diff --git a/test/test_transforms.py b/test/test_transforms.py index fd4869e20a3..e822e93c3a1 100644 --- a/test/test_transforms.py +++ b/test/test_transforms.py @@ -1,21 +1,20 @@ import torch import torchvision.transforms as transforms -import torchvision.datasets as datasets -import numpy as np import unittest import random + class Tester(unittest.TestCase): def test_crop(self): height = random.randint(10, 32) * 2 width = random.randint(10, 32) * 2 oheight = random.randint(5, (height - 2) / 2) * 2 - owidth = random.randint(5, (width - 2) / 2) * 2 - + owidth = random.randint(5, (width - 2) / 2) * 2 + img = torch.ones(3, height, width) - oh1 = (height - oheight) / 2 - ow1 = (width - owidth) / 2 - imgnarrow = img[:, oh1 :oh1 + oheight, ow1 :ow1 + owidth] + oh1 = (height - oheight) // 2 + ow1 = (width - owidth) // 2 + imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth] imgnarrow.fill_(0) result = transforms.Compose([ transforms.ToPILImage(), @@ -23,7 +22,7 @@ def test_crop(self): transforms.ToTensor(), ])(img) assert result.sum() == 0, "height: " + str(height) + " width: " \ - + str( width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) + + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) oheight += 1 owidth += 1 result = transforms.Compose([ @@ -33,9 +32,9 @@ def test_crop(self): ])(img) sum1 = result.sum() assert sum1 > 1, "height: " + str(height) + " width: " \ - + str( width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) + + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) oheight += 1 - owidth += 1 + owidth += 1 result = transforms.Compose([ transforms.ToPILImage(), transforms.CenterCrop((oheight, owidth)), @@ -43,15 +42,15 @@ def test_crop(self): ])(img) sum2 = result.sum() assert sum2 > 0, "height: " + str(height) + " width: " \ - + str( width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) + + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) assert sum2 > sum1, "height: " + str(height) + " width: " \ - + str( width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) + + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) def test_scale(self): height = random.randint(24, 32) * 2 width = random.randint(24, 32) * 2 osize = random.randint(5, 12) * 2 - + img = torch.ones(3, height, width) result = transforms.Compose([ transforms.ToPILImage(), @@ -63,7 +62,7 @@ def test_scale(self): # print result.size() assert osize in result.size() if height < width: - assert result.size(1) <= result.size(2) + assert result.size(1) <= result.size(2) elif width < height: assert result.size(1) >= result.size(2) @@ -71,7 +70,7 @@ def test_random_crop(self): height = random.randint(10, 32) * 2 width = random.randint(10, 32) * 2 oheight = random.randint(5, (height - 2) / 2) * 2 - owidth = random.randint(5, (width - 2) / 2) * 2 + owidth = random.randint(5, (width - 2) / 2) * 2 img = torch.ones(3, height, width) result = transforms.Compose([ transforms.ToPILImage(), @@ -100,20 +99,20 @@ def test_pad(self): transforms.Pad(padding), transforms.ToTensor(), ])(img) - assert result.size(1) == height + 2*padding - assert result.size(2) == width + 2*padding + assert result.size(1) == height + 2 * padding + assert result.size(2) == width + 2 * padding def test_lambda(self): trans = transforms.Lambda(lambda x: x.add(10)) x = torch.randn(10) y = trans(x) - assert(y.equal(torch.add(x, 10))) + assert (y.equal(torch.add(x, 10))) trans = transforms.Lambda(lambda x: x.add_(10)) x = torch.randn(10) y = trans(x) - assert(y.equal(x)) - + assert (y.equal(x)) + if __name__ == '__main__': unittest.main()