@@ -296,16 +296,23 @@ class GoogLeNet_Weights(WeightsEnum):
296
296
@handle_legacy_interface (weights = ("pretrained" , GoogLeNet_Weights .IMAGENET1K_V1 ))
297
297
def googlenet (* , weights : Optional [GoogLeNet_Weights ] = None , progress : bool = True , ** kwargs : Any ) -> GoogLeNet :
298
298
r"""GoogLeNet (Inception v1) model architecture from
299
- `" Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_.
299
+ `Going Deeper with Convolutions <http://arxiv.org/abs/1409.4842>`_.
300
300
The required minimum input size of the model is 15x15.
301
301
302
302
Args:
303
- weights (GoogLeNet_Weights, optional): The pretrained weights for the model
304
- progress (bool): If True, displays a progress bar of the download to stderr
305
- aux_logits (bool): If True, adds two auxiliary branches that can improve training.
306
- Default: *False* when pretrained is True otherwise *True*
307
- transform_input (bool): If True, preprocesses the input according to the method with which it
308
- was trained on ImageNet. Default: True if ``weights=GoogLeNet_Weights.IMAGENET1K_V1``, else False.
303
+ weights (:class:`~torchvision.models.GoogLeNet_Weights`, optional): The
304
+ pretrained weights for the model. See
305
+ :class:`~torchvision.models.GoogLeNet_Weights` below for
306
+ more details, and possible values. By default, no pre-trained
307
+ weights are used.
308
+ progress (bool, optional): If True, displays a progress bar of the
309
+ download to stderr. Default is True.
310
+ **kwargs: parameters passed to the ``torchvision.models.squeezenet.GoogLeNet``
311
+ base class. Please refer to the `source code
312
+ <https://github.com/pytorch/vision/blob/main/torchvision/models/googlenet.py>`_
313
+ for more details about this class.
314
+ .. autoclass:: torchvision.models.GoogLeNet_Weights
315
+ :members:
309
316
"""
310
317
weights = GoogLeNet_Weights .verify (weights )
311
318
0 commit comments