|
| 1 | +// Copyright 2013 The Rust Project Developers. See the COPYRIGHT |
| 2 | +// file at the top-level directory of this distribution and at |
| 3 | +// http://rust-lang.org/COPYRIGHT. |
| 4 | +// |
| 5 | +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 6 | +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 7 | +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 8 | +// option. This file may not be copied, modified, or distributed |
| 9 | +// except according to those terms. |
| 10 | + |
| 11 | +//! Sampling from random distributions |
| 12 | +
|
| 13 | +// Some implementations use the Ziggurat method |
| 14 | +// https://en.wikipedia.org/wiki/Ziggurat_algorithm |
| 15 | +// |
| 16 | +// The version used here is ZIGNOR [Doornik 2005, "An Improved |
| 17 | +// Ziggurat Method to Generate Normal Random Samples"] which is slower |
| 18 | +// (about double, it generates an extra random number) than the |
| 19 | +// canonical version [Marsaglia & Tsang 2000, "The Ziggurat Method for |
| 20 | +// Generating Random Variables"], but more robust. If one wanted, one |
| 21 | +// could implement VIZIGNOR the ZIGNOR paper for more speed. |
| 22 | + |
| 23 | +use prelude::*; |
| 24 | +use rand::{Rng,Rand}; |
| 25 | + |
| 26 | +mod ziggurat_tables; |
| 27 | + |
| 28 | +// inlining should mean there is no performance penalty for this |
| 29 | +#[inline(always)] |
| 30 | +fn ziggurat<R:Rng>(rng: &R, |
| 31 | + center_u: bool, |
| 32 | + X: ziggurat_tables::ZigTable, |
| 33 | + F: ziggurat_tables::ZigTable, |
| 34 | + F_DIFF: ziggurat_tables::ZigTable, |
| 35 | + pdf: &'static fn(f64) -> f64, // probability density function |
| 36 | + zero_case: &'static fn(&R, f64) -> f64) -> f64 { |
| 37 | + loop { |
| 38 | + let u = if center_u {2.0 * rng.gen() - 1.0} else {rng.gen()}; |
| 39 | + let i: uint = rng.gen::<uint>() & 0xff; |
| 40 | + let x = u * X[i]; |
| 41 | + |
| 42 | + let test_x = if center_u {f64::abs(x)} else {x}; |
| 43 | + |
| 44 | + // algebraically equivalent to |u| < X[i+1]/X[i] (or u < X[i+1]/X[i]) |
| 45 | + if test_x < X[i + 1] { |
| 46 | + return x; |
| 47 | + } |
| 48 | + if i == 0 { |
| 49 | + return zero_case(rng, u); |
| 50 | + } |
| 51 | + // algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1 |
| 52 | + if F[i+1] + F_DIFF[i+1] * rng.gen() < pdf(x) { |
| 53 | + return x; |
| 54 | + } |
| 55 | + } |
| 56 | +} |
| 57 | + |
| 58 | +/// A wrapper around an `f64` to generate N(0, 1) random numbers (a.k.a. a |
| 59 | +/// standard normal, or Gaussian). Multiplying the generated values by the |
| 60 | +/// desired standard deviation `sigma` then adding the desired mean `mu` will |
| 61 | +/// give N(mu, sigma^2) distributed random numbers. |
| 62 | +/// |
| 63 | +/// Note that this has to be unwrapped before use as an `f64` (using either |
| 64 | +/// `*` or `cast::transmute` is safe). |
| 65 | +/// |
| 66 | +/// # Example |
| 67 | +/// |
| 68 | +/// ~~~ |
