From 263e441c75d6bdced22068f3df9e806338629f5c Mon Sep 17 00:00:00 2001 From: Wei Date: Sun, 26 Jun 2022 00:42:21 -0700 Subject: [PATCH 01/10] Create getting_started_with_fx_path.rst --- .../getting_started_with_fx_path.rst | 304 ++++++++++++++++++ 1 file changed, 304 insertions(+) create mode 100644 docsrc/tutorials/getting_started_with_fx_path.rst diff --git a/docsrc/tutorials/getting_started_with_fx_path.rst b/docsrc/tutorials/getting_started_with_fx_path.rst new file mode 100644 index 0000000000..9f15616e28 --- /dev/null +++ b/docsrc/tutorials/getting_started_with_fx_path.rst @@ -0,0 +1,304 @@ +.. user_guide: +Torch-TensorRT (FX Path) User Guide +======================== +Torch-TensorRT (FX Path) is a tool that can convert a PyTorch model through torch.FX to an TensorRT engine optimized targeting running on Nvidia GPUs. TensorRT is the inference engine developed by Nvidia which composed of various kinds of optimization including kernel fusion, graph optimization, low precision, etc.. +This tool is developed in Python environment providing most usability to researchers and engineers. There are a few stages that a user want to use this tool and we will introduce them here. + +Installation +------------ +* Method 1. Follow the instrucions for Torch-TensorRT +* Method 2. To install FX path only (Python path) and avoid the C++ build for torchscript path + +.. code-block:: shell + + $ conda create --name python_env python=3.8 + $ conda activate python_env + + # Recommend to install PyTorch 1.12 and later + $ conda install pytorch torchvision torchtext cudatoolkit=11.3 -c pytorch-nightly + + # Install TensorRT python package + $ pip3 install nvidia-pyindex + $ pip3 install nvidia-tensorrt==8.2.4.2 + $ git clone https://github.com/pytorch/TensorRT.git + $ cd TensorRT/py && python setup.py install --fx-only && cd .. + + $ pyton -c "import torch_tensorrt.fx" + # Test an example by + $ python py/torch_tensorrt/fx/example/lower_example.py + + +Converting a PyTorch Model to TensorRT Engine +--------------------------------------------- +We will go through an example to illustrate the major steps that FX path uses to + +* **Step 1: Trace the model with acc_tracer** +Acc_tracer is a tracer inheritated from FX tracer. It comes with args normalizer to convert all args to kwargs and pass to TRT converters. + +.. code-block:: shell + + import torch_tensorrt.fx.tracer.acc_tracer.acc_tracer as acc_tracer + + # Build the model which needs to be a PyTorch nn.Module. + my_pytorch_model = build_model() + + # Prepare inputs to the model. Inputs have to be a List of Tensors + inputs = [Tensor, Tensor, ...] + + # Trace the model with acc_tracer. + acc_mod = acc_tracer.trace(my_pytorch_model, inputs) + +*Common Errors:* + +symbolically traced variables cannot be used as inputs to control flow +This means the model contains dynamic control flow. Please refer to section “Dynamic Control Flow” in `FX guide `_. + +* **Step 2: Build TensorRT engine** +There are `two different modes `_ for how TensorRT handles batch dimension, explicit batch dimension and implicit batch dimension. This mode was used by early versions of TensorRT, and is now deprecated but continues to be supported for backwards compatibility. In explicit batch mode, all dimensions are explicit and can be dynamic, that is their length can change at execution time. Many new features, such as dynamic shapes and loops, are available only in this mode. User can still choose to use implicit batch mode when they set ``explicit_batch_dimension=False`` in ``lower_to_trt()``. We do not recommend to use it since it will lack of support in future TensorRT versions. + +Explicit batch is the default mode and it must be set for dynamic shape. For most of vision task, user can choose to enable ``dynamic_batch`` in ``lower_to_trt()`` if they want to get the similar effects as implicit mode where only batch dimension changes. It has some requirements: +1. Shapes of inputs, outputs and activations are fixed except batch dimension. +2. Inputs, outputs and activations have batch dimension as the major dimension. +3. All the operators in the model do not modify batch dimension (permute, transpose, split, etc.) or compute over batch dimension (sum, softmax, etc.). + +For examples of the last path, if we have a 3D tensor t shaped as (batch, sequence, dimension), operations such as torch.transpose(0, 2). If any of these three are not satisfied, we’ll need to specify InputTensorSpec