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Abstract—Modern compilers, such as LLVM, are complex.
Due to their complexity, manual testing is unlikely to suffice,
yet formal verification is difficult to scale. End-to-end fuzzing
can be used, but it has difficulties in discovering LLVM backend
problems for two reasons. First, frontend preprocessing and mid-
dle optimization shield the backend from seeing diverse inputs.
Second, branch coverage cannot provide effective feedback as
LLVM backend contains much reusable code.

In this paper, we implement IRFuzzer to investigate the need of
specialized fuzzing of the LLVM compiler backend. We focus on
two approaches to improve the fuzzer: guaranteed input validity
using constrained mutations to improve input diversity and new
metrics to improve feedback quality. The mutator in IRFuzzer
can generate a wide range of LLVM IR inputs, including
structured control flow, vector types, and function definitions. The
system instruments coding patterns in the compiler to monitor
the execution status of instruction selection. The instrumentation
not only provides new coverage feedback on the matcher table
but also guides the mutator on architecture-specific intrinsics.

We ran IRFuzzer on 29 mature LLVM backend targets.
IRFuzzer discovered 78 new, confirmed bugs in LLVM upstream,
none of which existing fuzzers could discover. This demonstrates
that IRFuzzer is far more effective than existing fuzzers. Upon
receiving our bug report, the developers have fixed 57 bugs and
back-ported five fixes to LLVM 15, which shows that specialized
fuzzing provides actionable insights to LLVM developers.

Index Terms—fuzzing, LLVM, software analysis

I. INTRODUCTION

Modern compilers, such as LLVM [1], are complex soft-
ware. For example, LLVM consists of over seven million lines
of C/C++ code contributed by more than 2500 developers.
Given the size of this codebase and its importance in the com-
puting ecosystem, an effective, scalable verification method is
critical. Despite extensive testing, latent bugs remain and their
impact on users can be quite significant given the widespread
distribution and long lifetime of compilers.

To reduce latent bugs, various techniques have been used to
automate the verification of compilers, such as partial model
checking [2], fuzzing [3–5], and differential testing [6, 7].
Although end-to-end formal verification of compilers has been
applied [8, 9], these techniques have not yet scaled to practical
compilers such as LLVM, which supports a wide range of
architectures, programming languages, and use models.

In the specific case of LLVM, another factor making
verification difficult is that the interface between compiler
optimization and machine code generation is widely used but

not completely specified. As a result, it can be difficult for
backend developers to understand whether they have com-
pletely implemented the wide range of possible inputs. In
addition, backends often differ greatly in their relative code
maturity, including some targets that are relatively mature and
other targets for new devices that are in active development.

We find that the state-of-the-art fuzzers failed to find new
bugs of a compiler backend for various reasons. General-
purpose fuzzing techniques, such as AFL++ [10], often do
not consider input validity and struggle to explore control
paths in the compiler backend since most binary strings
are invalid compiler inputs. In order to test the compiler
backend more effectively, we aim to generate LLVM Interme-
diate Representation (LLVM IR) that complies with the lan-
guage reference. LLVM includes llvm-opt-fuzzer and
llvm-isel-fuzzer, which generate valid IR for middle
end and backend fuzzing, respectively [11]. Both of them are
based on the library FuzzMutate [12] for valid IR mutation.
However, FuzzMutate can’t construct complex control flows
and only generates a few instructions with scalar types. On
the other hand, end-to-end fuzzing tools, such as CSmith [4]
and GrayC [13], test the whole pipeline of the compiler, but
they cannot explore control paths in the compiler backend
efficiently. CSmith does not take any feedback from the
compiler, which contributes to its ineffectiveness. A more
fundamental reason is that front-end parser and middle-end op-
timizations may limit the set of features seen by the compiler
backend. High level languages, such as C, may not exercise
all backend features in LLVM. Therefore, even if GrayC used
branch coverage feedback from libFuzzer [14], it missed many
backend bugs introduced before LLVM 12, which were found
by us. As a result, when a new language, such as Rust, is
introduced, new backend bugs may still arise [15].

Generating valid IR is challenging with three major dif-
ficulties. In order to generate a complex control flow graph
(CFG), we have to maintain all data dependencies to avoid
use-before-definition situations. A valid CFG can be easily
invalidated by a jump, as shown in Figure 2. This challenge
does not exist in C generation as long as one does not
generate goto statements. Besides, modelling the instructions
missing in FuzzMutate isn’t trivial. We must make sure that
the types of the operands in each IR instruction match, but
enumerating the large numbers of natively supported vector



types is infeasible. Finally, it is difficult to model intrinsic
functions for all architectures, as intrinsics are often poorly
documented and vary from architecture to architecture.

We also observe that AFL++’s feedback mechanism per-
formed poorly when testing the backend. It uses branch
coverage as feedback, which runs into severe branch collision
problems when fuzzing large code bases such as LLVM.
Naively increasing the branch counting table size introduces
huge overhead [16]. A more fundamental reason is that much
code generation logic in the LLVM backend is implemented
using table-driven state machines. A matcher table encapsu-
lates all possible states as a constant byte array, meaning
that branch counting can’t observe this logic during fuzzing.
The fuzzer needs a better feedback on whether the seed is
interesting or not. If the seed is not interesting, the feedback
should also inform the mutator what type of input is desired.

To address these issues, we design a specialized fuzzer,
IRFuzzer, for fuzzing the LLVM compiler backend. Figure 1
shows the overall structure of IRFuzzer. We first design a
mutator that generates valid IR (Section III-A). We main-
tain the domination relation in a CFG during mutation by
inserting subgraphs (sCFG) into the existing CFG as shown
in Figure 2c. We also use a descriptive language to list the
requirements of each instruction type. This approach ensures
that inputs to the compiler backend are always valid, increas-
ing the efficiency of fuzzing. Our work expands FuzzMutate
to include special handling by compiler backends, such as
multiple basic blocks with complex control flow, function
calls, intrinsic functions, and vector types. Using IRFuzzer, we
are able to generate a wider range of instructions and explore
control paths in the compiler backends more efficiently.

Then, we introduce a new coverage metric (Section III-B)
by instrumenting the table-driven state machines in LLVM,
enabling the design space to be more efficiently explored.
New entries covered in the matcher table indicate that new
features are executed. Working together with branch coverage,
they provide better feedback on whether a seed is interesting.
Furthermore, the matcher table contains all the information
about the instructions and intrinsics in one architecture. As a
result, we use the matcher table to determine which instruc-
tions and intrinsics haven’t been fuzzed. We design a feedback
loop from the matcher table coverage to our mutator. IRFuzzer
periodically sends to the mutator a coverage report containing
the states that haven’t been executed to guide mutations. This
allows IRFuzzer to test on different backends with no prior
knowledge of the architecture.

We evaluated IRFuzzer on 29 mature backend architectures
in LLVM (Section V). Our results show that IRFuzzer is
more effective than the state-of-the-art fuzzers AFL++ and
GrayC. IRFuzzer generated inputs code with better branch
coverage and matcher table coverage on all LLVM backends.
Leveraging these techniques, we were able to find and report
78 new bugs in LLVM, of which all have been confirmed, 57
have been fixed, and five have been back ported to LLVM
15. This demonstrates the high impact on improving the
correctness of LLVM backend targets.

This paper uses LLVM to demonstrate the importance of
having a specialized fuzzer for the compiler backend. Since
modern compilers have similar intermediate representations,
we expect that our approach can apply to other compilers
without requiring heavy engineering efforts. We made the
following contributions in this paper:

• We designed and implemented IRFuzzer. To the best of
our knowledge, IRFuzzer is the first backend fuzzer that
uses matcher table coverage feedback to guide mutation.

