@@ -249,10 +249,10 @@ def demazure_subcrystal(self, element, reduced_word, only_support=True):
249249 sage: K = crystals.KirillovReshetikhin(['A',1,1], 1, 2)
250250 sage: mg = K.module_generator()
251251 sage: S = K.demazure_subcrystal(mg, [1])
252- sage: S.digraph().edges()
252+ sage: S.digraph().edges(sort=True )
253253 [([[1, 1]], [[1, 2]], 1), ([[1, 2]], [[2, 2]], 1)]
254254 sage: S = K.demazure_subcrystal(mg, [1], only_support=False)
255- sage: S.digraph().edges()
255+ sage: S.digraph().edges(sort=True )
256256 [([[1, 1]], [[1, 2]], 1),
257257 ([[1, 2]], [[1, 1]], 0),
258258 ([[1, 2]], [[2, 2]], 1),
@@ -382,12 +382,12 @@ def dual_equivalence_graph(self, X=None, index_set=None, directed=True):
382382
383383 sage: T = crystals.Tableaux(['A',3], shape=[2,2])
384384 sage: G = T.dual_equivalence_graph()
385- sage: sorted( G.edges() )
385+ sage: G.edges(sort=True )
386386 [([[1, 3], [2, 4]], [[1, 2], [3, 4]], 2),
387387 ([[1, 2], [3, 4]], [[1, 3], [2, 4]], 3)]
388388 sage: T = crystals.Tableaux(['A',4], shape=[3,2])
389389 sage: G = T.dual_equivalence_graph()
390- sage: sorted( G.edges() )
390+ sage: G.edges(sort=True )
391391 [([[1, 3, 5], [2, 4]], [[1, 3, 4], [2, 5]], 4),
392392 ([[1, 3, 5], [2, 4]], [[1, 2, 5], [3, 4]], 2),
393393 ([[1, 3, 4], [2, 5]], [[1, 2, 4], [3, 5]], 2),
@@ -399,18 +399,18 @@ def dual_equivalence_graph(self, X=None, index_set=None, directed=True):
399399 sage: G = T.dual_equivalence_graph(index_set=[1,2,3])
400400 sage: G.vertices(sort=True)
401401 [[[1, 3, 4], [2]], [[1, 2, 4], [3]], [[1, 2, 3], [4]]]
402- sage: G.edges()
402+ sage: G.edges(sort=True )
403403 [([[1, 3, 4], [2]], [[1, 2, 4], [3]], 2),
404404 ([[1, 2, 4], [3]], [[1, 2, 3], [4]], 3)]
405405
406406 TESTS::
407407
408408 sage: T = crystals.Tableaux(['A',4], shape=[3,1])
409409 sage: G = T.dual_equivalence_graph(index_set=[2,3])
410- sage: sorted( G.edges() )
410+ sage: G.edges(sort=True )
411411 [([[1, 2, 4], [3]], [[1, 2, 3], [4]], 3),
412412 ([[2, 4, 5], [3]], [[2, 3, 5], [4]], 3)]
413- sage: sorted( G.vertices(sort=True) )
413+ sage: G.vertices(sort=True)
414414 [[[1, 3, 4], [2]],
415415 [[1, 2, 4], [3]],
416416 [[2, 4, 5], [3]],
@@ -831,12 +831,12 @@ def dual_equivalence_class(self, index_set=None):
831831
832832 sage: T = crystals.Tableaux(['A',3], shape=[2,2])
833833 sage: G = T(2,1,4,3).dual_equivalence_class()
834- sage: sorted( G.edges() )
834+ sage: G.edges(sort=True )
835835 [([[1, 3], [2, 4]], [[1, 2], [3, 4]], 2),
836836 ([[1, 3], [2, 4]], [[1, 2], [3, 4]], 3)]
837837 sage: T = crystals.Tableaux(['A',4], shape=[3,2])
838838 sage: G = T(2,1,4,3,5).dual_equivalence_class()
839- sage: sorted( G.edges() )
839+ sage: G.edges(sort=True )
840840 [([[1, 3, 5], [2, 4]], [[1, 3, 4], [2, 5]], 4),
841841 ([[1, 3, 5], [2, 4]], [[1, 2, 5], [3, 4]], 2),
842842 ([[1, 3, 5], [2, 4]], [[1, 2, 5], [3, 4]], 3),
0 commit comments