Skip to content

Commit 41a98c6

Browse files
committed
WIP: Initial setup for GGUF writer configuration
- Created the `initialize_writer` function to set up GGUF writer with model metadata - Included validation for file type and architecture - Default hyperparameter values sourced from MixFormerSequentialConfig - Function annotations and documentation added for clarity - Prepared groundwork for MixFormer architecture integration
1 parent 629f917 commit 41a98c6

File tree

2 files changed

+305
-0
lines changed

2 files changed

+305
-0
lines changed

convert-phi-1-to-gguf.py

Lines changed: 300 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,300 @@
1+
#!/usr/bin/env python3
2+
from __future__ import annotations
3+
4+
import argparse
5+
import json
6+
import logging
7+
import os
8+
import struct
9+
import sys
10+
from json import JSONDecodeError
11+
from pathlib import Path
12+
from typing import Any, Dict, List
13+
14+
import numpy as np
15+
import torch
16+
from transformers import AutoTokenizer
17+
18+
if "NO_LOCAL_GGUF" not in os.environ:
19+
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
20+
import gguf
21+
22+
# Configure logging
23+
logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
24+
25+
26+
def check_required_files(directory: Path, required_files: List[str]) -> None:
27+
missing_files = [
28+
file_name
29+
for file_name in required_files
30+
if not (directory / file_name).exists()
31+
]
32+
if missing_files:
33+
raise FileNotFoundError(f"Missing required files: {', '.join(missing_files)}")
34+
35+
36+
def get_json_map(file_path: Path) -> dict[str, Any]:
37+
with open(file_path, "r") as source_file:
38+
try:
39+
return json.load(source_file)
40+
except JSONDecodeError:
41+
raise ValueError(f"Failed to decode {file_path}")
42+
43+
44+
def load_hyper_params(directory: Path, architecture: str) -> dict:
45+
config_path = directory / "config.json"
46+
hparams = get_json_map(config_path)
47+
48+
# Ensure the expected architecture is present
49+
expected_architecture = architecture
50+
if hparams["architectures"][0] != expected_architecture:
51+
raise ValueError(
52+
f"Model architecture not supported: {hparams['architectures'][0]}"
53+
)
54+
55+
return hparams
56+
57+
58+
def initialize_writer(
59+
fname_out: str, architecture: str, ftype: str, hparams: Dict[str, Any]
60+
) -> gguf.GGUFWriter:
61+
"""
62+
Initializes the GGUF writer with the model metadata.
63+
64+
:param fname_out: The filename for the output model.
65+
:param architecture: The model architecture enum name.
66+
:param ftype: The data type for the model file (e.g., 'F32', 'F16').
67+
:param hparams: The hyperparameters loaded from the model's config file.
68+
:return: An initialized GGUF writer object.
69+
"""
70+
# Validate the architecture name
71+
if not hasattr(gguf.MODEL_ARCH, architecture):
72+
raise ValueError(f"Unsupported architecture: {architecture}")
73+
ARCH = getattr(gguf.MODEL_ARCH, architecture)
74+
75+
# Validate the file type
76+
if ftype not in ['F32', 'F16']:
77+
raise ValueError(f"Unsupported file type: {ftype}")
78+
79+
# Initialize the GGUF writer
80+
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
81+
82+
# Set the writer with the hyperparameters from MixFormerSequentialConfig
83+
gguf_writer.add_name(gguf.MODEL_ARCH_NAMES[ARCH])
84+
gguf_writer.add_context_length(hparams.get("n_positions", 2048))
85+
gguf_writer.add_embedding_length(hparams.get("n_embd", 1024))
86+
n_inner = hparams.get("n_inner", 4 * hparams.get("n_embd", 1024))
87+
gguf_writer.add_feed_forward_length(n_inner)
88+
gguf_writer.add_block_count(hparams.get("n_layer", 20))
89+