as inputs with dynamic range. + +.. code-block:: shell + + import deeplearning.trt.fx2trt.converter.converters + from torch.fx.experimental.fx2trt.fx2trt import InputTensorSpec, TRTInterpreter + + # InputTensorSpec is a dataclass we use to store input information. + # There're two ways we can build input_specs. + # Option 1, build it manually. + input_specs = [ + InputTensorSpec(shape=(1, 2, 3), dtype=torch.float32), + InputTensorSpec(shape=(1, 4, 5), dtype=torch.float32), + ] + # Option 2, build it using sample_inputs where user provide a sample + inputs = [ + torch.rand((1,2,3), dtype=torch.float32), + torch.rand((1,4,5), dtype=torch.float32), + ] + input_specs = InputTensorSpec.from_tensors(inputs) + + # IMPORTANT: If dynamic shape is needed, we need to build it slightly differently. + input_specs = [ + InputTensorSpec( + shape=(-1, 2, 3), + dtype=torch.float32, + # Currently we only support one set of dynamic range. User may set other dimensions but it is not promised to work for any models + # (min_shape, optimize_target_shape, max_shape) + # For more information refer to fx/input_tensor_spec.py + shape_ranges = [ + ((1, 2, 3), (4, 2, 3), (100, 2, 3)), + ], + ), + InputTensorSpec(shape=(1, 4, 5), dtype=torch.float32), + ] + + # Build a TRT interpreter. Set explicit_batch_dimension accordingly. + interpreter = TRTInterpreter( + acc_mod, input_specs, explicit_batch_dimension=True/False + ) + + # The output of TRTInterpreter run() is wrapped as TRTInterpreterResult. + # The TRTInterpreterResult contains required parameter to build TRTModule, + # and other informational output from TRTInterpreter run. + class TRTInterpreterResult(NamedTuple): + engine: Any + input_names: Sequence[str] + output_names: Sequence[str] + serialized_cache: bytearray + + #max_batch_size: set accordingly for maximum batch size you will use. + #max_workspace_size: set to the maximum size we can afford for temporary buffer + #lower_precision: the precision model layers are running on (TensorRT will choose the best perforamnce precision). + #sparse_weights: allow the builder to examine weights and use optimized functions when weights have suitable sparsity + #force_fp32_output: force output to be fp32 + #strict_type_constraints: Usually we should set it to False unless we want to control the precision of certain layer for numeric #reasons. + #algorithm_selector: set up algorithm selection for certain layer + #timing_cache: enable timing cache for TensorRT + #profiling_verbosity: TensorRT logging level + trt_interpreter_result = interpreter.run( + max_batch_size=64, + max_workspace_size=1 << 25, + sparse_weights=False, + force_fp32_output=False, + strict_type_constraints=False, + algorithm_selector=None, + timing_cache=None, + profiling_verbosity=None, + ) + + +*Common Errors:* + +RuntimeError: Conversion of function xxx not currently supported! +- This means we don’t have the support for this xxx operator. Please refer to section “How to add a missing op” below for further instructions. + +* **Step 3: Run the model** +One way is using TRTModule, which is basically a PyTorch nn.Module. + +.. code-block:: shell + + from torch_tensorrt.fx import TRTModule + mod = TRTModule( + trt_interpreter_result.engine, + trt_interpreter_result.input_names, + trt_interpreter_result.output_names) + # Just like all other PyTorch modules + outputs = mod(*inputs) + torch.save(mod, "trt.pt") + reload_trt_mod = torch.load("trt.pt") + reload_model_output = reload_trt_mod(*inputs) + +So far, we give a detailed explanation of major steps in convterting a PyTorch model into TensorRT engine. Users are welcome to refer to the source code for some parameters explanations. In the converting scheme, there are two important actions in it. One is acc tracer which helps us to convert a PyTorch model to acc graph. The other is FX path converter which helps to convert the acc graph's operation to corresponding TensorRT operation and build up the TensoRT engine for it. + +Acc Tracer +--------- + +Acc tracer is a custom FX symbolic tracer. It does a couple more things compare to the vanilla FX symbolic tracer. We mainly depend on it to convert PyTorch ops or builtin ops to acc ops. There are two main purposes for fx2trt to use acc ops: + +1. there’re many ops that do similar things in PyTorch ops and builtin ops such like torch.add, builtin.add and torch.Tensor.add. Using acc tracer, we normalize these three ops to a single acc_ops.add. This helps