From 66b1f7d62e88a678c582363e479d3367e9869b6a Mon Sep 17 00:00:00 2001 From: Marat Dukhan Date: Sat, 11 Feb 2017 15:22:31 -0500 Subject: [PATCH] Document SqueezeNet models in the README --- README.rst | 9 +++++++-- 1 file changed, 7 insertions(+), 2 deletions(-) diff --git a/README.rst b/README.rst index ef929d83175..13038283597 100644 --- a/README.rst +++ b/README.rst @@ -199,6 +199,8 @@ architectures: VGG-19 (with and without batch normalization) - `ResNet `__: ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152 +- `SqueezeNet `__: SqueezeNet 1.0, and + SqueezeNet 1.1 You can construct a model with random weights by calling its constructor: @@ -208,9 +210,11 @@ constructor: import torchvision.models as models resnet18 = models.resnet18() alexnet = models.alexnet() + vgg16 = model.vgg16() + squeezenet = models.squeezenet1_0() -We provide pre-trained models for the ResNet variants and AlexNet, using -the PyTorch `model zoo `__. +We provide pre-trained models for the ResNet variants, SqueezeNet 1.0 and 1.1, +and AlexNet, using the PyTorch `model zoo `__. These can be constructed by passing ``pretrained=True``: .. code:: python @@ -218,6 +222,7 @@ These can be constructed by passing ``pretrained=True``: import torchvision.models as models resnet18 = models.resnet18(pretrained=True) alexnet = models.alexnet(pretrained=True) + squeezenet = models.squeezenet1_0(pretrained=True) Transforms