gguf_writer.add_head_count(hparams.get("n_head", 16))
90+
n_head_kv = hparams.get("n_head_kv", hparams.get("n_head", 16))
91+
gguf_writer.add_head_count_kv(n_head_kv) # NOTE: arxiv:2203.11082
92+
gguf_writer.add_layer_norm_eps(hparams.get("layer_norm_epsilon", 1e-5))
93+
94+
# Add the file type
95+
gguf_writer.add_file_type(ftype)
96+
97+
return gguf_writer
98+
99+
100+
def parse_args() -> argparse.Namespace:
101+
parser = argparse.ArgumentParser(
102+
description="Convert a Phi-1 model to a GGML compatible file"
103+
)
104+
parser.add_argument(
105+
"--vocab-only", action="store_true", help="extract only the vocab"
106+
)
107+
parser.add_argument(
108+
"--outfile", type=Path, help="path to write to; default: based on input"
109+
)
110+
parser.add_argument(
111+
"model",
112+
type=Path,
113+
help="directory containing model file, or model file itself (*.bin)",
114+
)
115+
parser.add_argument(
116+
"--ftype",
117+
type=str,
118+
choices=["f32", "f16"],
119+
default="f16", # NOTE: Phi-1 is dtype float16.
120+
help="output format - use 'float32' for 32-bit tensors, 'float16' for 16-bit tensors",
121+
)
122+
return parser.parse_args()
123+
124+
125+
def main():
126+
try:
127+
args = parse_args()
128+
129+
ftype = args.ftype
130+
directory = args.model # Renamed for clarity
131+
132+
if not directory.is_dir():
133+
raise NotADirectoryError(f"{directory} is not a directory.")
134+
135+
required_files = ["pytorch_model.bin", "config.json", "tokenizer.json"]
136+
check_required_files(directory, required_files)
137+
138+
# Reference the actual model file
139+
model = directory / "pytorch_model.bin"
140+
if not model.exists():
141+
raise FileNotFoundError(f"Model file {model} does not exist.")
142+
143+
hparams = load_hyper_params(directory, "MixFormerSequentialForCausalLM")
144+
architecture = hparams["architectures"][0]
145+
146+
if args.outfile is not None:
147+
fname_out = args.outfile
148+
else:
149+
fname_out = directory / f"ggml-model-{ftype}.gguf"
150+
151+
if not fname_out.parent.exists():
152+
logging.warning(f"Output directory {fname_out.parent} does not exist.")
153+
154+
gguf_writer = initialize_writer(fname_out, architecture, ftype, hparams)
155+
156+
# Proceed with the model processing using the 'model' path
157+
# ... [rest of your existing code] ...
158+
159+
except Exception as e:
160+
logging.error(e)
161+
sys.exit(1)
162+
163+
164+
if __name__ == "__main__":
165+
main()
166+
167+
168+
# # TOKENIZATION
169+
170+
# print("gguf: get tokenizer metadata")
171+
172+
# tokens: list[bytearray] = []
173+
# scores: list[float] = []
174+
# toktypes: list[int] = []
175+
176+
# # gpt2 tokenizer
177+
# gguf_writer.add_tokenizer_model("gpt2")
178+
179+
# print("gguf: get gpt2 tokenizer vocab")
180+
181+
# # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
182+
# tokenizer = AutoTokenizer.from_pretrained(dir_model)
183+
184+
# # The number of tokens in tokenizer.json can differ from the expected vocab size.
185+
# # This causes downstream issues with mismatched tensor sizes when running the inference
186+
# vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
187+
# assert max(tokenizer.vocab.values()) < vocab_size
188+
189+
# added_vocab = tokenizer.get_added_vocab()
190+
# reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
191+
192+
# for i in range(vocab_size):
193+
# if i not in reverse_vocab:
194+
# tokens.append(f"[PAD{i}]")
195+
# toktypes.append(gguf.TokenType.USER_DEFINED)
196+
# elif reverse_vocab[i] in added_vocab:
197+
# tokens.append(reverse_vocab[i])
198+
# if tokenizer.added_tokens_decoder[i].special:
199+
# toktypes.append(gguf.TokenType.CONTROL)
200+
# else:
201+
