|
| 1 | +from functools import partial |
| 2 | +from itertools import chain |
| 3 | +import random |
| 4 | + |
1 | 5 | import torch
|
| 6 | +from torchvision import models |
| 7 | +import torchvision |
2 | 8 | from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
|
| 9 | +from torchvision.models.feature_extraction import create_feature_extractor |
| 10 | +from torchvision.models.feature_extraction import get_graph_node_names |
| 11 | +from torchvision.models._utils import IntermediateLayerGetter |
3 | 12 |
|
4 | 13 | import pytest
|
5 | 14 |
|
| 15 | +from common_utils import set_rng_seed |
| 16 | + |
| 17 | + |
| 18 | +def get_available_models(): |
| 19 | + # TODO add a registration mechanism to torchvision.models |
| 20 | + return [k for k, v in models.__dict__.items() |
| 21 | + if callable(v) and k[0].lower() == k[0] and k[0] != "_"] |
| 22 | + |
6 | 23 |
|
7 | 24 | @pytest.mark.parametrize('backbone_name', ('resnet18', 'resnet50'))
|
8 | 25 | def test_resnet_fpn_backbone(backbone_name):
|
9 | 26 | x = torch.rand(1, 3, 300, 300, dtype=torch.float32, device='cpu')
|
10 | 27 | y = resnet_fpn_backbone(backbone_name=backbone_name, pretrained=False)(x)
|
11 | 28 | assert list(y.keys()) == ['0', '1', '2', '3', 'pool']
|
| 29 | + |
| 30 | + |
| 31 | +# Needed by TestFxFeatureExtraction.test_leaf_module_and_function |
| 32 | +def leaf_function(x): |
| 33 | + return int(x) |
| 34 | + |
| 35 | + |
| 36 | +class TestFxFeatureExtraction: |
| 37 | + inp = torch.rand(1, 3, 224, 224, dtype=torch.float32, device='cpu') |
| 38 | + model_defaults = { |
| 39 | + 'num_classes': 1, |
| 40 | + 'pretrained': False |
| 41 | + } |
| 42 | + leaf_modules = [torchvision.ops.StochasticDepth] |
| 43 | + |
| 44 | + def _create_feature_extractor(self, *args, **kwargs): |
| 45 | + """ |
| 46 | + Apply leaf modules |
| 47 | + """ |
| 48 | + tracer_kwargs = {} |
| 49 | + if 'tracer_kwargs' not in kwargs: |
| 50 | + tracer_kwargs = {'leaf_modules': self.leaf_modules} |
| 51 | + else: |
| 52 | + tracer_kwargs = kwargs.pop('tracer_kwargs') |
| 53 | + return create_feature_extractor( |
| 54 | + *args, **kwargs, |
| 55 | + tracer_kwargs=tracer_kwargs, |
| 56 | + suppress_diff_warning=True) |
| 57 | + |
| 58 | + def _get_return_nodes(self, model): |
| 59 | + set_rng_seed(0) |
| 60 | + exclude_nodes_filter = ['getitem', 'floordiv', 'size', 'chunk'] |
| 61 | + train_nodes, eval_nodes = get_graph_node_names( |
| 62 | + model, tracer_kwargs={'leaf_modules': self.leaf_modules}, |
| 63 | + suppress_diff_warning=True) |
| 64 | + # Get rid of any nodes that don't return tensors as they cause issues |
| 65 | + # when testing backward pass. |
| 66 | + train_nodes = [n for n in train_nodes |
| 67 | + if not any(x in n for x in exclude_nodes_filter)] |
| 68 | + eval_nodes = [n for n in eval_nodes |
| 69 | + if not any(x in n for x in exclude_nodes_filter)] |
| 70 | + return random.sample(train_nodes, 10), random.sample(eval_nodes, 10) |
| 71 | + |
| 72 | + @pytest.mark.parametrize('model_name', get_available_models()) |
| 73 | + def test_build_fx_feature_extractor(self, model_name): |
| 74 | + set_rng_seed(0) |
| 75 | + model = models.__dict__[model_name](**self.model_defaults).eval() |
| 76 | + train_return_nodes, eval_return_nodes = self._get_return_nodes(model) |
| 77 | + # Check that it works with both a list and dict for return nodes |
| 78 | + self._create_feature_extractor( |
| 79 | + model, train_return_nodes={v: v for v in train_return_nodes}, |
| 80 | + eval_return_nodes=eval_return_nodes) |
| 81 | + self._create_feature_extractor( |
| 82 | + model, train_return_nodes=train_return_nodes, |
