diff --git a/mypy.ini b/mypy.ini index 0d8444e13f8..b35ee60d907 100644 --- a/mypy.ini +++ b/mypy.ini @@ -12,6 +12,10 @@ ignore_errors = True ignore_errors = True +[mypy-torchvision.models.densenet.*] + +ignore_errors=True + [mypy-torchvision.models.detection.*] ignore_errors = True diff --git a/torchvision/models/densenet.py b/torchvision/models/densenet.py index 652f97ee967..02d18c1e22b 100644 --- a/torchvision/models/densenet.py +++ b/torchvision/models/densenet.py @@ -71,13 +71,13 @@ def closure(*inputs): def forward(self, input: List[Tensor]) -> Tensor: pass - @torch.jit._overload_method # type: ignore[no-redef] # noqa: F811 + @torch.jit._overload_method # noqa: F811 def forward(self, input: Tensor) -> Tensor: pass # torchscript does not yet support *args, so we overload method # allowing it to take either a List[Tensor] or single Tensor - def forward(self, input: Tensor) -> Tensor: # type: ignore[no-redef] # noqa: F811 + def forward(self, input: Tensor) -> Tensor: # noqa: F811 if isinstance(input, Tensor): prev_features = [input] else: @@ -121,7 +121,7 @@ def __init__( ) self.add_module('denselayer%d' % (i + 1), layer) - def forward(self, init_features: Tensor) -> Tensor: # type: ignore[override] + def forward(self, init_features: Tensor) -> Tensor: features = [init_features] for name, layer in self.items(): new_features = layer(features)