You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/blas/ext/base/README.md
+3-3Lines changed: 3 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -124,10 +124,10 @@ var ns = extblas;
124
124
- <spanclass="signature">[`sapx( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapx]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each element in a single-precision floating-point strided array.</span>
125
125
- <spanclass="signature">[`sapxsum( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsum]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each single-precision floating-point strided array element and compute the sum.</span>
126
126
- <spanclass="signature">[`sapxsumkbn( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsumkbn]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each single-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.</span>
127
-
- <spanclass="signature">[`sapxsumkbn2( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.</span>
127
+
- <spanclass="signature">[`sapxsumkbn2( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">add a scalar constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.</span>
128
128
- <spanclass="signature">[`sapxsumors( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumors]</span><spanclass="delimiter">: </span><spanclass="description">add a scalar constant to each single-precision floating-point strided array element and compute the sum using ordinary recursive summation.</span>
129
-
- <spanclass="signature">[`sapxsumpw( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsumpw]</span><spanclass="delimiter">: </span><spanclass="description">add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation.</span>
130
-
- <spanclass="signature">[`sasumpw( N, x, stride )`][@stdlib/blas/ext/base/sasumpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of absolute values (_L1_ norm) of single-precision floating-point strided array elements using pairwise summation.</span>
129
+
- <spanclass="signature">[`sapxsumpw( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumpw]</span><spanclass="delimiter">: </span><spanclass="description">add a scalar constant to each single-precision floating-point strided array element and compute the sum using pairwise summation.</span>
130
+
- <spanclass="signature">[`sasumpw( N, x, strideX )`][@stdlib/blas/ext/base/sasumpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the sum of absolute values (_L1_ norm) of single-precision floating-point strided array elements using pairwise summation.</span>
131
131
- <spanclass="signature">[`scusum( N, sum, x, strideX, y, strideY )`][@stdlib/blas/ext/base/scusum]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative sum of single-precision floating-point strided array elements.</span>
132
132
- <spanclass="signature">[`scusumkbn( N, sum, x, strideX, y, strideY )`][@stdlib/blas/ext/base/scusumkbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.</span>
133
133
- <spanclass="signature">[`scusumkbn2( N, sum, x, strideX, y, strideY )`][@stdlib/blas/ext/base/scusumkbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+9-9Lines changed: 9 additions & 9 deletions
Original file line number
Diff line number
Diff line change
@@ -70,13 +70,13 @@ The namespace contains the following statistical functions:
70
70
- <spanclass="signature">[`dmaxabssorted( N, x, strideX )`][@stdlib/stats/base/dmaxabssorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a sorted double-precision floating-point strided array.</span>
71
71
- <spanclass="signature">[`dmaxsorted( N, x, strideX )`][@stdlib/stats/base/dmaxsorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a sorted double-precision floating-point strided array.</span>
72
72
- <spanclass="signature">[`dmean( N, x, stride )`][@stdlib/stats/base/dmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array.</span>
73
-
- <spanclass="signature">[`dmeankbn( N, x, stride )`][@stdlib/stats/base/dmeankbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
73
+
- <spanclass="signature">[`dmeankbn( N, x, strideX )`][@stdlib/stats/base/dmeankbn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
74
74
- <spanclass="signature">[`dmeankbn2( N, x, strideX )`][@stdlib/stats/base/dmeankbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
75
-
- <spanclass="signature">[`dmeanli( N, x, stride )`][@stdlib/stats/base/dmeanli]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
75
+
- <spanclass="signature">[`dmeanli( N, x, strideX )`][@stdlib/stats/base/dmeanli]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
76
76
- <spanclass="signature">[`dmeanlipw( N, x, stride )`][@stdlib/stats/base/dmeanlipw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
77
-
- <spanclass="signature">[`dmeanors( N, x, stride )`][@stdlib/stats/base/dmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.</span>
77
+
- <spanclass="signature">[`dmeanors( N, x, strideX )`][@stdlib/stats/base/dmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.</span>
78
78
- <spanclass="signature">[`dmeanpn( N, x, stride )`][@stdlib/stats/base/dmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.</span>
79
-
- <spanclass="signature">[`dmeanpw( N, x, stride )`][@stdlib/stats/base/dmeanpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.</span>
79
+
- <spanclass="signature">[`dmeanpw( N, x, strideX )`][@stdlib/stats/base/dmeanpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.</span>
80
80
