mapped through torchaudio.functional and
torchaudio.transforms to extract spectral, rhythmic, and timbral embeddings:

▪ Spectrogram (n_fft=512, hop_length=128): Captures time-frequency content[5].

▪ MelSpectrogram: Provides perceptually scaled features for timbre mapping.

▪ MFCC & Chroma: Extracts harmonic and pitch information for melodic color mapping.
1.

import torchaudio.transforms as T

wav, sr = torchaudio.load("user_audio.wav")
mel_spec = T.MelSpectrogram(sr, n_fft=1024, hop_length=256)(wav)
mfcc = T.MFCC(sr, n_mfcc=13, melkwargs={'n_fft':1024, 'hop_length':256})(wav)

Sound Choice Integration
Users can upload custom sound samples (e.g., alien ambience, metallic clangs). These are
processed via an OpenL3 embedding model or VGGish, yielding 512-dimensional vectors
representing timbral “identity vectors” for seamless fusion:

import openl3

embeddings, ts = openl3.get_audio_embedding("alien_clip.wav", sr, input_repr="mel128",
embedding_size=512)

Fusion Engine Techniques
Our Fusion Engine merges text, audio, and sound choice signals in a shared latent space,
balancing global style and time-varying details.

Cross-Attention Fusion
We adopt a Dominant Head Fusion strategy inspired by MAiVAR-T, concatenating modality-
specific vectors and refining them through a transformer-based cross-attention block[6]. This
generates a fused sequence:

https://www.copilot.com/?utm_source=dr_pdf_footer

3

▪ Query: MusicVAE latent features.

▪ Keys/Values: Text, audio, sound choice embeddings.

▪ Output: Contextually enriched latent representation for spectrogram generation.
1.

MusicVAE Interpolation
Interpolations occur in the MusicVAE latent space, enabling smooth transitions between two
seed embeddings, accommodating user-provided text and audio contexts:

from magenta.models.music_vae import TrainedModel

mvae = TrainedModel(config="cat-mel_2bar_big", checkpoint_file="cat-mel_2bar_big.ckpt")
z1 = mvae.encode([seed_seq_1])[0]
z2 = mvae.encode([seed_seq_2])[0]
interpolations = mvae.interpolate(z1, z2, num_steps=8)
decoded_seqs = mvae.decode(interpolations)

This process produces two-minute-long sequences by chaining interpolated segments while
preserving House-style rhythmic anchors via a Beat Histogram control vector.

Export Options
Generated tracks are exportable as MIDI or WAV, ensuring compatibility with DAWs and
playback environments.

MIDI Export
We convert decoded Magenta sequences into MIDI using Mido and MIDIUtil, setting tempo and
channel information:

from magenta.music import midi_io

for i, seq in enumerate(decoded_seqs):
path = f"alien_house_{i}.mid"
midi_io.sequence_proto_to_midi_file(seq, path)

Alternative direct writing with MIDIUtil:

from midiutil import MIDIFile

midi = MIDIFile(1)
midi.addTempo(0, 0, 124)
for note in midi_notes:
midi.addNote(0, 0, note.pitch, note.start, note.duration, note.velocity)
with open("alien_house_track.mid","wb") as f:
midi.writeFile(f)

https://www.copilot.com/?utm_source=dr_pdf_footer

4

WAV Rendering
Spectrograms are decoded into waveforms via a DiffWave or EnCodec vocoder:

import diffwave

waveform = diffwave.decode_spectrogram(spec)
torchaudio.save("alien_house.wav", waveform, sample_rate=32000)

Alternatively, using OpenVINO-optimized components:

audio_values = audio_decoder_wrapper.decode(output_ids, audio_scales)
audio_values_np = audio_values.audio_values.numpy()
sf.write("alien_house_openvino.wav", audio_values_np, sampling_rate)

High-fidelity rendering employs dynamic-range scaling and multi-band processing to emphasize
alien textures. Continuous evaluation with Frechet Audio Distance (FAD) and CLAP-based
alignment metrics ensure both audio quality and text adherence across generated tracks.

References (6)
1. MUSIC CONTROLNET: Multiple Time-varying Controls for Music Generation.

https://arxiv.org/pdf/2311.07069

2. Musical genre classification of audio signals - Speech and Audio
https://dspace.library.uvic.ca/server/api/core/bitstreams/d7457cdf-e42f-4772-b9ee-
801adf43f949/content

3. A Q -D BASED EVALUATION STRATEGY FOR SYMBOLIC MUSIC GENERATION. https://ml-
eval.github.io/assets/pdf/A_Quality_Diversity_Based_Evaluation_Strategy_For_Symbolic_Music_Generation.pdf

4. Google Colab. https://colab.research.google.com/github/magenta/magenta-
demos/blob/master/colab-notebooks/MusicVAE.ipynb

5. Audio Feature Extractions - Torchaudio 2.7.0 documentation.
https://docs.pytorch.org/audio/stable/tutorials/audio_feature_extractions_tutorial.html

6. Pipeline Structure . https://deepwiki.com/ace-step/ACE-Step/2.1-pipeline-structure

https://www.copilot.com/?utm_source=dr_pdf_footer
https://arxiv.org/pdf/2311.07069
https://dspace.library.uvic.ca/server/api/core/bitstreams/d7457cdf-e42f-4772-b9ee-801adf43f949/content
https://dspace.library.uvic.ca/server/api/core/bitstreams/d7457cdf-e42f-4772-b9ee-801adf43f949/content
https://ml-eval.github.io/assets/pdf/A_Quality_Diversity_Based_Evaluation_Strategy_For_Symbolic_Music_Generation.pdf
https://ml-eval.github.io/assets/pdf/A_Quality_Diversity_Based_Evaluation_Strategy_For_Symbolic_Music_Generation.pdf
https://colab.research.google.com/github/magenta/magenta-demos/blob/master/colab-notebooks/MusicVAE.ipynb
https://colab.research.google.com/github/magenta/magenta-demos/blob/master/colab-notebooks/MusicVAE.ipynb
https://docs.pytorch.org/audio/stable/tutorials/audio_feature_extractions_tutorial.html
https://deepwiki.com/ace-step/ACE-Step/2.1-pipeline-structure

	Algorithm Design Architecture
	Model Components

	Input Mapping
	Text-to-Embedding
	Audio Feature Extraction
	Sound Choice Integration

	Fusion Engine Techniques
	Cross-Attention Fusion
	MusicVAE Interpolation

	Export Options
	MIDI Export
	WAV Rendering

	References (6)

