5
5
def conv3x3 (in_planes , out_planes , stride = 1 ):
6
6
"3x3 convolution with padding"
7
7
return nn .Conv2d (in_planes , out_planes , kernel_size = 3 , stride = stride ,
8
- padding = 1 , no_bias = True )
8
+ padding = 1 , bias = False )
9
9
10
10
11
11
class BasicBlock (nn .Container ):
@@ -46,12 +46,12 @@ class Bottleneck(nn.Container):
46
46
47
47
def __init__ (self , inplanes , planes , stride = 1 , downsample = None ):
48
48
super (Bottleneck , self ).__init__ (
49
- conv1 = nn .Conv2d (inplanes , planes , kernel_size = 1 , no_bias = True ),
49
+ conv1 = nn .Conv2d (inplanes , planes , kernel_size = 1 , bias = False ),
50
50
bn1 = nn .BatchNorm2d (planes ),
51
51
conv2 = nn .Conv2d (planes , planes , kernel_size = 3 , stride = stride ,
52
- padding = 1 , no_bias = True ),
52
+ padding = 1 , bias = False ),
53
53
bn2 = nn .BatchNorm2d (planes ),
54
- conv3 = nn .Conv2d (planes , planes * 4 , kernel_size = 1 , no_bias = True ),
54
+ conv3 = nn .Conv2d (planes , planes * 4 , kernel_size = 1 , bias = False ),
55
55
bn3 = nn .BatchNorm2d (planes * 4 ),
56
56
relu = nn .ReLU (inplace = True ),
57
57
downsample = downsample ,
@@ -86,7 +86,7 @@ def __init__(self, block, layers):
86
86
self .inplanes = 64
87
87
super (ResNet , self ).__init__ (
88
88
conv1 = nn .Conv2d (3 , 64 , kernel_size = 7 , stride = 2 , padding = 3 ,
89
- no_bias = True ),
89
+ bias = False ),
90
90
bn1 = nn .BatchNorm2d (64 ),
91
91
relu = nn .ReLU (inplace = True ),
92
92
maxpool = nn .MaxPool2d (kernel_size = 3 , stride = 2 , padding = 1 ),
@@ -110,7 +110,7 @@ def _make_layer(self, block, planes, blocks, stride=1):
110
110
if stride != 1 or self .inplanes != planes * block .expansion :
111
111
downsample = nn .Sequential (
112
112
nn .Conv2d (self .inplanes , planes * block .expansion ,
113
- kernel_size = 1 , stride = stride , no_bias = True ),
113
+ kernel_size = 1 , stride = stride , bias = False ),
114
114
nn .BatchNorm2d (planes * block .expansion ),
115
115
)
116
116
0 commit comments