reduce the number of converters we need to write. +2. acc ops only have kwargs which makes writing converter easier as we don’t need to add additional logic to find arguments in args and kwargs. + +FX2TRT +-------- +After symbolic tracing, we have the graph representation of a PyTorch model. fx2trt leverages the power of fx.Interpreter. fx.Interpreter goes through the whole graph node by node and calls the function that node represents. fx2trt overrides the original behavior of calling the function with invoking corresponding converts for each node. Each converter function adds corresponding TensorRT layer(s). + +Below is an example of a converter function. The decorator is used to register this converter function with the corresponding node. In this example, we register this converter to a fx node whose target is acc_ops.sigmoid. + +.. code-block:: shell + + @tensorrt_converter(acc_ops.sigmoid) + def acc_ops_sigmoid(network, target, args, kwargs, name): + """ + network: TensorRT network. We'll be adding layers to it. + + The rest arguments are attributes of fx node. + """ + input_val = kwargs['input'] + + if not isinstance(input_val, trt.tensorrt.ITensor): + raise RuntimeError(f'Sigmoid received input {input_val} that is not part ' + 'of the TensorRT region!') + + layer = network.add_activation(input=input_val, type=trt.ActivationType.SIGMOID) + layer.name = name + return layer.get_output(0) + +How to Add a Missing Op +**************** + +You can actually add it wherever you want just need to remember import the file so that all acc ops and mapper will be registered before tracing with acc_tracer. + +* **Step 1. Add a new acc op** + +TODO: Need to explain more on the logistic of acc op like when we want to break down an op and when we want to reuse other ops. + +In `acc tracer `_, we convert nodes in the graph to acc ops if there’s a mapping registered for the node to an acc op. + +In order to make the conversion to acc ops to happen, there’re two things required. One is that there should be an acc op function defined and the other is there should be a mapping registered. + +Defining an acc op is simple, we first just need a function and register the function as an acc op via this decorator `acc_normalizer.py `_. e.g. the following code adds an acc op named foo() which adds two given inputs. + +.. code-block:: shell + + # NOTE: all acc ops should only take kwargs as inputs, therefore we need the "*" + # at the beginning. + @register_acc_op + def foo(*, input, other, alpha): + return input + alpha * other + +There’re two ways to register a mapping. One is `register_acc_op_mapping() `_. Let’s register a mapping from torch.add to foo() we just created above. We need to add decorator register_acc_op_mapping to it. + +.. code-block:: shell + + this_arg_is_optional = True + + @register_acc_op_mapping( + op_and_target=("call_function", torch.add), + arg_replacement_tuples=[ + ("input", "input"), + ("other", "other"), + ("alpha", "alpha", this_arg_is_optional), + ], + ) + @register_acc_op + def foo(*, input, other, alpha=1.0): + return input + alpha * other + +``op_and_target`` determines which node will trigger this mapping. op and target are the attributes of FX node. In acc_normalization when we see a node with the same op and target as set in the ``op_and_target``, we will trigger the mapping. Since we want to map from ``torch.add``, then op would be call_function and target would be ``torch.add``. ``arg_replacement_tuples`` determines how we construct kwargs for new acc op node using args and kwargs from original node. Each tuple in ``arg_replacement_tuples`` represents one argument mapping rule. It contains two or three elements. The third element is a boolean variable that determines whether this kwarg is optional in *original node*. We only need to specify the third element if it’s True. The first element is the argument name in original node which will be used as the acc op node’s argument whose name is the second element in the tuple. The sequence of the tuples does matter because the position of the tuple determines where the argument is in original node’s args. We use this information to map args from original node to kwargs in acc op node. +We don’t have to specify arg_replacement_tuples if none of the followings are true. + +1. kwargs of original nodes and acc op nodes have different name. +2. there’re optional arguments. + +The other way to register a mapping is through `register_custom_acc_mapper_fn() `_. This one is designed to reduce the redundant op registration as it allows you to use a function to map to one or more existing acc ops throught some combinations. In the function, you can do basically whatever you want. Let’s use an example to explain how it works. + +.. code-block:: shell + + @register_acc_op + def foo(*, input, other, alpha=1.0): + return input + alpha * other + + @register_custom_acc_mapper_fn( + op_and_target=("call_function", torch.add), + arg_replacement_tuples=[ + ("input", "input"), + ("other", "other"), + ("alpha", "alpha", this_arg_is_optional), + ], + ) + def custom_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node: + """ + `node` is original node, which is a call_function node with target + being torch.add. + """ + alpha = 1 + if "alpha" in node.kwargs: + alpha = node.kwargs["alpha"] + foo_kwargs = {"input": node["input"], "other": node["other"], "alpha": alpha} + with node.graph.inserting_before(node): + foo_node = node.graph.call_function(foo, kwargs=foo_kwargs) + foo_node.meta = node.meta.copy() + return foo_node + + +In the custom mapper function, we construct an acc op node and return it. The node we returns here would take over all the children nodes of original nodes `acc_normalizer.py `_. + +The last step would be *adding unit test* for the new acc op or mapper function we added. The place to add the unit test is here `test_acc_tracer.py `_. + +* **Step 2. Add a new fx2trt converter** + +All the developed converters for acc ops are all in `acc_op_converter.py `_. It could give you a good example of how the converter is added. + +Essentially, the converter is the mapping mechanism that maps the acc ops to a TensorRT layer. If we are able to find all the TensorRT layers we need we can get start to add a converter for the node using `TensorRT APIs `_. + +.. code-block:: shell + + @tensorrt_converter(acc_ops.sigmoid) + def acc_ops_sigmoid(network, target, args, kwargs, name): + """ + network: TensorRT network. We'll be adding layers to it. + + The rest arguments are attributes of fx node. + """ + input_val = kwargs['input'] + + if not isinstance(input_val, trt.tensorrt.ITensor): + raise RuntimeError(f'Sigmoid received input {input_val} that is not part ' + 'of the TensorRT region!') + + layer = network.add_activation(input=input_val, type=trt.ActivationType.SIGMOID) + layer.name = name + return layer.get_output(0) + +We need to use ``tensorrt_converter`` decorator to register the converter. The argument for the decorator is the target of the fx node that we need to convert. In the converter, we can find the inputs to the fx node in kwargs. As in the example, the original node is `acc_ops.sigmoid` which only has one argument “input” in acc_ops.py. We get the input and check if it’s a TensorRT tensor. After that, we add a sigmoid layer to TensorRT network and return the output of the layer. The output we returned will be passed to the children nodes of acc_ops.sigmoid by fx.Interpreter. + +**What if we can not find corresponding layers in TensorRT that do the same thing as the node.** + +In this case, we would need to do a bit more work. TensorRT provides plugins which serves as custom layers. *We have not implement this feature yet. We will update once it is enabled*. + +Last step would be adding the unit test for the new converter we added. User could add corresponding unit test in this `folder `_. From eb8ebb368d324abb7cfe38cbf88af45649ed6a6c Mon Sep 17 00:00:00 2001 From: Wei Date: Mon, 27 Jun 2022 15:14:16 -0700 Subject: [PATCH 02/10] Create get_started_fx_path.ipynb --- notebooks/get_started_fx_path.ipynb | 453 ++++++++++++++++++++++++++++ 1 file changed, 453 insertions(+) create mode 100644 notebooks/get_started_fx_path.ipynb diff --git a/notebooks/get_started_fx_path.ipynb b/notebooks/get_started_fx_path.ipynb new file mode 100644 index 0000000000..fb88c64714 --- /dev/null +++ b/notebooks/get_started_fx_path.ipynb @@ -0,0 +1,453 @@ +{ + "metadata": { + "dataExplorerConfig": {}, + "bento_stylesheets": { + "bento/extensions/flow/main.css": true, + "bento/extensions/kernel_selector/main.css": true, + "bento/extensions/kernel_ui/main.css": true, + "bento/extensions/new_kernel/main.css": true, + "bento/extensions/system_usage/main.css": true, + "bento/extensions/theme/main.css": true + }, + "kernelspec": { + "display_name": "accelerators", + "language": "python", + "name": "bento_kernel_accelerators", + "metadata": { + "kernel_name": "bento_kernel_accelerators", + "nightly_builds": true, + "fbpkg_supported": true, + "cinder_runtime": false, + "is_prebuilt": true + } + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3" + }, + "last_server_session_id": "42b65868-6af0-4f04-bf2f-b7e2511f23dd", + "last_kernel_id": "a08a7dfc-0fcc-4486-a2d5-604483260888", + "last_base_url": "https://devgpu005.ftw6.facebook.com:8093/", + "last_msg_id": "3f4cd9a4-65001843cf56aec954e05889_80", + "outputWidgetContext": {} + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "originalKey": "f9189964-8f5f-4c3d-b58c-ebff076ba890", + "showInput": true, + "customInput": null, + "code_folding": [], + "hidden_ranges": [] + }, + "source": [ + "Here is a benchmark example demonstrates the basic usage of `lower_to_trt` interface.\n", + "It shows the boosted performance of TensorRT after lowering. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "originalKey": "aac0295c-e26e-45cb-b1b6-7796ee860152", + "showInput": false, + "customInput": null + }, + "source": [ + "The purpose of this example is to demonstrate the overall flow of lowering a PyTorch\n", + "model to TensorRT via FX with existing FX based tooling. The general lowering flow would be like:\n", + "1. Use splitter to split the model if there're ops in the model that we don't want to lower to TensorRT for some reasons like the ops are not supported in TensorRT or running them on other backends provides better performance.\n", + "2. Lower the model (or part of the model if splitter is used) to TensorRT via fx2trt.\n", + "If we know the model is fully supported by fx2trt then we can skip the splitter." + ] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "ca68b029-68a6-42d6-968e-95bb7c1aae73", + "showInput": true, + "customInput": null, + "collapsed": false, + "requestMsgId": "f56944ff-ade2-4041-bdd6-3bce44b1405f", + "customOutput": null, + "executionStartTime": 1656367410991, + "executionStopTime": 1656367412604 + }, + "source": [ + "import torch\n", + "import torch.fx\n", + "import torch.nn as nn\n", + "from torch_tensorrt.fx.utils import LowerPrecision\n", + "import torch_tensorrt.fx.tracer.acc_tracer.acc_tracer as acc_tracer\n", + "from torch_tensorrt.fx import InputTensorSpec, TRTInterpreter, TRTModule\n", + "from torch_tensorrt.fx.tools.trt_splitter import TRTSplitter" + ], + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "8f974ab2-d187-4ffe-a09b-16cd85949be4", + "showInput": true, + "customInput": null, + "code_folding": [], + "hidden_ranges": [], + "collapsed": false, + "requestMsgId": "564359f5-ac69-4666-91e1-41b299495ed1", + "customOutput": null, + "executionStartTime": 1656367414494, + "executionStopTime": 1656367422756 + }, + "source": [ + "class Model(nn.Module):\n", + " def __init__(self):\n", + " super().__init__()\n", + " self.linear = nn.Linear(10, 10)\n", + " self.relu = nn.ReLU()\n", + "\n", + " def forward(self, x):\n", + " x = self.linear(x)\n", + " x = self.relu(x)\n", + " x = torch.linalg.norm(x, ord=2, dim=1)\n", + " x = self.relu(x)\n", + " return x\n", + "\n", + "\n", + "inputs = [torch.randn((1, 10), device=torch.device('cuda'))]\n", + "model = Model().cuda().eval()" + ], + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "originalKey": "0d407e92-e9e7-48aa-9c9e-1c21a9b5fd8f", + "showInput": false, + "customInput": null, + "code_folding": [], + "hidden_ranges": [] + }, + "source": [ + "acc_tracer is a custom fx tracer that maps nodes whose targets are PyTorch operators\n", + "to acc ops." + ] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "a1d9c8c2-8ec7-425a-8518-6f7e53ab1e67", + "showInput": true, + "customInput": null, + "code_folding": [], + "hidden_ranges": [], + "collapsed": false, + "requestMsgId": "ee2da608-5f1c-4f63-9927-544717e84e8a", + "customOutput": null, + "executionStartTime": 1656367480626, + "executionStopTime": 1656367482881 + }, + "source": [ + "traced = acc_tracer.trace(model, inputs)" + ], + "execution_count": 3, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "originalKey": "246613eb-14b5-488e-9aae-35306fc99db1", + "showInput": false, + "customInput": null, + "code_folding": [], + "hidden_ranges": [] + }, + "source": [ + "Splitter will split the model into several submodules. The name of submodules will\n", + "be either `run_on_acc_{}` or `run_on_gpu_{}`. Submodules named `run_on_acc_{}` can\n", + "be fully lowered to TensorRT via fx2trt while submodules named `run_on_gpu_{}` has\n", + "unsupported ops and can't be lowered by fx2trt. We can still run `run_on_gpu_{}`\n", + "submodules on GPU if ops there have cuda implementation.