|
13 | 13 | from torchvision.datasets.video_utils import VideoClips, unfold
|
14 | 14 | from torchvision import get_video_backend
|
15 | 15 |
|
16 |
| -from common_utils import get_tmp_dir, assert_equal |
17 |
| - |
18 |
| - |
19 |
| -@contextlib.contextmanager |
20 |
| -def get_list_of_videos(num_videos=5, sizes=None, fps=None): |
21 |
| - with get_tmp_dir() as tmp_dir: |
22 |
| - names = [] |
23 |
| - for i in range(num_videos): |
24 |
| - if sizes is None: |
25 |
| - size = 5 * (i + 1) |
26 |
| - else: |
27 |
| - size = sizes[i] |
28 |
| - if fps is None: |
29 |
| - f = 5 |
30 |
| - else: |
31 |
| - f = fps[i] |
32 |
| - data = torch.randint(0, 256, (size, 300, 400, 3), dtype=torch.uint8) |
33 |
| - name = os.path.join(tmp_dir, "{}.mp4".format(i)) |
34 |
| - names.append(name) |
35 |
| - io.write_video(name, data, fps=f) |
36 |
| - |
37 |
| - yield names |
| 16 | +from common_utils import get_list_of_videos, assert_equal |
38 | 17 |
|
39 | 18 |
|
40 | 19 | @pytest.mark.skipif(not io.video._av_available(), reason="this test requires av")
|
41 | 20 | class TestDatasetsSamplers:
|
42 |
| - def test_random_clip_sampler(self): |
43 |
| - with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list: |
44 |
| - video_clips = VideoClips(video_list, 5, 5) |
45 |
| - sampler = RandomClipSampler(video_clips, 3) |
46 |
| - assert len(sampler) == 3 * 3 |
47 |
| - indices = torch.tensor(list(iter(sampler))) |
48 |
| - videos = torch.div(indices, 5, rounding_mode='floor') |
49 |
| - v_idxs, count = torch.unique(videos, return_counts=True) |
50 |
| - assert_equal(v_idxs, torch.tensor([0, 1, 2])) |
51 |
| - assert_equal(count, torch.tensor([3, 3, 3])) |
| 21 | + def test_random_clip_sampler(self, tmpdir): |
| 22 | + video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25]) |
| 23 | + video_clips = VideoClips(video_list, 5, 5) |
| 24 | + sampler = RandomClipSampler(video_clips, 3) |
| 25 | + assert len(sampler) == 3 * 3 |
| 26 | + indices = torch.tensor(list(iter(sampler))) |
| 27 | + videos = torch.div(indices, 5, rounding_mode='floor') |
| 28 | + v_idxs, count = torch.unique(videos, return_counts=True) |
| 29 | + assert_equal(v_idxs, torch.tensor([0, 1, 2])) |
| 30 | + assert_equal(count, torch.tensor([3, 3, 3])) |
52 | 31 |
|
53 |
| - def test_random_clip_sampler_unequal(self): |
54 |
| - with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list: |
55 |
| - video_clips = VideoClips(video_list, 5, 5) |
56 |
| - sampler = RandomClipSampler(video_clips, 3) |
57 |
| - assert len(sampler) == 2 + 3 + 3 |
58 |
| - indices = list(iter(sampler)) |
59 |
| - assert 0 in indices |
60 |
| - assert 1 in indices |
61 |
| - # remove elements of the first video, to simplify testing |
62 |
| - indices.remove(0) |
63 |
| - indices.remove(1) |
64 |
| - indices = torch.tensor(indices) - 2 |
65 |
| - videos = torch.div(indices, 5, rounding_mode='floor') |
66 |
| - v_idxs, count = torch.unique(videos, return_counts=True) |
67 |
| - assert_equal(v_idxs, torch.tensor([0, 1])) |
68 |
| - assert_equal(count, torch.tensor([3, 3])) |
| 32 | + def test_random_clip_sampler_unequal(self, tmpdir): |
| 33 | + video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[10, 25, 25]) |
| 34 | + video_clips = VideoClips(video_list, 5, 5) |
| 35 | + sampler = RandomClipSampler(video_clips, 3) |
| 36 | + assert len(sampler) == 2 + 3 + 3 |
| 37 | + indices = list(iter(sampler)) |
| 38 | + assert 0 in indices |
| 39 | + assert 1 in indices |
| 40 | + # remove elements of the first video, to simplify testing |
| 41 | + indices.remove(0) |
| 42 | + indices.remove(1) |
| 43 | + indices = torch.tensor(indices) - 2 |
| 44 | + videos = torch.div(indices, 5, rounding_mode='floor') |
| 45 | + v_idxs, count = torch.unique(videos, return_counts=True) |
| 46 | + assert_equal(v_idxs, torch.tensor([0, 1])) |
| 47 | + assert_equal(count, torch.tensor([3, 3])) |
69 | 48 |
|
70 |
| - def test_uniform_clip_sampler(self): |
71 |
| - with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list: |
72 |
| - video_clips = VideoClips(video_list, 5, 5) |
73 |
| - sampler = UniformClipSampler(video_clips, 3) |
