You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Crops the given PIL.Image at the center to have a region of
175
176
the given size. size can be a tuple (target_height, target_width)
176
177
or an integer, in which case the target will be of a square shape (size, size)
177
-
178
+
178
179
### `RandomCrop(size)`
179
180
Crops the given PIL.Image at a random location to have a region of
180
181
the given size. size can be a tuple (target_height, target_width)
@@ -200,3 +201,13 @@ Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of the tor
200
201
-`ToTensor()` - Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
201
202
-`ToPILImage()` - Converts a torch.*Tensor of range [0, 1] and shape C x H x W or numpy ndarray of dtype=uint8, range[0, 255] and shape H x W x C to a PIL.Image of range [0, 255]
202
203
204
+
205
+
# Utils
206
+
207
+
### make_grid(tensor, nrow=8, padding=2)
208
+
Given a 4D mini-batch Tensor of shape (B x C x H x W), makes a grid of images
0 commit comments