4
4
# This source code is licensed under the license found in the
5
5
# LICENSE file in the root directory of this source tree.
6
6
7
- from enum import Enum
7
+ from enum import Enum , auto
8
8
from typing import List , Optional , Tuple , Dict
9
9
import torch
10
10
11
11
from torchao .kernel .intmm import int_scaled_matmul
12
12
from torchao .kernel .intmm import safe_int_mm
13
- from torchao .utils import TORCH_VERSION_AFTER_2_3
13
+ from torchao .utils import (
14
+ TORCH_VERSION_AFTER_2_3 ,
15
+ TORCH_VERSION_AFTER_2_5 ,
16
+ )
14
17
15
18
16
19
__all__ = [
@@ -34,17 +37,17 @@ class MappingType(Enum):
34
37
based on this mapping
35
38
e.g. scale = (10.2 - (-3.5)) / (7 - (-8))
36
39
"""
37
- SYMMETRIC = 0
38
- ASYMMETRIC = 1
40
+ SYMMETRIC = auto ()
41
+ ASYMMETRIC = auto ()
39
42
40
43
class ZeroPointDomain (Enum ):
41
44
"""Enum that indicate whether zero_point is in integer domain or floating point domain
42
45
43
46
integer domain: quantized_val = (float_val / scale) (integer) + zero_point (integer)
44
47
float domain: quantized_val = (float_val - (zero_point (float) - scale * mid_point)) / scale
45
48
"""
46
- INT = 0
47
- FLOAT = 1
49
+ INT = auto ()
50
+ FLOAT = auto ()
48
51
49
52
"""
50
53
Map from dtype to the bound value of integers
@@ -69,6 +72,53 @@ class ZeroPointDomain(Enum):
69
72
})
70
73
71
74
75
+ quant_lib = torch .library .Library ("quant" , "FRAGMENT" )
76
+
77
+ def register_custom_op (lib ):
78
+ """This decorator is used to preserve some high level operators for torch.export.export
79
+ while still allow them to be decomposed for inductor path
80
+
81
+ requirement: make sure `fn.__name__[1:]` is the operator name you want to register
82
+
83
+ NOTE: This should be applied at the top, after all other decorators have been applied
84
+ NOTE: We haven't tested the case when `fn` accepts tensor subclass instance as input,
85
+ e.g. uint4 tensor subclass instance, and we'll probably need to figure out what would make
86
+ sense for downstream system (like executorch) to accept as well
87
+
88
+ Example:
89
+ lib = torch.library.Library("my_namespace', "FRAGMENT")
90
+ @register_custom_op(lib)
91
+ def _the_op_that_needs_to_be_preserved(...)
92
+ ...
93
+
94
+ # after this, `_the_op_that_needs_to_be_preserved` will be preserved as
95
+ # torch.ops.my_namespace.the_op_that_needs_to_be_preserved operator after
96
+ # torch.export.export / torch._export.capture_pre_autograd_graph
97
+
98
+ """
99
+ from torch ._inductor .decomposition import register_decomposition
100
+
101
+ def decorator (fn ):
102
+ if TORCH_VERSION_AFTER_2_5 :
103
+ from torch ._library .infer_schema import infer_schema
104
+
105
+ # assuming fn.__name__ starts with `_` and we want to take the rest
106
+ # to be the name of the custom op
107
+ op_name = fn .__name__ [1 :]
108
+ schema = op_name + infer_schema (fn )
109
+ lib .define (schema )
110
+ lib .impl (op_name , fn , "CompositeImplicitAutograd" )
111
+
112
+ lib_namespace = lib .ns
113
+ op = getattr (getattr (torch .ops , lib_namespace ), op_name )
114
+ register_decomposition ([op ])(fn )
115
+ return op
116
+ else :
117
+ return fn
118
+
119
+ return decorator
120
+
121
+
72
122
# TODO: decide on if we want to allow custom quant_min/quant_max here
73
123
def _get_and_check_qmin_qmax (dtype , quant_min , quant_max ):
74
124
"""Get quant_min and quant_max args based on dtype and also
@@ -140,7 +190,7 @@ def quantize_affine(
140
190
quant_min : Optional [int ] = None ,
141
191
quant_max : Optional [int ] = None ,
142
192
zero_point_domain : ZeroPointDomain = ZeroPointDomain .INT ,
143
- ):
193
+ ) -> torch . Tensor :
144
194
"""
145
195
Args:
146
196