# toktypes.append(gguf.TokenType.USER_DEFINED)
202+
# else:
203+
# tokens.append(reverse_vocab[i])
204+
# toktypes.append(gguf.TokenType.NORMAL)
205+
206+
# gguf_writer.add_token_list(tokens)
207+
# gguf_writer.add_token_types(toktypes)
208+
# special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab=len(tokens))
209+
# special_vocab.add_to_gguf(gguf_writer)
210+
211+
# # TENSORS
212+
213+
# tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
214+
215+
# # params for qkv transform
216+
# n_head = hparams["n_head"]
217+
# n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
218+
219+
# head_dim = hparams["n_embd"] // n_head
220+
221+
# # tensor info
222+
# print("gguf: get tensor metadata")
223+
224+
# if num_parts == 0:
225+
# part_names = iter(("pytorch_model.bin",))
226+
# else:
227+
# part_names = (
228+
# f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
229+
# )
230+
231+
# for part_name in part_names:
232+
# if args.vocab_only:
233+
# break
234+
# print("gguf: loading model part '" + part_name + "'")
235+
# model_part = torch.load(dir_model / part_name, map_location="cpu")
236+
237+
# for name in model_part.keys():
238+
# data = model_part[name]
239+
240+
# old_dtype = data.dtype
241+
242+
# # convert any unsupported data types to float32
243+
# if data.dtype != torch.float16 and data.dtype != torch.float32:
244+
# data = data.to(torch.float32)
245+
246+
# data = data.squeeze().numpy()
247+
248+
# # map tensor names
249+
# new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
250+
# if new_name is None:
251+
# print("Can not map tensor '" + name + "'")
252+
# sys.exit()
253+
254+
# n_dims = len(data.shape)
255+
# data_dtype = data.dtype
256+
257+
# # if f32 desired, convert any float16 to float32
258+
# if ftype == 0 and data_dtype == np.float16:
259+
# data = data.astype(np.float32)
260+
261+
# # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
262+
# if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
263+
# data = data.astype(np.float32)
264+
265+
# # if f16 desired, convert any float32 2-dim weight tensors to float16
266+
# if (
267+
# ftype == 1
268+
# and data_dtype == np.float32
269+
# and name.endswith(".weight")
270+
# and n_dims == 2
271+
# ):
272+
# data = data.astype(np.float16)
273+
274+
# print(
275+
# name,
276+
# "=>",
277+
# new_name
278+
# + ", shape = "
279+
# + str(data.shape)
280+
# + ", "
281+
# + str(old_dtype)
282+
# + " --> "
283+
# + str(data.dtype),
284+
# )
285+
286+
# gguf_writer.add_tensor(new_name, data)
287+
288+
289+
# print("gguf: write header")
290+
# gguf_writer.write_header_to_file()
291+
# print("gguf: write metadata")
292+
# gguf_writer.write_kv_data_to_file()
293+
# if not args.vocab_only:
294+
# print("gguf: write tensors")
295+
# gguf_writer.write_tensors_to_file()
296+
297+
# gguf_writer.close()
298+
299+
# print(f"gguf: model successfully exported to '{fname_out}'")
300+
# print("")

gguf-py/gguf/gguf.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -93,6 +93,7 @@ class MODEL_ARCH(IntEnum):
9393
REFACT : int = auto()
9494
BERT : int = auto()
9595
BLOOM : int = auto()
96+
PHI_1 : int = auto()
9697

9798

9899
class MODEL_TENSOR(IntEnum):
@@ -132,6 +133,7 @@ class MODEL_TENSOR(IntEnum):
132133
MODEL_ARCH.REFACT: "refact",
133134
MODEL_ARCH.BERT: "bert",
134135
MODEL_ARCH.BLOOM: "bloom",
136+
MODEL_ARCH.PHI_1: "phi-1",
135137
}
136138

137139
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -302,6 +304,9 @@ class MODEL_TENSOR(IntEnum):
302304
MODEL_TENSOR.FFN_DOWN,
303305
MODEL_TENSOR.FFN_UP,
304306
],
307+
MODEL_ARCH.PHI_1: [
308+
# TODO
309+
],
305310
MODEL_ARCH.GPT2: [
306311
# TODO
307312
],

0 commit comments

Comments
 (0)