- <spanclass="signature">[`dmeanstdev( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and standard deviation of a double-precision floating-point strided array.</span>
81
81
- <spanclass="signature">[`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
82
82
- <spanclass="signature">[`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and variance of a double-precision floating-point strided array.</span>
@@ -117,11 +117,11 @@ The namespace contains the following statistical functions:
117
117
- <spanclass="signature">[`dnanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/dnanvarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
118
118
- <spanclass="signature">[`drange( N, x, strideX )`][@stdlib/stats/base/drange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a double-precision floating-point strided array.</span>
119
119
- <spanclass="signature">[`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
120
-
- <spanclass="signature">[`dsemch( N, correction, x, stride )`][@stdlib/stats/base/dsemch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
120
+
- <spanclass="signature">[`dsemch( N, correction, x, strideX )`][@stdlib/stats/base/dsemch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
121
121
- <spanclass="signature">[`dsempn( N, correction, x, stride )`][@stdlib/stats/base/dsempn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.</span>
122
-
- <spanclass="signature">[`dsemtk( N, correction, x, stride )`][@stdlib/stats/base/dsemtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
122
+
- <spanclass="signature">[`dsemtk( N, correction, x, strideX )`][@stdlib/stats/base/dsemtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
123
123
- <spanclass="signature">[`dsemwd( N, correction, x, strideX )`][@stdlib/stats/base/dsemwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.</span>
124
-
- <spanclass="signature">[`dsemyc( N, correction, x, stride )`][@stdlib/stats/base/dsemyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
124
+
- <spanclass="signature">[`dsemyc( N, correction, x, strideX )`][@stdlib/stats/base/dsemyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
125
125
- <spanclass="signature">[`dsmean( N, x, stride )`][@stdlib/stats/base/dsmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
126
126
- <spanclass="signature">[`dsmeanors( N, x, stride )`][@stdlib/stats/base/dsmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.</span>
127
127
- <spanclass="signature">[`dsmeanpn( N, x, stride )`][@stdlib/stats/base/dsmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.</span>
@@ -201,7 +201,7 @@ The namespace contains the following statistical functions:
201
201
- <spanclass="signature">[`scumin( N, x, strideX, y, strideY )`][@stdlib/stats/base/scumin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative minimum of single-precision floating-point strided array elements.</span>
202
202
- <spanclass="signature">[`scuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/scuminabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative minimum absolute value of single-precision floating-point strided array elements.</span>
203
203
- <spanclass="signature">[`sdsmean( N, x, stride )`][@stdlib/stats/base/sdsmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation.</span>
204
-
- <spanclass="signature">[`sdsmeanors( N, x, stride )`][@stdlib/stats/base/sdsmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.</span>
204
+
- <spanclass="signature">[`sdsmeanors( N, x, strideX )`][@stdlib/stats/base/sdsmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.</span>
205
205
- <spanclass="signature">[`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation.</span>
206
206
- <spanclass="signature">[`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation.</span>
207
207
- <spanclass="signature">[`smax( N, x, strideX )`][@stdlib/stats/base/smax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a single-precision floating-point strided array.</span>
@@ -267,7 +267,7 @@ The namespace contains the following statistical functions:
267
267
- <spanclass="signature">[`svariancepn( N, correction, x, stride )`][@stdlib/stats/base/svariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.</span>
268
268
- <spanclass="signature">[`svariancetk( N, correction, x, strideX )`][@stdlib/stats/base/svariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.</span>
269
269
- <spanclass="signature">[`svariancewd( N, correction, x, stride )`][@stdlib/stats/base/svariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using Welford's algorithm.</span>
270
-
- <spanclass="signature">[`svarianceyc( N, correction, x, stride )`][@stdlib/stats/base/svarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
270
+
- <spanclass="signature">[`svarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/svarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
271
271
- <spanclass="signature">[`variance( N, correction, x, stride )`][@stdlib/stats/base/variance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array.</span>
272
272
- <spanclass="signature">[`variancech( N, correction, x, stride )`][@stdlib/stats/base/variancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array using a one-pass trial mean algorithm.</span>
273
273
- <spanclass="signature">[`variancepn( N, correction, x, stride )`][@stdlib/stats/base/variancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array using a two-pass algorithm.</span>
0 commit comments