74 |
| - assert len(sampler) == 3 * 3 |
75 |
| - indices = torch.tensor(list(iter(sampler))) |
76 |
| - videos = torch.div(indices, 5, rounding_mode='floor') |
77 |
| - v_idxs, count = torch.unique(videos, return_counts=True) |
78 |
| - assert_equal(v_idxs, torch.tensor([0, 1, 2])) |
79 |
| - assert_equal(count, torch.tensor([3, 3, 3])) |
80 |
| - assert_equal(indices, torch.tensor([0, 2, 4, 5, 7, 9, 10, 12, 14])) |
| 49 | + def test_uniform_clip_sampler(self, tmpdir): |
| 50 | + video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25]) |
| 51 | + video_clips = VideoClips(video_list, 5, 5) |
| 52 | + sampler = UniformClipSampler(video_clips, 3) |
| 53 | + assert len(sampler) == 3 * 3 |
| 54 | + indices = torch.tensor(list(iter(sampler))) |
| 55 | + videos = torch.div(indices, 5, rounding_mode='floor') |
| 56 | + v_idxs, count = torch.unique(videos, return_counts=True) |
| 57 | + assert_equal(v_idxs, torch.tensor([0, 1, 2])) |
| 58 | + assert_equal(count, torch.tensor([3, 3, 3])) |
| 59 | + assert_equal(indices, torch.tensor([0, 2, 4, 5, 7, 9, 10, 12, 14])) |
81 | 60 |
|
82 |
| - def test_uniform_clip_sampler_insufficient_clips(self): |
83 |
| - with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list: |
84 |
| - video_clips = VideoClips(video_list, 5, 5) |
85 |
| - sampler = UniformClipSampler(video_clips, 3) |
86 |
| - assert len(sampler) == 3 * 3 |
87 |
| - indices = torch.tensor(list(iter(sampler))) |
88 |
| - assert_equal(indices, torch.tensor([0, 0, 1, 2, 4, 6, 7, 9, 11])) |
| 61 | + def test_uniform_clip_sampler_insufficient_clips(self, tmpdir): |
| 62 | + video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[10, 25, 25]) |
| 63 | + video_clips = VideoClips(video_list, 5, 5) |
| 64 | + sampler = UniformClipSampler(video_clips, 3) |
| 65 | + assert len(sampler) == 3 * 3 |
| 66 | + indices = torch.tensor(list(iter(sampler))) |
| 67 | + assert_equal(indices, torch.tensor([0, 0, 1, 2, 4, 6, 7, 9, 11])) |
89 | 68 |
|
90 |
| - def test_distributed_sampler_and_uniform_clip_sampler(self): |
91 |
| - with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list: |
92 |
| - video_clips = VideoClips(video_list, 5, 5) |
93 |
| - clip_sampler = UniformClipSampler(video_clips, 3) |
| 69 | + def test_distributed_sampler_and_uniform_clip_sampler(self, tmpdir): |
| 70 | + video_list = get_list_of_videos(tmpdir, num_videos=3, sizes=[25, 25, 25]) |
| 71 | + video_clips = VideoClips(video_list, 5, 5) |
| 72 | + clip_sampler = UniformClipSampler(video_clips, 3) |
94 | 73 |
|
95 |
| - distributed_sampler_rank0 = DistributedSampler( |
96 |
| - clip_sampler, |
97 |
| - num_replicas=2, |
98 |
| - rank=0, |
99 |
| - group_size=3, |
100 |
| - ) |
101 |
| - indices = torch.tensor(list(iter(distributed_sampler_rank0))) |
102 |
| - assert len(distributed_sampler_rank0) == 6 |
103 |
| - assert_equal(indices, torch.tensor([0, 2, 4, 10, 12, 14])) |
| 74 | + distributed_sampler_rank0 = DistributedSampler( |
| 75 | + clip_sampler, |
| 76 | + num_replicas=2, |
| 77 | + rank=0, |
| 78 | + group_size=3, |
| 79 | + ) |
| 80 | + indices = torch.tensor(list(iter(distributed_sampler_rank0))) |
| 81 | + assert len(distributed_sampler_rank0) == 6 |
| 82 | + assert_equal(indices, torch.tensor([0, 2, 4, 10, 12, 14])) |
104 | 83 |
|
105 |
| - distributed_sampler_rank1 = DistributedSampler( |
106 |
| - clip_sampler, |
107 |
| - num_replicas=2, |
108 |
| - rank=1, |
109 |
| - group_size=3, |
110 |
| - ) |
111 |
| - indices = torch.tensor(list(iter(distributed_sampler_rank1))) |
112 |
| - assert len(distributed_sampler_rank1) == 6 |
113 |
| - assert_equal(indices, torch.tensor([5, 7, 9, 0, 2, 4])) |
| 84 | + distributed_sampler_rank1 = DistributedSampler( |
| 85 | + clip_sampler, |
| 86 | + num_replicas=2, |
| 87 | + rank=1, |
| 88 | + group_size=3, |
| 89 | + ) |
| 90 | + indices = torch.tensor(list(iter(distributed_sampler_rank1))) |
| 91 | + assert len(distributed_sampler_rank1) == 6 |
| 92 | + assert_equal(indices, torch.tensor([5, 7, 9, 0, 2, 4])) |
114 | 93 |
|
115 | 94 |
|
116 | 95 | if __name__ == '__main__':
|
|
0 commit comments