| 69 | +/// use core::rand::distributions::StandardNormal; |
| 70 | +/// |
| 71 | +/// fn main() { |
| 72 | +/// let normal = 2.0 + (*rand::random::<StandardNormal>()) * 3.0; |
| 73 | +/// println(fmt!("%f is from a N(2, 9) distribution", normal)) |
| 74 | +/// } |
| 75 | +/// ~~~ |
| 76 | +pub struct StandardNormal(f64); |
| 77 | + |
| 78 | +impl Rand for StandardNormal { |
| 79 | + fn rand<R:Rng>(rng: &R) -> StandardNormal { |
| 80 | + #[inline(always)] |
| 81 | + fn pdf(x: f64) -> f64 { |
| 82 | + f64::exp((-x*x/2.0) as f64) as f64 |
| 83 | + } |
| 84 | + #[inline(always)] |
| 85 | + fn zero_case<R:Rng>(rng: &R, u: f64) -> f64 { |
| 86 | + // compute a random number in the tail by hand |
| 87 | + |
| 88 | + // strange initial conditions, because the loop is not |
| 89 | + // do-while, so the condition should be true on the first |
| 90 | + // run, they get overwritten anyway (0 < 1, so these are |
| 91 | + // good). |
| 92 | + let mut x = 1.0, y = 0.0; |
| 93 | + |
| 94 | + // XXX infinities? |
| 95 | + while -2.0*y < x * x { |
| 96 | + x = f64::ln(rng.gen()) / ziggurat_tables::ZIG_NORM_R; |
| 97 | + y = f64::ln(rng.gen()); |
| 98 | + } |
| 99 | + if u < 0.0 {x-ziggurat_tables::ZIG_NORM_R} else {ziggurat_tables::ZIG_NORM_R-x} |
| 100 | + } |
| 101 | + |
| 102 | + StandardNormal(ziggurat( |
| 103 | + rng, |
| 104 | + true, // this is symmetric |
| 105 | + &ziggurat_tables::ZIG_NORM_X, |
| 106 | + &ziggurat_tables::ZIG_NORM_F, &ziggurat_tables::ZIG_NORM_F_DIFF, |
| 107 | + pdf, zero_case)) |
| 108 | + } |
| 109 | +} |
| 110 | + |
| 111 | +/// A wrapper around an `f64` to generate Exp(1) random numbers. Dividing by |
| 112 | +/// the desired rate `lambda` will give Exp(lambda) distributed random |
| 113 | +/// numbers. |
| 114 | +/// |
| 115 | +/// Note that this has to be unwrapped before use as an `f64` (using either |
| 116 | +/// `*` or `cast::transmute` is safe). |
| 117 | +/// |
| 118 | +/// # Example |
| 119 | +/// |
| 120 | +/// ~~~ |
| 121 | +/// use core::rand::distributions::Exp1; |
| 122 | +/// |
| 123 | +/// fn main() { |
| 124 | +/// let exp2 = (*rand::random::<Exp1>()) * 0.5; |
| 125 | +/// println(fmt!("%f is from a Exp(2) distribution", exp2)); |
| 126 | +/// } |
| 127 | +/// ~~~ |
| 128 | +pub struct Exp1(f64); |
| 129 | + |
| 130 | +// This could be done via `-f64::ln(rng.gen::<f64>())` but that is slower. |
| 131 | +impl Rand for Exp1 { |
| 132 | + #[inline] |
| 133 | + fn rand<R:Rng>(rng: &R) -> Exp1 { |
| 134 | + #[inline(always)] |
| 135 | + fn pdf(x: f64) -> f64 { |
| 136 | + f64::exp(-x) |
| 137 | + } |
| 138 | + #[inline(always)] |
| 139 | + fn zero_case<R:Rng>(rng: &R, _u: f64) -> f64 { |
| 140 | + ziggurat_tables::ZIG_EXP_R - f64::ln(rng.gen()) |
| 141 | + } |
| 142 | + |
| 143 | + Exp1(ziggurat(rng, false, |
| 144 | + &ziggurat_tables::ZIG_EXP_X, |
| 145 | + &ziggurat_tables::ZIG_EXP_F, &ziggurat_tables::ZIG_EXP_F_DIFF, |
| 146 | + pdf, zero_case)) |
| 147 | + } |
| 148 | +} |
0 commit comments