|
| 1 | +import torch |
| 2 | +from torch import nn |
| 3 | +from torchao.quantization.fp6_llm import Fp6LlmLinear, from_tc_float6_e3m2 |
| 4 | +from torch.utils.benchmark import Timer |
| 5 | +import pandas as pd |
| 6 | +from tqdm import tqdm |
| 7 | + |
| 8 | + |
| 9 | +def benchmark(m: int, k: int, n: int): |
| 10 | + fp6_weight = torch.randint(256, size=(n, k // 4 * 3), dtype=torch.uint8, device="cuda") |
| 11 | + scales = torch.rand(n, dtype=torch.half, device="cuda") + 0.5 |
| 12 | + fp6_linear = Fp6LlmLinear(fp6_weight.view(torch.int32), scales) |
| 13 | + |
| 14 | + fp16_linear = nn.Linear(k, n, bias=True, dtype=torch.half, device="cuda") |
| 15 | + fp16_linear.weight.data = from_tc_float6_e3m2(fp6_weight.view(-1), n, k, dtype=torch.half) * scales[:, None] |
| 16 | + |
| 17 | + fp16_act = torch.randn(m, k, dtype=torch.half, device="cuda") |
| 18 | + fp6_output = fp6_linear(fp16_act) |
| 19 | + fp16_output = fp16_linear(fp16_act) |
| 20 | + |
| 21 | + fp6_measurement = Timer(stmt="fp6_linear(fp16_act)", globals=locals()).blocked_autorange() |
| 22 | + fp16_measurement = Timer(stmt="fp16_linear(fp16_act)", globals=locals()).blocked_autorange() |
| 23 | + |
| 24 | + # follow https://github.com/usyd-fsalab/fp6_llm/blob/ce76774bcfc26b325c1b558abcf1935026d9abbc/tests/python/kernel_test.py |
| 25 | + # doesn't seem to be the right way to check for correctness |
| 26 | + correct = (fp6_output - fp16_output).abs().mean() / fp16_output.abs().mean() < 1e-3 |
| 27 | + |
| 28 | + return { |
| 29 | + "m": m, |
| 30 | + "k": k, |
| 31 | + "n": n, |
| 32 | + "fp6_latency (ms)": fp6_measurement.median * 1000, |
| 33 | + "fp16_latency (ms)": fp16_measurement.median * 1000, |
| 34 | + "speedup (d/s)": fp16_measurement.median / fp6_measurement.median, |
| 35 | + "correct": correct, |
| 36 | + } |
| 37 | + |
| 38 | + |
| 39 | +if __name__ == "__main__": |
| 40 | + # from https://github.com/usyd-fsalab/fp6_llm/blob/ce76774bcfc26b325c1b558abcf1935026d9abbc/tests/python/run.sh |
| 41 | + k_vals = (8192, 8192, 8192, 28672) |
| 42 | + n_vals = (8192, 10240, 57344, 8192) |
| 43 | + |
| 44 | + results = [] |
| 45 | + |
| 46 | + for m in tqdm([1 << i for i in range(10)]): |
| 47 | + for n, k in zip(n_vals, k_vals): |
| 48 | + results.append(benchmark(m, n, k)) |
| 49 | + |
| 50 | + df = pd.DataFrame(results) |
| 51 | + df.to_csv("fp6_llm_benchmark_results.csv", index=False) |
| 52 | + print(df.to_markdown(index=False)) |
0 commit comments