diff --git a/test/test_backbone_utils.py b/test/test_backbone_utils.py index 60d8f8d167d..a2b2406441e 100644 --- a/test/test_backbone_utils.py +++ b/test/test_backbone_utils.py @@ -183,12 +183,12 @@ def test_forward_backward(self, model_name): out_agg = 0 for node_out in out.values(): if isinstance(node_out, Sequence): - out_agg += sum(o.mean() for o in node_out if o is not None) + out_agg += sum(o.float().mean() for o in node_out if o is not None) elif isinstance(node_out, Mapping): - out_agg += sum(o.mean() for o in node_out.values() if o is not None) + out_agg += sum(o.float().mean() for o in node_out.values() if o is not None) else: # Assume that the only other alternative at this point is a Tensor - out_agg += node_out.mean() + out_agg += node_out.float().mean() out_agg.backward() def test_feature_extraction_methods_equivalence(self): @@ -224,12 +224,12 @@ def test_jit_forward_backward(self, model_name): out_agg = 0 for node_out in fgn_out.values(): if isinstance(node_out, Sequence): - out_agg += sum(o.mean() for o in node_out if o is not None) + out_agg += sum(o.float().mean() for o in node_out if o is not None) elif isinstance(node_out, Mapping): - out_agg += sum(o.mean() for o in node_out.values() if o is not None) + out_agg += sum(o.float().mean() for o in node_out.values() if o is not None) else: # Assume that the only other alternative at this point is a Tensor - out_agg += node_out.mean() + out_agg += node_out.float().mean() out_agg.backward() def test_train_eval(self): @@ -239,7 +239,7 @@ def __init__(self): self.dropout = torch.nn.Dropout(p=1.0) def forward(self, x): - x = x.mean() + x = x.float().mean() x = self.dropout(x) # dropout if self.training: x += 100 # add @@ -330,4 +330,4 @@ def forward(self, x): # Check forward out = model(self.inp) # And backward - out["leaf_module"].mean().backward() + out["leaf_module"].float().mean().backward()