• We compared IRFuzzer with other state-of-the-art fuzzers
on LLVM upstream and found it to be the most effective
on matcher table coverage.

• We carefully analyzed and categorized the bugs we found
during our testing. In total, we discovered 78 confirmed
new bugs in LLVM, of which 57 have been fixed and five
have been back ported to LLVM 15.

II. BACKGROUND

A. LLVM

LLVM [1] is a mature compiler framework consisting of
many components that can be targeted to different architec-
tures. At its core lies the LLVM Intermediate Representation
(LLVM IR), which serves as a target-independent abstraction
separating the concerns of high-level programming languages
from the low-level details of particular architectures. LLVM
can be roughly partitioned into three layers. The frontend, such
as clang, translates programming languages to LLVM IR,
including lexer, parser, AST transformation, etc. The middle-
end, called opt, processes LLVM IR and performs code
analysis and many common target-independent optimizations.
The backend, called llc, converts LLVM IR to a target-
specific machine code representation and eventually assembly
code for the target architecture. The LLVM backend supports
multiple target architectures through a plug-in abstraction, and
the code to support a target architecture typically involves the
implementation of API functions to describe common aspects
along with target specific code to implement more unusual
concepts.

The LLVM IR describes a static single-assignment (SSA)
form [17], with a fixed set of instructions. Instructions are
strongly typed, and the type of each value must match between
its definition and all uses. A wide range of types are supported,
including integers with arbitrary bitwidth, floating point val-
ues, pointers, vectors, and other aggregate types. As with most
high-level languages, LLVM IR allows the definition of func-
tions, and the control flow between functions is implemented
using the call instruction. Architecture specific intrinsics
have no corresponding IR instructions, but are represented as
function calls at IR level.

Control flow within a function in LLVM IR is represented
using basic blocks and branch instructions. Special PHI in-
structions allow instructions in a basic block to refer to values
defined in other basic blocks. Therefore, PHI instructions must
respect control flow constraints and may only refer to values
defined in predecessor blocks. This domination constraint [18]



Fig. 1: Overview of IRFuzzer. Green shaded components are the contributions of this paper, orange shaded components are
AFL++, and blue shaded components are from LLVM. We created an LLVM IR mutator that guarantees the correctness of
the generated input (Section III-A). We introduced a new coverage metric to track the backend code generation while guiding
the mutation module (Section III-B).

B1 B2 B3

(a) Original CFG

B1 B2 B3

(b) Incorrect mutation: randomly adding an edge

B1 B2

entry

· · ·

sCFG

B2

exit

B3

(c) Correct mutation: splitting node and adding sCFG
Fig. 2: Examples of incorrect and correct CFG mutations. Figure 2a is the original linear CFG. Figure 2b naively adds an edge
from B1 to B3. After that, B2 no longer dominates B3, so every value defined in B2 and used in B3 may cause use-before-
definition error. Figure 2c breaks B2 into an entry and an exit node and inserts an sCFG between them. This guarantees that
B2 still dominates B3.

means that techniques used in high-level language generation
cannot be easily adapted to LLVM IR.

The process of instruction selection in the LLVM back-
end replaces target-independent LLVM IR instructions with
target-specific machine code instructions. LLVM provides two
different frameworks to implement instruction selection that
may be leveraged by the target backend plug-in. SelectionDAG
[19] is the more mature instruction selection framework and
is leveraged by all targets. In SelectionDAG, the code in
each basic block is converted into a directed acyclic graph
(DAG) representing the data dependency between instructions,
and instruction selection is performed on the DAG. Since
SelectionDAG processes each basic block independently, it
can miss opportunities for optimization across basic blocks.
GlobalIsel [20] is a newer framework that is only leveraged
by some targets. GlobalIsel preserves the basic block structure
within a function during instruction selection, enabling more
optimization opportunities.

B. Coverage guided fuzzing

American Fuzzy Lop (AFL) [21], an open source fuzzing
framework, implements coverage-guided fuzzing. It instru-
ments the program under test (PUT) with the ability to track
control-flow coverage. When an input increases code coverage,
AFL stores it in a seed cache and mutates it to generate new
inputs. This strategy allows AFL to explore different control-
flow paths of the PUT efficiently.

Many variations of coverage guided fuzzing have been
developed, with the goal of finding bugs more efficiently by
exploring a wider range of program behaviors with future
executions of the PUT [22]. There are studies on the impact
of different feedback algorithms [23–25]. Different methods
are proposed to prioritize seeds to improve the performance
of fuzzing. [26–28]. Some fuzzers target specific bugs [29–31]
and libraries [32, 33]. More advanced mutation strategies also
show better fuzzing performance compared with random mu-
tation [34–39]. Many improvements have been implemented
in AFL++ [10], making it a good framework for further
development. Fuzzing not only finds bugs but also helps
program understanding [40].

LLVM also introduces its own coverage guided fuzzing
framework libFuzzer [14], coupled with FuzzMutate [12], it
can be used to fuzz LLVM backend. However, FuzzMutate
only generates a limited type of code and is not under active
development. Still, the framework provides us with helpful
insights into how should we mutate LLVM IR.

III. DESIGN

We design IRFuzzer with two new components. Figure 1
shows the new components of IRFuzzer. During the mutation
stage, we first generate a function if there isn’t one (Sec-
tion III-A1). Then we change the control flow graph (CFG) to
create more control flows (Section III-A2). Finally, we gener-
ate new IR instructions and mutate them (Section III-A3). Af-



1 define i64 @f(i32 zeroext %I, <4 x i32> %V) noinline {
2 Entry: %ret_p = alloc i64, 1
3 %ret = load i64, ptr %ret_p
4 ret i64 %ret
5 }

Listing (1) A piece of LLVM IR program generated by function
generation (Section III-A1). The function returns a 64 bit integer, so
we allocate a stack memory and load from it to return. We will fill
the memory in later mutations.

1 define i64 @f(i32 zeroext %I, <4 x i32> %V) noinline {
2 EntrySrc: %ret_p = alloc i64, 1
3 switch i32 %I, label %sCFG_Default [
4 i32 1, label %sCFG_1
5 ]
6 sCFG_Default: br label %EntrySink
7 sCFG_1: br label %EntrySink
8 EntrySink: %ret = load i64, ptr %ret_p
9 ret i64 %ret

10 }

Listing (2) IR program mutated from Listing 1. Line 3 to 7 are
introduced by sCFG insertion (Section III-A2). We insert sCFG
by splitting the Entry block into two and generating a switch
instruction.

1 define i64 @f(i32 zeroext %I, <4 x i32> %V) noinline {
2 EntrySrc: %ret_p = alloc i64, 1
3 switch i32 %I, label %sCFG_Default [
4 i32 1, label %sCFG_1
5 ]
6 sCFG_Default:%I64 = zext i32 %I, i64
7 br label %EntrySink
8 sCFG_1: %I1 = add i32 %I, 1
9 %J64 = call @f(i32 %I1, <4 x i32> %V)

10 br label %EntrySink
11 EntrySink: %PHI = phi i64 [%J64, %sCFG_1],
12 [%I64, %sCFG_Default]
13 store i64 %PHI, %ret_p
14 %ret = load i64, ptr %ret_p
15 ret i64 %ret
16 }

Listing (3) IR program mutated from Listing 2. Instruction
insertion(Section III-A3) generates line 6, 9, and 12. The placeholder
memory is also used by %PHI to avoid undefined behavior (Line 13).