input (torch.Tensor): original float32, float16 or bfloat16 Tensor
@@ -174,6 +224,31 @@ def quantize_affine(
174
224
Output:
175
225
quantized tensor with requested dtype
176
226
"""
227
+ return _quantize_affine (
228
+ input ,
229
+ block_size ,
230
+ scale ,
231
+ zero_point ,
232
+ output_dtype ,
233
+ quant_min ,
234
+ quant_max ,
235
+ zero_point_domain .name ,
236
+ )
237
+
238
+
239
+ @register_custom_op (quant_lib )
240
+ def _quantize_affine (
241
+ input : torch .Tensor ,
242
+ block_size : List [int ],
243
+ scale : torch .Tensor ,
244
+ zero_point : Optional [torch .Tensor ],
245
+ output_dtype : torch .dtype ,
246
+ quant_min : Optional [int ] = None ,
247
+ quant_max : Optional [int ] = None ,
248
+ zero_point_domain : str = "INT" ,
249
+ ) -> torch .Tensor :
250
+ """op definition that has compatible signatures with custom op library
251
+ """
177
252
# TODO: validations
178
253
# TODO: validate scale/zero_point dimensions are compatible with block_size
179
254
assert input .dtype in [torch .float32 , torch .float16 , torch .bfloat16 ], f"Unsupported input dtype: { input .dtype } "
@@ -188,12 +263,12 @@ def quantize_affine(
188
263
if zero_point is not None :
189
264
zero_point = zero_point .view (shape_after_reduction )
190
265
191
- if zero_point_domain == ZeroPointDomain .INT :
266
+ if zero_point_domain == ZeroPointDomain .INT . name :
192
267
quant = torch .clamp (
193
268
torch .round (input * (1.0 / scale )) + zero_point , quant_min , quant_max
194
269
).to (output_dtype )
195
270
else :
196
- assert zero_point_domain == ZeroPointDomain .FLOAT
271
+ assert zero_point_domain == ZeroPointDomain .FLOAT . name
197
272
mid_point = (quant_max + quant_min + 1 ) / 2
198
273
min_val = zero_point - scale * mid_point
199
274
quant = (
@@ -216,7 +291,7 @@ def dequantize_affine(
216
291
zero_point_domain : ZeroPointDomain = ZeroPointDomain .INT ,
217
292
* ,
218
293
output_dtype : torch .dtype = torch .float32 ,
219
- ):
294
+ ) -> torch . Tensor :
220
295
"""
221
296
Args:
222
297
input (torch.Tensor): quantized tensor, should match the dtype `dtype` argument
@@ -238,6 +313,34 @@ def dequantize_affine(
238
313
Output:
239
314
dequantized Tensor, with requested dtype or fp32
240
315
"""
316
+ return _dequantize_affine (
317
+ input ,
318
+ block_size ,
319
+ scale ,
320
+ zero_point ,
321
+ input_dtype ,
322
+ quant_min ,
323
+ quant_max ,
324
+ zero_point_domain .name ,
325
+ output_dtype = output_dtype ,
326
+ )
327
+
328
+
329
+ # @register_custom_op(quant_lib, 'dequantize_affine(Tensor input, int[] block_size, Tensor scale, Tensor zero_point, ScalarType input_dtype, int? quant_min=None, int? quant_max=None, str zero_point_domain="INT", ScalarType output_dtype=float) -> Tensor')
330
+ @register_custom_op (quant_lib )
331
+ def _dequantize_affine (
332
+ input : torch .Tensor ,
333
+ block_size : List [int ],
334
+ scale : torch .Tensor ,
335
+ zero_point : Optional [torch .Tensor ],
336
+ input_dtype : torch .dtype ,
337
+ quant_min : Optional [int ] = None ,
338
+ quant_max : Optional [int ] = None ,
339
+ zero_point_domain : str = "INT" ,
340
+ output_dtype : torch .dtype = torch .float32 ,
341
+ ) -> torch .Tensor :
342
+ """op definition that has compatible signatures with custom op library
343
+ """
241
344
242
345
# TODO: validations
243
346
# TODO: validate scale/zero_point dimensions are compatible with block_size
@@ -255,16 +358,16 @@ def dequantize_affine(
255
358
if zero_point is not None :
256
359
zero_point = zero_point .view (shape_after_reduction )
257
360
258
- if zero_point_domain == ZeroPointDomain .INT :
361
+ if zero_point_domain == ZeroPointDomain .INT . name :
