@@ -22,7 +22,8 @@ architectures for image classification:
22
22
- `Inception `_ v3
23
23
- `GoogLeNet `_
24
24
- `ShuffleNet `_ v2
25
- - `MobileNet `_ v2
25
+ - `MobileNetV2 `_
26
+ - `MobileNetV3 `_
26
27
- `ResNeXt `_
27
28
- `Wide ResNet `_
28
29
- `MNASNet `_
@@ -40,7 +41,9 @@ You can construct a model with random weights by calling its constructor:
40
41
inception = models.inception_v3()
41
42
googlenet = models.googlenet()
42
43
shufflenet = models.shufflenet_v2_x1_0()
43
- mobilenet = models.mobilenet_v2()
44
+ mobilenet_v2 = models.mobilenet_v2()
45
+ mobilenet_v3_large = models.mobilenet_v3_large()
46
+ mobilenet_v3_small = models.mobilenet_v3_small()
44
47
resnext50_32x4d = models.resnext50_32x4d()
45
48
wide_resnet50_2 = models.wide_resnet50_2()
46
49
mnasnet = models.mnasnet1_0()
@@ -59,7 +62,8 @@ These can be constructed by passing ``pretrained=True``:
59
62
inception = models.inception_v3(pretrained = True )
60
63
googlenet = models.googlenet(pretrained = True )
61
64
shufflenet = models.shufflenet_v2_x1_0(pretrained = True )
62
- mobilenet = models.mobilenet_v2(pretrained = True )
65
+ mobilenet_v2 = models.mobilenet_v2(pretrained = True )
66
+ mobilenet_v3_large = models.mobilenet_v3_large(pretrained = True )
63
67
resnext50_32x4d = models.resnext50_32x4d(pretrained = True )
64
68
wide_resnet50_2 = models.wide_resnet50_2(pretrained = True )
65
69
mnasnet = models.mnasnet1_0(pretrained = True )
@@ -137,6 +141,7 @@ Inception v3 22.55 6.44
137
141
GoogleNet 30.22 10.47
138
142
ShuffleNet V2 30.64 11.68
139
143
MobileNet V2 28.12 9.71
144
+ MobileNet V3 Large 25.96 8.66
140
145
ResNeXt-50-32x4d 22.38 6.30
141
146
ResNeXt-101-32x8d 20.69 5.47
142
147
Wide ResNet-50-2 21.49 5.91
@@ -153,7 +158,8 @@ MNASNet 1.0 26.49 8.456
153
158
.. _Inception : https://arxiv.org/abs/1512.00567
154
159
.. _GoogLeNet : https://arxiv.org/abs/1409.4842
155
160
.. _ShuffleNet : https://arxiv.org/abs/1807.11164
156
- .. _MobileNet : https://arxiv.org/abs/1801.04381
161
+ .. _MobileNetV2 : https://arxiv.org/abs/1801.04381
162
+ .. _MobileNetV3 : https://arxiv.org/abs/1905.02244
157
163
.. _ResNeXt : https://arxiv.org/abs/1611.05431
158
164
.. _MNASNet : https://arxiv.org/abs/1807.11626
159
165
@@ -231,6 +237,12 @@ MobileNet v2
231
237
232
238
.. autofunction :: mobilenet_v2
233
239
240
+ MobileNet v3
241
+ -------------
242
+
243
+ .. autofunction :: mobilenet_v3_large
244
+ .. autofunction :: mobilenet_v3_small
245
+
234
246
ResNext
235
247
-------
236
248
@@ -351,6 +363,7 @@ Network box AP mask AP keypoint AP
351
363
================================ ======= ======== ===========
352
364
Faster R-CNN ResNet-50 FPN 37.0 - -
353
365
RetinaNet ResNet-50 FPN 36.4 - -
366
+ RetinaNet MobileNetV3-Large FPN 25.6 - -
354
367
Mask R-CNN ResNet-50 FPN 37.9 34.6 -
355
368
================================ ======= ======== ===========
356
369
@@ -407,6 +420,7 @@ Network train time (s / it) test time (s / it) memory
407
420
============================== =================== ================== ===========
408
421
Faster R-CNN ResNet-50 FPN 0.2288 0.0590 5.2
409
422
RetinaNet ResNet-50 FPN 0.2514 0.0939 4.1
423
+ RetinaNet MobileNetV3-Large FPN 0.0928 0.0547 1.4
410
424
Mask R-CNN ResNet-50 FPN 0.2728 0.0903 5.4
411
425
Keypoint R-CNN ResNet-50 FPN 0.3789 0.1242 6.8
412
426
============================== =================== ================== ===========
@@ -422,6 +436,7 @@ RetinaNet
422
436
------------
423
437
424
438
.. autofunction :: torchvision.models.detection.retinanet_resnet50_fpn
439
+ .. autofunction :: torchvision.models.detection.retinanet_mobilenet_v3_large_fpn
425
440
426
441
427
442
Mask R-CNN
0 commit comments