Fig. 3: An example of how IRFuzzer mutates a module using
different strategies.

ter the mutation stage, we create a new method to measure the
coverage of the program (Section III-B). Although IRFuzzer
borrows from FuzzMutate and other tools, all the components
described in this section are novel unless otherwise noted.

A. LLVM IR mutation

To generate a wide variety of input while avoiding invalid
inputs, we adopt a mutation-based strategy. This strategy starts
with small valid seed inputs and modifies the seed inputs
in ways that should also generate valid inputs. By randomly
selecting between a number of small, well-defined mutations,
we expect to eventually generate a broad class of valid inputs
while avoiding invalid inputs. Figure 3 shows an example of
our mutator in practice. We first generate an empty function if
none is present (Listing 1). Then, we mutate the control flow
by sCFG insertion (Listing 2). Finally, we modify or insert
instructions in basic blocks (Listing 3).

1) Function generation: The LLVM backend has many
target-specific code related to function calls. As a result, it
is important to generate a wide range of function definitions
and function calls with different arguments and return types.

IRFuzzer implements a mutation strategy capable of gen-
erating new function definitions with arbitrary arguments and
return types. One important constraint is that the return type
of the function signature matches the type of each return
instruction in the function definition. To ensure this, IRFuzzer
synthesizes a load instruction of an appropriate type as the
operand for a return instruction. Although the value re-
turned from the load may be uninitialized, later mutations may
store values to the memory, validating the return value.

IRFuzzer also implements a mutation strategy to generate
new call instructions that refer to specific function declara-
tions. The mutator is free to select from any declared functions
and generate compatible arguments and return values for the
call, as with any other primitive instruction. Intrinsic functions
are target specific operations that correspond to complicated
machine instructions, so generating them will increase the code
we can test. Yet they are treated as functions at middle-end.
In particular, this mutation strategy will also select intrinsic
functions to call.

Function attributes can impact backend behavior. These
attributes are often set by the compiler frontend and middle
end to optimize the code. For example, noinline can change
how a function is treated during code generation. LLVM
categorizes attributes into function attributes, argument at-
tributes, and return value attributes. To demonstrate IRFuzzer’s
potential, we include 15 attributes in IRFuzzer. Most attributes
do not affect the validity of the program. However, we need
to model the contradicting ones to ensure that they do not
appear at the same time, such as OptForFuzzing and
OptimizeForSize.

2) CFG mutation: Generating diverse CFGs is necessary
to test LLVM backends. Many machine code optimizations
restructure control flow. In addition, certain compiler optimiza-
tions may select specific jump instructions, but this optimiza-
tion can only be performed after instruction selection when the
code size and alignment are known. For instance, a common
compiler optimization is to first select jump instructions in a
“short” form with a limited offset range and then only replace
the short form with a “long” jump instruction if a larger offset
is required.

A challenge in mutating CFGs is how to preserve the
dominator constraints. Naively inserting and removing ar-
bitrary edges in a CFG may violate dominator constraints
between basic blocks, which may cause use-before-definition.
For example, starting from the CFG in Figure 2a, after we
add an edge, B2 no longer dominates B3 in Figure 2b. If
B3 uses any value defined in B2, the program will cause a
use-before-definition error if it follows the new edge.

To overcome this problem, IRFuzzer inserts sub-control flow
graphs (sCFG), as shown in Figure 2c, to maintain dominator
constraints.



Definition 1. A sub-control graph (sCFG) is a CFG with a
single entry block and a single exit block. The exit block must
have a single outgoing edge, and all the other blocks must
either branch to another block in this sCFG or return.

Definition 2. A block S dominates a block T if S precedes
T on all the reachable paths ending in T .

Theorem 1. Let block S dominate block T . Let B be a block,
and C be an sCFG. Then, after we split B into Bentry and
Bexit and insert C between them, S still dominates T .

Proof. Before we insert C, since S dominates T , S precedes T
on every reachable path ending in T . Let p = (· · · , S, · · · , T )
be such a path. After we insert C,

• If no block in C is inserted between S and T on p, then
p does not violate the property that S dominates T .

• If some blocks in C are inserted between S and
T on p, then p becomes one or more new paths
p′ = (· · · , S, · · · , Bentry, Centry, C∗, Cexit, Bexit, T ) where
C∗ represents a sequence of blocks in C. If no block in
C∗ contains a return, then S still precedes T on p′.
On the other hand, if any block in C∗ contains a return,
then T is not reachable on p′. In both these cases, p′ does
not violate the property that S dominates T .

Theorem 1 guarantees that splitting a block and inserting an
sCFG between them preserves dominator constraints. Based on
this property, IRFuzzer mutates CFG in the following steps.

1) IRFuzzer selects a block, and a non-terminating instruc-
tion inside it as the split point.

2) IRFuzzer splits the block into an entry block, containing
all the instructions before the split point, and an exit
block, containing all the remaining instructions. Then, it
randomly generates a branch or switch instruction
as the entry block’s new terminating instruction.

3) IRFuzzer creates empty blocks as the destinations of
the branch or switch instruction created in the pre-
viously step. For each empty block, IRFuzzer randomly
selects branch, switch, or return as its terminator.

4) If IRFuzzer selects branch or switch, it either routes
the control flow to the exit block or creates a self loop.

3) Instruction modeling and generation: A key aspect of
the LLVM backend is to convert the wide range of LLVM IR
types to the (usually small) set of types natively implemented
by each target architecture. Therefore, to exercise all the
features of code generation, it is necessary to generate IR
instructions with as many data types as possible. Much of the
compiler backend handles IR instructions with vector types,
but FuzzMutate modelled only scalar types.

To overcome FuzzMutate’s limitations, we rewrite its mod-
elling, as shown in Table I. We not only include vectors as
allowed types but also model vector operations and casting
operations. These definitions are reflected in the code as dec-
larations expressing both restrictions on the types of operands
and constraints between the types of different operands. For

example, the anyIntOrVecInt constraint restricts the valid
types for a particular operand to be any integer type or
vector of integer type. This allows us to model vector oper-
ations, such as extractelement, insertelement, and
shufflevector, which were unsupported by FuzzMutate.

In addition, store and load memory operations are
structured differently enough from other operations that mod-
eling them declaratively is unnecessary. Some other instruc-
tions have constraints which are too complex , so we resort to
custom generators. For instance, instructions representing PHI
nodes must be created with a number of operands equal to
the number of predecessor blocks and must occur at the start
of their basic block. Similarly, call instructions are handled
manually, since we must select a function declaration and find
values that exactly match the operand types of the declaration.

When generating a new instruction, we first randomly select
an opcode and use the declarations to randomly select values
that exist in the code with a compatible type. To ensure that
values are defined before they are used, the mutator searches
for values defined in the following locations: global variables,
function arguments, values in dominators, and values defined
by previous instructions in the same basic block. If no value
with a compatible type exists, then the mutator can either
generate a poison or generate a load from a pointer if one
exists.

When generating instructions, the mutator may allocate new
stack memories as placeholders. To avoid undefined behaviors,
the mutator will again attempt to replace loads from these
placeholders with other values of a compatible type. If no
such value exists, then the mutator will store a value into the
placeholder location.

We model no intrinsic functions, as they vary from archi-
tecture to architecture, potentially consuming much time with
little outcome. Instead, we rely on the feedback from matcher
table coverage (Section III-B2), which shows the intrinsics that
haven’t been generated yet. The mutator will then randomly
generate call instructions to those intrinsics.

