diff --git a/recipes_source/mobile_perf.rst b/recipes_source/mobile_perf.rst index e4d432b4297..2e7e7c17f73 100644 --- a/recipes_source/mobile_perf.rst +++ b/recipes_source/mobile_perf.rst @@ -72,7 +72,7 @@ Code your model: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Do not be confused that fuse_modules is in the quantization package. -It works for all ``torcn.nn.Module``. +It works for all ``torch.nn.Module``. ``torch.quantization.fuse_modules`` fuses a list of modules into a single module. It fuses only the following sequence of modules: @@ -237,7 +237,7 @@ Now we are ready to benchmark your model: :: - adb shell "/data/local/tmp/speed_benchmark_torch --model="/data/local/tmp/model.pt" --input_dims="1,3,224,224" --input_type="float" + adb shell "/data/local/tmp/speed_benchmark_torch --model=/data/local/tmp/model.pt" --input_dims="1,3,224,224" --input_type="float" ----- output ----- Starting benchmark. Running warmup runs. @@ -250,7 +250,7 @@ iOS - Benchmarking Setup For iOS, we'll be using our `TestApp `_ as the benchmarking tool. -To begin with, let's apply the ``optimize_for_mobile`` method to our python script located at `TestApp/benchmark/trace_mode.py `_. Simply modify the code as below. +To begin with, let's apply the ``optimize_for_mobile`` method to our python script located at `TestApp/benchmark/trace_model.py `_. Simply modify the code as below. ::