259
362
# Force a copy to avoid input modification due
260
363
# to upcoming in-place operations.
261
364
dequant = input .to (torch .int32 , copy = True )
262
365
if zero_point is not None :
263
- dequant -= zero_point .to (torch .int32 )
366
+ dequant = dequant - zero_point .to (torch .int32 )
264
367
dequant = dequant .to (output_dtype )
265
- dequant *= scale
368
+ dequant = dequant * scale
266
369
else :
267
- assert zero_point_domain == ZeroPointDomain .FLOAT , f"Unexpected zero point domain: { zero_point_domain } "
370
+ assert zero_point_domain == ZeroPointDomain .FLOAT . name , f"Unexpected zero point domain: { zero_point_domain } "
268
371
mid_point = (quant_max + quant_min + 1 ) / 2
269
372
# This should allocate new memory and avoid input modification
270
373
dequant = input - mid_point
@@ -320,8 +423,39 @@ def choose_qparams_affine(
320
423
Output:
321
424
Tuple of scales and zero_points Tensor with requested dtype
322
425
"""
426
+ return _choose_qparams_affine (
427
+ input ,
428
+ mapping_type .name ,
429
+ block_size ,
430
+ target_dtype ,
431
+ quant_min ,
432
+ quant_max ,
433
+ eps ,
434
+ scale_dtype ,
435
+ zero_point_dtype ,
436
+ preserve_zero ,
437
+ zero_point_domain .name
438
+ )
439
+
440
+ # @register_custom_op(quant_lib, 'choose_qparams_affine(Tensor input, str mapping_type, int[] block_size, ScalarType target_dtype, int? quant_min=None, int? quant_max=None, float? eps=None, ScalarType? scale_dtype=None, ScalarType? zero_point_dtype=None, bool preserve_zero=True, str zero_point_domain="INT") -> (Tensor, Tensor)')
441
+ @register_custom_op (quant_lib )
442
+ def _choose_qparams_affine (
443
+ input : torch .Tensor ,
444
+ mapping_type : str ,
445
+ block_size : List [int ],
446
+ target_dtype : torch .dtype ,
447
+ quant_min : Optional [int ] = None ,
448
+ quant_max : Optional [int ] = None ,
449
+ eps : Optional [float ] = None ,
450
+ scale_dtype : Optional [torch .dtype ] = None ,
451
+ zero_point_dtype : Optional [torch .dtype ] = None ,
452
+ preserve_zero : bool = True ,
453
+ zero_point_domain : str = "INT" ,
454
+ ) -> Tuple [torch .Tensor , torch .Tensor ]:
455
+ """op definition that has compatible signatures with custom op library
456
+ """
323
457
quant_min , quant_max = _get_and_check_qmin_qmax (target_dtype , quant_min , quant_max )
324
- assert mapping_type in [MappingType .SYMMETRIC , MappingType .ASYMMETRIC ], f"Unsupported mapping type: { mapping_type } "
458
+ assert mapping_type in [MappingType .SYMMETRIC . name , MappingType .ASYMMETRIC . name ], f"Unsupported mapping type: { mapping_type } "
325
459
326
460
if scale_dtype is None :
327
461
scale_dtype = input .dtype
@@ -342,21 +476,22 @@ def choose_qparams_affine(
342
476
min_val_neg = min_val
343
477
max_val_pos = max_val
344
478
345
- if mapping_type == MappingType .SYMMETRIC :
479
+ if mapping_type == MappingType .SYMMETRIC . name :
346
480
max_val_pos = torch .max (- min_val_neg , max_val_pos )
347
481
scale = max_val_pos / (float (quant_max - quant_min ) / 2 )
348
482
if not preserve_zero :
349
483
raise ValueError ("preserve_zero == False is not supported for symmetric quantization" )
350
- if zero_point_domain != ZeroPointDomain .INT :
484
+ if zero_point_domain != ZeroPointDomain .INT . name :
351
485
raise ValueError ("zero_point_domain != ZeroPointDomain.INT is not supported for symmetric quantization" )
352
486
zero_point = torch .full_like (scale , int ((quant_max + quant_min + 1 ) / 2 ))
353
487
else :
488
+ assert mapping_type == MappingType .ASYMMETRIC .name
354
489
scale = (max_val_pos - min_val_neg ) / float (quant_max - quant_min )
355
490
if preserve_zero :
356
491
zero_point = quant_min - torch .round (min_val_neg / scale )
357
492
zero_point = torch .clamp (zero_point , quant_min , quant_max )
358
493
else :
359
- assert zero_point_domain == ZeroPointDomain .FLOAT , "if not preserve_zero, zero_point must be in FLOAT domain"
494
+ assert zero_point_domain == ZeroPointDomain .FLOAT . name , "if not preserve_zero, zero_point must be in FLOAT domain"
360
495
mid_point = (quant_max + quant_min + 1 ) / 2
361
496
zero_point = min_val_neg + scale * mid_point
362
497
0 commit comments