4) Instruction shuffling: Changing instruction orders inside
a basic block will change how the backend schedules instruc-
tions. When shuffling instructions, we must carefully han-
dle instruction orders; otherwise, a use-before-definition may
arise. We use topological sort to ensure that for each define-use
relation, define precedes use after instruction shuffling.

B. Matcher table feedback

1) Matcher table instrumentation: LLVM uses patterns to
describe rewrite rules applied during instruction selection.
Some simple patterns replace a single LLVM IR instruction
with a single machine instruction. More complex patterns may
replace multiple LLVM IR instructions or generate multiple
machine instructions. Patterns may also apply in specific
situations by including complex predicates. For example, a
pattern may only apply when a particular operand is a constant,
or a certain hardware feature is enabled.

Most patterns are described declaratively in an LLVM-
specific language called TableGen [41]. To optimize the ap-



TABLE I: Extended instruction modeling for IR instructions. Note that FuzzMutate only implements binary and bitwise
operations with no vector support.

Operation type Opcode Argument descriptions

Unary operation fneg : anyFloatPointOrVectorFloatPoint

Binary operations add, sub, mul, (s|u)(div|rem) : anyIntOrVecInt sameAsFirst
fadd, fsub, fmul, fdiv, frem : anyFPOrVecFP sameAsFirst

Bitwise operations shl, lshr, ashr, and, or, xor : anyIntOrVecInt sameAsFirst

Vector operations
extractelement : anyVector anyInt
insertelement : anyVector matchScalarOfFirst anyInt
shufflevector : anyVector matchLengthOfFirst VecOfConstI32

Aggregate operations extractvalue : anyAggregateOrArray anyConstInt
insertvalue : anyAggregateOrArray matchScalarOfFirst anyConstInt

Memory operation getelementptr : anySized pointerOfFirst anyInt

Casting operations

trunc : anyNonBoolIntOrVecInt anyIntOrVecIntWithLowerPrecision
zext, sext : anyIntOrVecInt anyIntOrVecIntWithHigherPrecision

fptrunc : anyNonHalfFPOrVecFP andFPOrVecFPWHigherPrecision
fptoui, fptosi : anyFPOrVecFP matchLengthOfFirstWithInt
uitofp, sitofp : anyIntOrVecInt matchLengthOfFirstWithFP

ptrtoint : anyPtrOrVecPtr matchLengthOfFirstWithInt
ptrtoint : anyIntOrVecInt matchLengthOfFirstWithPtr
bitcast : anyType anyTypeWithSameBitWidth

Other operations
icmp : anyIntOrVecInt sameAsFirst
fcmp : anyFPOrVecFP sameAsFirst
select : anyBoolOrVecBool matchLengthOfFirst sameAsSecond

plication of patterns, TableGen represents patterns in a state-
machine and implements it as a large byte array known as the
matcher table. During compilation, the state machine deter-
mines the best pattern to apply to each IR instruction. Listing 4
is a C++ code snippet for evaluating the matcher table in
SelectionDAG. SDNode is a data structure that represents an
IR instruction. The while loop iteratively reads a command
from the matcher table based on the current state, represented
by the idx variable, evaluates the command, and selects the
next state to be evaluated. For example, Opc_CheckOpcode
will check if the opcode of a given SDNode representing an
instruction in the SelectionDAG graph matches a particular
opcode. The Result will be used in future iterations, de-
pending on the next entry in the matcher table. The compiler
continues to evaluate the matcher table until it selects a single
pattern or reaches a state where no pattern applies.

Since the program in Listing 4 evaluates all the patterns
using the same set of conditional branches in the switch
statement, its control flow coverage does not reflect what
patterns have been exercised. To overcome this, we track
the usage of the matcher table directly.

Similar to how AFL tracks branch coverage, we allocate a
table, matcher table coverage table, for tracking the coverage
of the matcher table. Each entry in this table corresponds to
an entry in the matcher table and records if the latter has been
accessed. The instrumented compiler dumps matcher table
coverage after every execution. If either the branch coverage
table and or the matcher table coverage table shows new
coverage, then the fuzzer considers the input as new.

Tracking matcher table coverage incurs memory overhead,
which may reduce fuzzing throughput [23]. The second and

1 void SelectCodeCommon(SDNode *N, char *MatcherTable) {
2 bool Result = true;
3 unsigned Opc;
4 while (true) {
5 if (!Result) break;
6 switch (MatcherTable[Idx++]){
7 case OPC_CheckOpcode: {
8 uint16_t Opc = MatcherTable[Idx++];
9 Opc |= (unsigned short) MatcherTable[Idx++] << 8;

10 Result = (Opc == N->getOpcode());
11 }
12 ...
13 case OPC_MoveChild0: {
14 unsigned ChildNo = Opc - OPC_MoveChild0;
15 if (ChildNo >= N.getNumOperands())
16 break; // Match fails if out of range child #.
17 N = N.getOperand(ChildNo);
18 NodeStack.push_back(N);
19 continue;
20 }
21 }
22 }
23 }
24 void AArch64SelectionDAG::SelectCode(SDNode *N){
25 #define TARGET_VAL(X) X & 255, unsigned(X) >> 8
26 static const unsigned char MatcherTable[] = {
27 ...
28 /*25929*/OPC_CheckOpcode,TARGET_VAL(ISD::ADD),
29 /*25932*/OPC_MoveChild0,
30 /*25933*/OPC_CheckOpcode,TARGET_VAL(AArch64ISD::UMULL),
31 /*25936*/OPC_MoveChild0,
32 ...
33 };
34 SelectCodeCommon(N, MatcherTable,sizeof(MatcherTable));
35 }

Listing 4: SelectionDAG in LLVM that consumes a matcher
table to do instruction selection. We also show AArch64’s
matcher table from index 25929 to 25936. Switch case
OPC_MoveChild0 can be executed with different Opc,
rendering branch coverage ineffective to track the behavior
of this code. Therefore, we also track individual entries of the
matcher table.



TABLE II: The number of entries in the matcher tables used
by SelectionDAG in mature architectures (LLVM commit
860e439f). To track the coverage of the matcher table, we
use one bit to track each entry in the matcher table.

Arch # of entries Arch # of entries

AArch64 489 789 PowerPC 190 304
AMDGPU 493 556 RISC-V 2 191 899
ARM 201 172 SystemZ 53 271
Hexagon 178 277 VE 71 577
Mips 54 044 WASM 25 991
NVPTX 186 134 X86 680 916

fourth column of Table II show the size of the matcher
table in different mature architectures. The matcher tables for
mainstream architectures, such as X86 and AArch64, have
several hundred thousand entries, whereas RISC-V has about
two million entries. Since the entries in the matcher table
represent different features, to determine which features have
been covered, we can individually track whether each entry
has been accessed because the order of access is irrelavent. To
reduce memory footprint, we use one byte to track eight entries
in the matcher table. For example, the largest matcher table,
of the RISC-V architecture, has 2 191 899 entries. Tracking its
coverage takes ⌈2191899/8⌉ bytes, or 274 kB.

2) IR mutation feedback: The mutator needs to know which
patterns in the matcher table have been executed so that it can
generate more diverse inputs. However, when LLVM prepares
the matcher table, it hides which pattern each entry in the
matcher table represents.