| 83 | + eval_return_nodes=eval_return_nodes) |
| 84 | + # Check must specify return nodes |
| 85 | + with pytest.raises(AssertionError): |
| 86 | + self._create_feature_extractor(model) |
| 87 | + # Check return_nodes and train_return_nodes / eval_return nodes |
| 88 | + # mutual exclusivity |
| 89 | + with pytest.raises(AssertionError): |
| 90 | + self._create_feature_extractor( |
| 91 | + model, return_nodes=train_return_nodes, |
| 92 | + train_return_nodes=train_return_nodes) |
| 93 | + # Check train_return_nodes / eval_return nodes must both be specified |
| 94 | + with pytest.raises(AssertionError): |
| 95 | + self._create_feature_extractor( |
| 96 | + model, train_return_nodes=train_return_nodes) |
| 97 | + # Check invalid node name raises ValueError |
| 98 | + with pytest.raises(ValueError): |
| 99 | + # First just double check that this node really doesn't exist |
| 100 | + if not any(n.startswith('l') or n.startswith('l.') for n |
| 101 | + in chain(train_return_nodes, eval_return_nodes)): |
| 102 | + self._create_feature_extractor( |
| 103 | + model, train_return_nodes=['l'], eval_return_nodes=['l']) |
| 104 | + else: # otherwise skip this check |
| 105 | + raise ValueError |
| 106 | + |
| 107 | + @pytest.mark.parametrize('model_name', get_available_models()) |
| 108 | + def test_forward_backward(self, model_name): |
| 109 | + model = models.__dict__[model_name](**self.model_defaults).train() |
| 110 | + train_return_nodes, eval_return_nodes = self._get_return_nodes(model) |
| 111 | + model = self._create_feature_extractor( |
| 112 | + model, train_return_nodes=train_return_nodes, |
| 113 | + eval_return_nodes=eval_return_nodes) |
| 114 | + out = model(self.inp) |
| 115 | + sum([o.mean() for o in out.values()]).backward() |
| 116 | + |
| 117 | + def test_feature_extraction_methods_equivalence(self): |
| 118 | + model = models.resnet18(**self.model_defaults).eval() |
| 119 | + return_layers = { |
| 120 | + 'layer1': 'layer1', |
| 121 | + 'layer2': 'layer2', |
| 122 | + 'layer3': 'layer3', |
| 123 | + 'layer4': 'layer4' |
| 124 | + } |
| 125 | + |
| 126 | + ilg_model = IntermediateLayerGetter( |
| 127 | + model, return_layers).eval() |
| 128 | + fx_model = self._create_feature_extractor(model, return_layers) |
| 129 | + |
| 130 | + # Check that we have same parameters |
| 131 | + for (n1, p1), (n2, p2) in zip(ilg_model.named_parameters(), |
| 132 | + fx_model.named_parameters()): |
| 133 | + assert n1 == n2 |
| 134 | + assert p1.equal(p2) |
| 135 | + |
| 136 | + # And that ouputs match |
| 137 | + with torch.no_grad(): |
| 138 | + ilg_out = ilg_model(self.inp) |
| 139 | + fgn_out = fx_model(self.inp) |
| 140 | + assert all(k1 == k2 for k1, k2 in zip(ilg_out.keys(), fgn_out.keys())) |
| 141 | + for k in ilg_out.keys(): |
| 142 | + assert ilg_out[k].equal(fgn_out[k]) |
| 143 | + |
| 144 | + @pytest.mark.parametrize('model_name', get_available_models()) |
| 145 | + def test_jit_forward_backward(self, model_name): |
| 146 | + set_rng_seed(0) |
| 147 | + model = models.__dict__[model_name](**self.model_defaults).train() |
| 148 | + train_return_nodes, eval_return_nodes = self._get_return_nodes(model) |
| 149 | + model = self._create_feature_extractor( |
| 150 | + model, train_return_nodes=train_return_nodes, |
| 151 | + eval_return_nodes=eval_return_nodes) |
| 152 | + model = torch.jit.script(model) |
| 153 | + fgn_out = model(self.inp) |
| 154 | + sum([o.mean() for o in fgn_out.values()]).backward() |
| 155 | + |
| 156 | + def test_train_eval(self): |
| 157 | + class TestModel(torch.nn.Module): |
| 158 | + def __init__(self): |
| 159 | + super().__init__() |
| 160 | + self.dropout = torch.nn.Dropout(p=1.) |
