You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In a case like this:
```
mod a {
mod b {
#[cfg_attr(unix, inline)]
fn f() {
#[cfg_attr(linux, inline)]
fn g1() {}
#[cfg_attr(linux, inline)]
fn g2() {}
}
}
}
```
We currently end up with the following replacement ranges.
- The lazy tokens for `f` has replacement ranges for `g1` and `g2`.
- The lazy tokens for `a` has replacement ranges for `f`, `g1`, and
`g2`.
I.e. the replacement ranges for `g1` and `g2` are duplicated. In
general, replacement ranges for inner AST nodes are duplicated up the
chain for each nested `collect_tokens` call. And the code that processes
the replacements is careful about the ordering in which the replacements
are applied, to ensure that inner replacements are applied before outer
replacements.
But all of this is unnecessary. If you apply an inner replacement and
then an outer replacement, the outer replacement completely overwrites
the inner replacement.
This commit avoids the duplication by removing replacements from
`self.capture_state.parser_replacements` when they are used. (The effect
on the example above is that the lazy tokesn for `a` no longer include
replacement ranges for `g1` and `g2`.) This eliminates the possibility
of nested replacements on individual AST nodes, which avoids the need
for careful ordering of replacements.
0 commit comments