To recover this information, we generate a look-up table to
map each matcher table entry to its corresponding machine
instruction pattern. Compiler developers program different
patterns into TableGen, and the compiler translates those
patterns into the matcher table. We modify TableGen to reverse
that process to create the look-up table.

Prior to fuzzing, we create this look-up table for each ar-
chitecture. During fuzzing, we use the matcher table coverage
table and the look-up table to determine which patterns haven’t
been generated. Finally, we send this report to the mutator to
encourage it to generate those patterns, which is done every
ten minutes to avoid excessive runtime overhead.

IV. IMPLEMENTATION

Our implementation is based on prior work FuzzMutate[12]
and AFL++ [10]. Compared with FuzzMutate, we added the
following new mutation strategies, which have been incorpo-
rated into the upstream LLVM’s repository:

• A new function template generator with the ability to
modify function attributes.

• A new control flow graph mutation strategy, sCFG in-
sertion strategy, which modifies the control flow while
preserving domination relations.

• Extended modelling of IR instructions, including PHI
nodes, memory operations, vector operations, and support
for non-scalar types.

Compared with AFL++, we measure the coverage of the
matcher table, which not only helps determine if a new input
is interesting but also guides mutation. This feedback allows
our mutator to generate architecture specific intrinsics without
any prior knowledge of the architecture.

V. EVALUATION

We evaluated IRFuzzer by fuzzing LLVM with different
settings and tools to answer the following research questions:

• RQ1: How does IRFuzzer compare with state-of-the-art
backend fuzzers?

• RQ2: How does IRFuzzer compare with end-to-end
fuzzers like CSmith and GrayC?

• RQ3: Do mutator and matcher table feedback individu-
ally contribute to IRFuzzer?

• RQ4: Can IRFuzzer find new bugs in LLVM?

The upstream LLVM repository (commit 860e439f) cur-
rently supports 21 architectures. We only tested on mature
architectures that had a matcher table size larger than 25 000,
as shown in Table II. In addition, each architecture may
provide different features that can be enabled on different
hardware. For simplicity, we selected the backends of some
popular microchips, which had a predefined set of features.
These backends were widely used from user product to server
applications, justifying the variety of our choice. All the
architectures that we tested were under active development. As
a result, we selected 29 target CPUs1 across 12 architectures.

We used two baseline fuzzers: (1) AFL++ with no modifi-
cation, and (2) AFL++ whose mutation module was replaced
with FuzzMutate, referred to as FuzzMutate thereafter. All
fuzzers used AFL++’s default scheduling. For fairness, we
collected the seeds generated by each fuzzer and measured
their branch coverage and matcher table coverage. AFL++
reported branch coverage using classical instrumentation and
a default 64 kB table.

We prepared two versions of IRFuzzer:

• IRFuzzer has all the mechanisms described in Section III.
• IRFuzzerbare excludes the feedback mechanism described

in Section III-B. Its performance reveals the contribution
of our mutator when compared with FuzzMutate, and of
the feedback mechanism when compared with IRFuzzer.

Each fuzzer process ran exclusively on a single processor
core on an x86 64 server. Each fuzzing process ran for one day
to allow adequate exploration [42]. We repeated each experi-
ment five times to average the results to reduce random effects.
To demonstrate IRFuzzer’s ability to mutate IR modules and
to provide a fair comparison with AFL++, we initialized each
fuzzer process with 92 seeds. We randomly selected the seeds
from LLVM’s unit tests. Each seed was smaller than 256 bytes
to increase the throughput. We anonymously published the
seeds in the artifact [43].

1“Target CPU” was used in LLVM to label a backend corresponding to a
microchip. It can also refer to GPU, DSP or virtual targets like WebAssembly.



A. Baseline comparison

We compared our mutation strategy with two baseline im-
plementations: AFL++ and the upstream LLVM implementa-
tion of FuzzMutate. AFL++ lacks an LLVM IR-aware mutator,
whereas FuzzMutate has a limited LLVM IR-aware mutator.

Table III shows the branch and matcher table coverages,
which we calculated by dividing the number of non-empty
entries in the coverage table by the size of the table. The
seeds columns show the coverage brought by the initial seeds.
On each target CPU, Target CPU, IRFuzzer and IRFuzzerbare
achieved more coverage than the baseline fuzzers, and the
difference is statistically significant (p < 0.05).

IRFuzzer achieved the highest branch coverage on all the
target CPUs. It may seem counterintuitive that AFL++ has
higher branch coverage than FuzzMutate on most target CPUs.
Our investigation revealed that AFL++’s high branch coverage
mostly comes from error handling code since it can hardly
generate valid input. This is further demonstrated by AFL++’s
low matcher table coverage, which indicates that most execu-
tions did not reach the instruction selection stage before the
compiler terminated.

It is insufficient to compare only branch coverage [16].
More significantly, IRFuzzer achieved the best matcher table
coverage on all CPUs, indicating significantly better coverage
of instruction selection patterns.

Comparison between FuzzMutate and AFL++ also cast
insights on which fuzzer is better to fuzz the backend compiler.
FuzzMutate can generate valid input to reach deeply nested
code more easily, as demonstrated by its higher matcher table
coverage in Table III compared with AFL++. On the other
hand, AFL++’s high branch coverage and low matcher table
coverage show that most inputs didn’t reach the instruction
selection stage before the compiler terminated. Therefore,
AFL++ is useful mainly for testing error handling and the
frontend.

In summary, IRFuzzer achieved higher branch coverage and
matcher table coverage on all target CPUs compared with
AFL++ and FuzzMutate. To answer RQ1, IRFuzzer is better
in coverage when fuzzing LLVM code generation compared
with state-of-the-art fuzzers.

B. Comparison with end-to-end fuzzers

To better understand the benefits of targeted fuzzing over
end-to-end fuzzing, we evaluated CSmith [4] and GrayC [13].
Unlike IRFuzzer, end-to-end fuzzers generate C code, which
must be processed by the compiler frontend and middle-
end before reaching the backend. As a result, they exercise
the entire compilation pipeline, rather than focusing on just
the backend. Note that although CSmith generates random,
syntactically correct C code, it does not implement any instru-
mentation and lacks feedback to guide the generation process.
While GrayC relies on branch coverage feedback, it does not
have feedback that is customized for the backends of the
compilers. Besides, to test end-to-end fuzzers, we had to cross
compile C to different architectures, which was difficult and

time-comsuming. Therefore, we tested on three most widely
used architectures using generic backend.

CSmith generates C files with no initial seed. To make
the comparison fair, we also ran IRFuzzer with no initial
seed, since IRFuzzer is capable of generating LLVM IR
from scratch. GrayC relies on deprecated APIs in LLVM 12
and cannot instrument the latest LLVM. So we download
the artifact provided by GrayC [44]. The artifact consists of
715 147 C programs across ten trials. We ran CSmith for 24
hours and repeated it eight times, generating a total of 506 971
C programs.

We cross-compiled these C programs to different architec-
tures. After compilation, we measured the resulting branch
and matcher table coverage in the compiler backend, using
the same instrumentation as IRFuzzer. We only tested on O2
and O3, as O0 and O1 are often subsets of O2. The results
are shown in Table IV.

IRFuzzer achieved the highest matcher table and branch
coverage on all the architectures and all the optimizations.
Even with branch coverage feedback, GrayC was unable to
generate C inputs with more matcher table coverage, which
demonstrating the need for specialized backend fuzzing. We
looked into the code generated by end-to-end fuzzers and
found that their low matcher table coverage was mainly
because they could not handle vector data types. Vector
instructions are generated only when the front-end and middle-
end decide that a vector instruction will speed up a particular
piece of code, which is uncommon in random C programs
generated by end-to-end fuzzers. In comparison, since IR-
Fuzzer operates directly on IR instructions, it can generate
vector operations easily.