| 161 | + |
| 162 | + def forward(self, x): |
| 163 | + x = x.mean() |
| 164 | + x = self.dropout(x) # dropout |
| 165 | + if self.training: |
| 166 | + x += 100 # add |
| 167 | + else: |
| 168 | + x *= 0 # mul |
| 169 | + x -= 0 # sub |
| 170 | + return x |
| 171 | + |
| 172 | + model = TestModel() |
| 173 | + |
| 174 | + train_return_nodes = ['dropout', 'add', 'sub'] |
| 175 | + eval_return_nodes = ['dropout', 'mul', 'sub'] |
| 176 | + |
| 177 | + def checks(model, mode): |
| 178 | + with torch.no_grad(): |
| 179 | + out = model(torch.ones(10, 10)) |
| 180 | + if mode == 'train': |
| 181 | + # Check that dropout is respected |
| 182 | + assert out['dropout'].item() == 0 |
| 183 | + # Check that control flow dependent on training_mode is respected |
| 184 | + assert out['sub'].item() == 100 |
| 185 | + assert 'add' in out |
| 186 | + assert 'mul' not in out |
| 187 | + elif mode == 'eval': |
| 188 | + # Check that dropout is respected |
| 189 | + assert out['dropout'].item() == 1 |
| 190 | + # Check that control flow dependent on training_mode is respected |
| 191 | + assert out['sub'].item() == 0 |
| 192 | + assert 'mul' in out |
| 193 | + assert 'add' not in out |
| 194 | + |
| 195 | + # Starting from train mode |
| 196 | + model.train() |
| 197 | + fx_model = self._create_feature_extractor( |
| 198 | + model, train_return_nodes=train_return_nodes, |
| 199 | + eval_return_nodes=eval_return_nodes) |
| 200 | + # Check that the models stay in their original training state |
| 201 | + assert model.training |
| 202 | + assert fx_model.training |
| 203 | + # Check outputs |
| 204 | + checks(fx_model, 'train') |
| 205 | + # Check outputs after switching to eval mode |
| 206 | + fx_model.eval() |
| 207 | + checks(fx_model, 'eval') |
| 208 | + |
| 209 | + # Starting from eval mode |
| 210 | + model.eval() |
| 211 | + fx_model = self._create_feature_extractor( |
| 212 | + model, train_return_nodes=train_return_nodes, |
| 213 | + eval_return_nodes=eval_return_nodes) |
| 214 | + # Check that the models stay in their original training state |
| 215 | + assert not model.training |
| 216 | + assert not fx_model.training |
| 217 | + # Check outputs |
| 218 | + checks(fx_model, 'eval') |
| 219 | + # Check outputs after switching to train mode |
| 220 | + fx_model.train() |
| 221 | + checks(fx_model, 'train') |
| 222 | + |
| 223 | + def test_leaf_module_and_function(self): |
| 224 | + class LeafModule(torch.nn.Module): |
| 225 | + def forward(self, x): |
| 226 | + # This would raise a TypeError if it were not in a leaf module |
| 227 | + int(x.shape[0]) |
| 228 | + return torch.nn.functional.relu(x + 4) |
| 229 | + |
| 230 | + class TestModule(torch.nn.Module): |
| 231 | + def __init__(self): |
| 232 | + super().__init__() |
| 233 | + self.conv = torch.nn.Conv2d(3, 1, 3) |
| 234 | + self.leaf_module = LeafModule() |
| 235 | + |
| 236 | + def forward(self, x): |
| 237 | + leaf_function(x.shape[0]) |
| 238 | + x = self.conv(x) |
| 239 | + return self.leaf_module(x) |
| 240 | + |
| 241 | + model = self._create_feature_extractor( |
| 242 | + TestModule(), return_nodes=['leaf_module'], |
| 243 | + tracer_kwargs={'leaf_modules': [LeafModule], |
| 244 | + 'autowrap_functions': [leaf_function]}).train() |
| 245 | + |
| 246 | + # Check that LeafModule is not in the list of nodes |
| 247 | + assert 'relu' not in [str(n) for n in model.graph.nodes] |
| 248 | + assert 'leaf_module' in [str(n) for n in model.graph.nodes] |
| 249 | + |
| 250 | + # Check forward |
| 251 | + out = model(self.inp) |
| 252 | + # And backward |
| 253 | + out['leaf_module'].mean().backward() |
0 commit comments