To answers RQ2: IRFuzzer achieved higher matcher table
coverage than state-of-the-art end-to-end fuzzers. This shows
that compiler backend testing should not solely rely on end-to-
end fuzzing, and that specialized fuzzing can improve matcher
table coverage significantly.

C. Individual contributions

To evaluate how each component of IRFuzzer helps, we
stripped all the feedbacks in IRFuzzer to get IRFuzzerbare.

Table III shows that IRFuzzerbare always reached higher
branch coverage and matcher table coverage than FuzzMu-
tate, indicating that our mutator was able to generate more
diverse inputs. Although FuzzMutate is also a structured
mutator, it lacks many advanced features that we designed
in Section III-A. The sifive-x280 CPU best demonstrates
this improvement, where IRFuzzerbare covered 3.42% of the
matcher table while FuzzMutate covered only 0.31%.

The last two columns of Table III show that IRFuzzer is
able to cover more matcher table in 28 out of 29 target
CPUs compared with IRFuzzerbare. This demonstrates that our
matcher table feedback can help the mutator during fuzzing
trials. This effect can be best observed on NVPTX, where
IRFuzzerbare covered only 6.3% of the matcher table while
IRFuzzer covered 26.9%.



TABLE III: Branch table coverage and matcher table coverage on 29 target CPUs across 12 targets in SelectionDAG. Statistics
are the arithmetic mean over five trials. Bold entries are the best among baseline fuzzers. FM means AFL++ coupled with
FuzzMutate, IRF means IRFuzzer, IRFbare means IRFuzzer without matcher table feedback.

Arch Target CPU Branch coverage Matcher table coverage

Seeds AFL++ FM IRFbare IRF Seeds AFL++ FM IRFbare IRF

AArch64

apple-a16 59.8% 87.1% 82.9% 95.2% 96.9% 0.7% 1.6% 2.6% 7.5% 8.9%
apple-m2 59.8% 86.9% 83.3% 94.9% 97.0% 0.7% 1.6% 2.6% 7.6% 9.2%
cortex-a715 60.0% 87.7% 83.2% 94.9% 96.9% 0.7% 1.7% 2.6% 7.4% 10.9%
cortex-r82 60.1% 87.0% 82.9% 95.2% 96.7% 0.7% 1.6% 2.6% 7.3% 8.8%
cortex-x3 60.0% 93.3% 85.2% 96.6% 96.8% 0.7% 7.1% 2.7% 7.9% 10.5%
exynos-m5 60.3% 87.4% 83.2% 96.5% 96.2% 0.7% 1.7% 2.6% 7.9% 8.5%
tsv110 60.0% 87.3% 82.9% 95.9% 95.7% 0.7% 1.6% 2.6% 7.7% 8.2%

AMDGPU gfx1036 70.8% 90.0% 89.1% 96.2% 97.0% 0.9% 2.1% 2.7% 4.3% 5.1%
gfx1100 71.2% 89.7% 89.9% 96.6% 96.8% 1.0% 2.1% 2.9% 4.4% 4.9%

ARM generic 55.5% 87.9% 82.5% 88.6% 91.6% 1.7% 4.3% 4.3% 4.3% 5.4%

Hexagon hexagonv71t 64.8% 88.0% 86.0% 93.2% 94.8% 1.7% 6.6% 17.0% 21.6% 33.2%
hexagonv73 64.9% 89.5% 85.7% 93.0% 94.7% 1.7% 7.3% 17.4% 20.7% 32.5%

Mips mips64r6 52.5% 81.0% 72.7% 87.0% 84.8% 3.8% 10.0% 15.3% 18.4% 18.3%
NVPTX sm 90 46.6% 77.5% 77.5% 90.6% 91.3% 1.7% 3.1% 4.7% 6.3% 26.9%
PowerPC pwr9 60.3% 87.3% 86.9% 95.6% 95.9% 1.2% 3.6% 7.1% 19.0% 23.6%

RISC-V
rocket-rv64 53.7% 83.0% 76.6% 87.1% 88.3% 0.12% 0.20% 0.22% 0.23% 0.23%
sifive-u74 54.5% 83.1% 75.9% 88.3% 88.2% 0.14% 0.24% 0.29% 0.31% 0.32%
sifive-x280 55.0% 84.1% 75.7% 90.7% 92.0% 0.14% 0.27% 0.31% 3.42% 3.70%

SystemZ z15 55.3% 84.0% 81.5% 93.7% 93.8% 5.2% 13.7% 27.1% 43.9% 50.6%
z16 55.3% 83.7% 81.8% 93.3% 93.7% 5.2% 14.1% 26.5% 43.7% 50.2%

VE generic 49.0% 80.4% 70.2% 89.6% 89.0% 3.5% 8.1% 11.4% 13.0% 14.1%

WASM bleeding-edge 46.8% 84.7% 70.5% 88.8% 90.0% 4.1% 36.9% 10.9% 40.2% 41.5%
generic 46.6% 80.2% 69.7% 87.4% 88.4% 4.1% 11.8% 10.6% 12.0% 12.4%

X86

alderlake 61.2% 88.0% 84.6% 96.3% 97.2% 0.7% 1.8% 3.1% 7.1% 9.3%
emeraldrapids 60.5% 93.4% 84.4% 96.2% 97.5% 0.6% 12.5% 3.2% 14.8% 18.9%
raptorlake 61.2% 93.5% 85.8% 96.8% 97.2% 0.7% 6.2% 3.3% 7.4% 9.4%
sapphirerapids 60.5% 88.4% 85.4% 96.7% 97.4% 0.6% 1.8% 3.3% 15.3% 19.1%
znver3 61.8% 86.6% 84.0% 96.5% 97.4% 0.7% 1.6% 3.0% 7.3% 9.3%
znver4 61.0% 87.6% 84.0% 96.3% 97.5% 0.7% 1.8% 3.2% 14.4% 17.7%

TABLE IV: Average branch table coverage and matcher table
coverage of CSmith (CS), GrayC, and IRFuzzer (IRF). O2
and O3 are different optimization levels. Bold entries are the
winners.

Arch Branch table coverage Matcher table coverage

CS GrayC IRF CS GrayC IRF

O2
AArch64 94.8% 96.1% 96.7% 5.2% 6.9% 8.9%
ARM 90.7% 92.3% 92.5% 4.5% 4.5% 5.4%
X86 94.8% 96.1% 96.9% 3.5% 4.2% 5.9%

O3
AArch64 95.3% 96.2% 96.9% 5.4% 6.9% 8.9%
ARM 91.1% 92.5% 92.5% 4.5% 4.5% 5.4%
X86 94.9% 96.2% 96.8% 3.5% 4.2% 5.9%

In rare cases IRFuzzer has lower branch coverage than
IRFuzzerbare. This is because the feedback mechanism incurs
a tradeoff. Calculating matcher table coverage and sending it
to the mutator reduce the throughput, which lowers branch
coverage. On the other hand, this feedback is valuable for
generating more diverse inputs, which contributes to higher
matcher table coverage. Among all the 29 target CPUs,
IRFuzzer had lower branch coverage than IRFuzzerbare on only
5 target CPUs, so we believe that the tradeoff is acceptable
and justified. Besides, both IRFuzzer and IRFuzzerbare out-

performed baseline fuzzers on all the target CPUs. We can
answer RQ3 confidently that both the mutator and feedback
mechanism contributed to improved matcher table coverage.

D. Bug categories and analysis

We collected all the crashes found in Section V-A and Sec-
tion V-B. We also fuzzed other architectures with no features
to extend our scope. Since GlobalIsel also uses matcher table
design, we can apply IRFuzzer on it with little modification.
This demonstrates that our approach can be generalized to
other frameworks with little effort.

In the process, we found hundreds of crashes in the LLVM
compiler. Even though these crashes all have unique stack
traces, they do not necessarily indicate different bugs because
some crashes have different paths but the same root cause.
Therefore, we manually analyzed all of them and reported
the ones that we believe are bugs. In this section, we only
report the bugs that have been confirmed. In total, IRFuzzer
found 78 confirmed bugs. We manually verified that these
bugs are found only by IRFuzzer and published the details
anonymously [43].

These bugs are distributed in different places in the LLVM
codebase. Figure 4a shows the distribution of these bugs across
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(a) Bugs categorized by locations. CodeGen refers to the code shared
by all architectures, so these bugs may affect all architectures.
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(b) Bugs categorized by causes. Most of the severe bugs are compiler
hangs, memory errors, and assertion failures.
Fig. 4: Distributions of bugs found by IRFuzzer. IRFuzzer has
found 78 new bugs, out of which 57 have been fixed.

1 bool IRTranslator::translateExtractElement(
2 const User &U, MachineIRBuilder &MIRBuilder) {
3 Register Idx;
4 const LLT Ty = LLT::scalar(PreferredVecIdxWidth);
5 Idx = MIRBuilder.buildSExtOrTrunc(Ty, Idx).getReg(0);
6 }

Listing 5: A snippet of code in LLVM where the index of a
vector is treated as a signed value.

LLVM. CodeGen is the library shared between architectures,
meaning that a bug in CodeGen may affect all architectures.

1) Bugs found by baseline fuzzers: Our evaluation of the
baseline fuzzer — AFL++, FuzzMutate, CSmith, and GrayC
— shows that none of them found any backend bugs. All
the 78 confirmed bugs were found exclusively by IRFuzzer.
AFL++ found many crashes in the llc lexer and module
verifier. However, all of them were caused by a malformed
input and are not considered bugs. FuzzMutate did not find
any crashes because its mutator is very limited and only covers
common use cases of the compiler backend.

2) Distribution of bugs: We categorize these bugs into
six categories: hang, memory errors, assertion failures, logic
errors, missing patterns, and other bugs. Hang, memory errors
and assertion failures are the most severe because they stall
compilation. A missing pattern bug occurs when a certain
machine instruction is permitted by the hardware specification
but no matching instruction selection pattern exists. Logic
errors and missing patterns do not stall compilation but may
generate ineffective or even wrong machine instructions. Fig-
ure 4b shows the number of bugs in each category. Assertion
bugs are the most common. They arise from the developers’
false assumption that some properties hold during compilation,
which our fuzzer disapproved.

We demonstrate two bugs found by IRFuzzer. Listing 5
shows a bug in IR Translator. When translating the IR in-
struction extractelement, the bug extends the index as

BB1 BB2 BB3

x == 3 x == 2

x == 2

(a) Original CFG

BB1 BB2 BB3

x == 2 || x == 3

x == 2

(b) Optimized CFG
Fig. 5: A piece of code generated by IRFuzzer,
simplified to CFG only. TurnSwitchRangeIntoICmp
transforms Figure 5a into Figure 5b, and
FoldValueComparisonIntoPredecessors will
undo the transformation, causing an infinite loop.

a signed integer, e.g., translating char 255 into -1. This
bug generates incorrect machine instructions and affects the
LLVM backend for seven architectures. Introduced in LLVM
nine years ago, the bug was never noticed for several reasons.
First, it is less common for compiler frontends to generate
vector operations, as we have seen in Section V-B, and is
even rarer to use an index that is large enough to wrap around
to a negative integer. However, IRFuzzer can generate such a
test case easily because it directly mutates on IR instruction.
More importantly, the documentation was ambiguous with
respect to the desirable behavior. The documentation states
“The index may be a variable of any integer type” [45] without
giving details on how it should be interpreted. Therefore,
when this bug was introduced, it complied with the incomplete
documentation at the time. This exemplifies how complex soft-
ware interfaces can be incompletely specified, which further
justifies our specialized fuzzing. In this case, we fixed the
bug and updated the documentation to reflect the intended
interpretation of the index as an unsigned integer.

IRFuzzer also found compile hangs. Figure 5 shows a
simplified CFG corresponding to the code generated by
IRFuzzer. This CFG will cause a compiler hang due to
the interaction between two optimization passes. BB2 in
Figure 5a consists of a switch statement with two self
loop edges. The TurnSwitchRangeIntoICmp optimiza-
tion attempts to rewrite the condition as a branch predicate
because x == 2 || x == 3 can be optimized using bit
operations, rewriting Figure 5a into Figure 5b. However,
the FoldValueComparisonIntoPredecessors opti-
mization converts this code back into a switch statement
to reduce the number of comparison operations, turning
the CFG back to Figure 5a. As a result, a fixed point is
never reached, creating an infinite loop. This bug is hard
to trigger since the bug can only be triggered when the
switch in Figure 5b has exactly two destinations (BB2 and
BB3), and the switch conditions are consecutive, enabling the
TurnSwitchRangeIntoICmp optimization. This combi-
nation is unlikely to be created during manual testing, and can
only happen through the interaction of two largely unrelated
pieces of code. Yet, we are able to discover this catastrophic
combination through our CFG mutation strategy in a time
frame amenable to run fuzzing on every nightly build with
little human intervention.



We are working closely with the LLVM community to fix
the bugs discovered by IRFuzzer. 57 bugs were fixed, five of
which were back ported to LLVM 15 as security patches. The
developers confirmed that all the bugs that we reported and
they fixed had been introduced prior to LLVM 15. Despite
heaving testing, they remained in LLVM 15 until IRFuzzer
discovered them. This demonstrates that specialized fuzzing
for compiler backend is necessary, and it provides actionable
insight to developers.

3) Accuracy: IRFuzzer guarantees to generate valid LLVM
IR. Since IR is the input to backends, a robust backend should
take any valid IR without crashing, so any crash indicates
either a bug or an incomplete feature in the backend. IRFuzzer
found 78 bugs, all of which we confirmed and reported to
the developers. Of these bugs, 57 have been fixed, and five
bugs were back-ported as security patches. This shows that
the developers agree that these are true bugs regardless of
whether C programs corresponding to the IR exist.

We can answer RQ4 now. In total, IRFuzzer found 78 new
bugs. All have been confirmed, 57 have been fixed, and five
have been back ported to LLVM 15 as security patches. All
these bugs were found only by IRFuzzer and not by any of
the baseline fuzzers. These bugs contain six compiler hangs,
ten memory errors, and 22 assertion failures. We also found
15 logic errors and 22 missing patterns in the matcher table.

VI. RELATED WORK

Prior work has focused on compiler testing [46–48]. One
popular approach is to generate inputs for compilers to com-
pile. Purdom[49] generates program based on context free
grammar. Superion[50] and Nautilus[51] also relies on context
free grammar for fuzzing. However, context free grammar
based methods cannot generate semantically meaningful pro-
grams. These efforts are effective in testing frontend parsers,
but cannot reach the backends effectively.

While many fuzzers are testing the frontend of the compiler
using grammar based method [52], some work also tests the
correctness of middle-end [2, 53–55]. To the best of our
knowledge, IRFuzzer is the first one to verify the compiler
backend using an architecture independent approach.

Some work does end-to-end tests using high-level program-
ming languages. CSmith [4], YARPGen [5], and Grayc [13]
generate C and C++ programs. AI has also been used for
program generate for the purpose of compiler testing [56–58].
However, end-to-end testing implies that there is a need to
create a generator for every language, like JavaScript [59],
Rust [60], and Java [61–63]. POLYGLOT[64] introduced a
language-free IR and mutator based on it. Most fuzzers have
no feedback from the compiler. Even though Grayc [13]
introduced branch coverage feedback, it was unable to trigger
backend bugs due to language limitations and compiler opti-
mizations. Instead of directly generating a program, Equiva-
lence Modulo Inputs [6, 65] mutates an existing C program to
preserve its semantics. Therefore, the program before and after
mutation should have the same behavior. Combining CSmith
and EMI, Lidbury et al. mutate program to test OpenCL

compiler [66]. However, the language limits these work, since
the generator cannot help when the language frontend cannot
exercise a feature in the compiler.

Formal verification is another valuable part of compiler
verification [67]. Verasco [8] is a formally verified C analyzer.
CompCert [68] is a compiler for a subset of C that is formally
verified. There is work that verifies other languages, like
Rust [69] and Lustre [9]. However, formal verification cannot
scale to large compilers like LLVM, therefore it has a limited
impact in the community.

There is also work that considered generating a valid
intermediate representation for testing purposes. FuzzMutate
directly generates LLVM IR [12]. However, FuzzMutate has
no feedback unless combined with fuzzers like AFL++ [10]
or libFuzzer [14]. Some work focus on testing of a specific
compiler [70, 71]. Tzer focuses on IR mutation in the context
of a tensor compiler [71]. However, Tzer relies on LLVM’s
Coverage Sanitizer that only tracks code coverage. Similar
to IRFuzzer’s approach, ClassMing directly mutates on Java
byte code [72]. Neither Tzer nor ClassMing designed a feed-
back approach, except for branch coverage. However, as we
demonstrate in Section V-C, a customized feedback metric
can greatly help the fuzzer to reach deeper into the code base.
With the development of large language models (LLM), it
has been used more and more in fuzzing and code generation
[73–76]. However, LLM doesn’t guarantee the correctness of
input like IRFuzzer does.

VII. CONCLUSION

We described IRFuzzer, a fuzzer specializing in fuzzing
LLVM instruction selection. To generate semantically and
syntactically correct inputs, we identified the challenges in IR
generation that did not exist in high-level language generation.
We created a mutator that maintained semantic correctness
by splitting blocks and inserting a sCFG in between. Then,
we ensured that the IR instructions that we inserted were
syntactically correct using a descriptive language to model
all IR instructions. Therefore, the IR program that IRFuzzer
generated could always be compiled by the backend. We
proposed a new metric to track the coverage of the matcher
table and decoded the coverage table to guide mutation.

Our evaluation shows that IRFuzzer outperformed exist-
ing backend and end-to-end state-of-the-art fuzzers. IRFuzzer
achieved higher matcher table coverage on all the LLVM
backend architectures. IRFuzzer is also efficient enough to
become part of the development process.

IRFuzzer identified 78 new, confirmed bugs in upstream
LLVM code. Upon receiving our bug report, the developers
have fixed 57 bugs and back-ported five fixes to LLVM 15.
This demonstrates that IRFuzzer is effective in finding bugs
in LLVM backend and provides useful, actionable insights to
LLVM developers. Our experience shows that there are fertile
opportunities for specialized fuzzing despite popular end-to-
end compiler testing.
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[29] Sebastian Österlund et al. “ParmeSan: Sanitizer-guided
Greybox Fuzzing”. In: USENIX Security. 2020.

[30] Yuyang Rong, Peng Chen, and Hao Chen. “Integrity:
Finding Integer Errors by Targeted Fuzzing”. In: Se-
curity and Privacy in Communication Networks (Se-
cureComm). Springer. 2020.

[31] Dae R. Jeong et al. “Razzer: Finding Kernel Race Bugs
through Fuzzing”. In: Security and Privacy. 2019.

[32] Peng Chen et al. “HOPPER: Interpretative Fuzzing for
Libraries”. In: ACM Conference on Computer and Com-
munications Security (CCS). Copenhagen, Denmark,
2023.

[33] Yunlong Lyu et al. “Prompt Fuzzing for Fuzz Driver
Generation”. In: ACM Conference on Computer and
Communications Security (CCS). Salt Lake City, UT,
USA, 2024.

[34] Cornelius Aschermann et al. “REDQUEEN: Fuzzing
with Input-to-State Correspondence.” In: NDSS. 2019.

[35] Dongdong She et al. “NEUZZ: Efficient fuzzing with
neural program smoothing”. In: Security and Privacy.
IEEE. 2019.

[36] Peng Chen and Hao Chen. “Angora: Efficient Fuzzing
by Principled Search”. In: Security and Privacy. 2018.

[37] Peng Chen, Jianzhong Liu, and Hao Chen. “Ma-
tryoshka: Fuzzing Deeply Nested Branches”. In: ACM
Conference on Computer and Communications Security
(CCS). 2019.

[38] Mingyuan Wu et al. “One Fuzzing Strategy to Rule
Them All”. In: ICSE. 2022.

https://llvm.org/docs/FuzzingLLVM.html
https://llvm.org/docs/FuzzingLLVM.html
https://llvm.org/devmtg/2017-03/assets/slides/adventures_in_fuzzing_instruction_selection.pdf
https://llvm.org/devmtg/2017-03/assets/slides/adventures_in_fuzzing_instruction_selection.pdf
https://github.com/rust-lang/rust/issues/9117
https://llvm.org/docs/CodeGenerator.html
https://llvm.org/docs/CodeGenerator.html
https://llvm.org/docs/GlobalISel/index.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1109/TSE.2017.2785841


[39] Yuyang Rong et al. “Valkyrie: Improving Fuzzing Per-
formance Through Deterministic Techniques”. In: In-
ternational Conference on Software Quality, Reliability,
and Security (QRS). 2022.

[40] Jianyu Zhao et al. “Understanding Programs by Ex-
ploiting (Fuzzing) Test Cases”. In: Findings of the
Association for Computational Linguistics (ACL). 2023.

[41] TableGen Overview. https://llvm.org/docs/TableGen/.
[Online; accessed 15-Mar-2024].

[42] George Klees et al. “Evaluating Fuzz Testing”. In:
Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’18.
Toronto, Canada, 2018, pp. 2123–2138.

[43] Anonymous. IRFuzzer artifacts. Sept. 2023. DOI: 10 .
5281/zenodo.13139630.

[44] Karine Even-Mendoza et al. Artifact of GrayC. Ver-
sion GrayC-ISSTA-2023-V1.0. July 2023. DOI: 10 .
5281/zenodo.7978251.

[45] Peter Rong. Using ZExt for extractelement indices.
https : / / reviews. llvm.org/D132978. [Online; accessed
15-Mar-2024]. 2022.

[46] Junjie Chen et al. “A Survey of Compiler Testing”. In:
ACM Comput. Surv. (2020).

[47] Haoyang Ma. A Survey of Modern Compiler Fuzzing.
2023. arXiv: 2306.06884 [cs.SE].
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