\n", + "" + ] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "1103c70a-3766-4d89-ad2f-cdcb1c3891e0", + "showInput": true, + "customInput": null, + "collapsed": false, + "requestMsgId": "feb888ea-ef9c-4577-b0c6-cf95bc1dd25e", + "customOutput": null, + "executionStartTime": 1656367487073, + "executionStopTime": 1656367487154 + }, + "source": [ + "splitter = TRTSplitter(traced, inputs)" + ], + "execution_count": 4, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "originalKey": "3d65e07e-57ed-47d5-adb9-4685c69c9c6b", + "showInput": false, + "customInput": null, + "code_folding": [], + "hidden_ranges": [] + }, + "source": [ + "Preview functionality allows us to see what are the supported ops and unsupported\n", + "ops. We can optionally the dot graph which will color supported ops and unsupported\n", + "ops differently." + ] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "6aaed2d5-61b7-438e-a72a-63f91d0709e2", + "showInput": true, + "customInput": null, + "collapsed": false, + "requestMsgId": "2948c2f8-854b-4bc2-b399-321469da320c", + "customOutput": null, + "executionStartTime": 1656367489373, + "executionStopTime": 1656367489556 + }, + "source": [ + "splitter.node_support_preview()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nSupported node types in the model:\nacc_ops.linear: ((), {'input': torch.float32, 'weight': torch.float32, 'bias': torch.float32})\nacc_ops.relu: ((), {'input': torch.float32})\n\nUnsupported node types in the model:\nacc_ops.linalg_norm: ((), {'input': torch.float32})\n\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": "\"\\nSupported node types in the model:\\nacc_ops.linear: ((), {'input': torch.float32, 'weight': torch.float32, 'bias': torch.float32})\\nacc_ops.relu: ((), {'input': torch.float32})\\n\\nUnsupported node types in the model:\\nacc_ops.linalg_norm: ((), {'input': torch.float32})\\n\"" + }, + "metadata": { + "bento_obj_id": "139812830161136" + }, + "execution_count": 5 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "originalKey": "8d8035ab-869e-4096-b8e1-3539a0cfe1af", + "showInput": false, + "customInput": null + }, + "source": [ + "After split, there are three submodules, _run_on_acc_0 and _run_on_gpu_1. " + ] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "80e03730-955a-4cc8-b071-7f92a2cff3df", + "showInput": true, + "customInput": null, + "code_folding": [], + "hidden_ranges": [], + "collapsed": false, + "requestMsgId": "2ca46574-7176-4699-a809-2a2e2d5ffda0", + "customOutput": null, + "executionStartTime": 1656367495077, + "executionStopTime": 1656367495250 + }, + "source": [ + "split_mod = splitter()\n", + "print(split_mod.graph)" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Got 2 acc subgraphs and 1 non-acc subgraphs\ngraph():\n %x : [#users=1] = placeholder[target=x]\n %_run_on_acc_0 : [#users=1] = call_module[target=_run_on_acc_0](args = (%x,), kwargs = {})\n %_run_on_gpu_1 : [#users=1] = call_module[target=_run_on_gpu_1](args = (%_run_on_acc_0,), kwargs = {})\n %_run_on_acc_2 : [#users=1] = call_module[target=_run_on_acc_2](args = (%_run_on_gpu_1,), kwargs = {})\n return _run_on_acc_2\n" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "9ce75161-978e-468e-9989-ecdbc9af0d5b", + "showInput": true, + "customInput": null, + "collapsed": false, + "requestMsgId": "0370de27-39ec-4be0-826b-9aec90df1155", + "customOutput": null, + "executionStartTime": 1656367496353, + "executionStopTime": 1656367496452 + }, + "source": [ + "print(split_mod._run_on_acc_0.graph)\n", + "print(split_mod._run_on_gpu_1.graph)\n", + "print(split_mod._run_on_acc_2.graph)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "graph():\n %x : [#users=1] = placeholder[target=x]\n %linear_weight : [#users=1] = get_attr[target=linear.weight]\n %linear_bias : [#users=1] = get_attr[target=linear.bias]\n %linear_1 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.linear](args = (), kwargs = {input: %x, weight: %linear_weight, bias: %linear_bias})\n %relu_2 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.relu](args = (), kwargs = {input: %linear_1, inplace: False})\n return relu_2\ngraph():\n %relu_2 : [#users=1] = placeholder[target=relu_2]\n %linalg_norm_1 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.linalg_norm](args = (), kwargs = {input: %relu_2, ord: 2, dim: 1, keepdim: False})\n return linalg_norm_1\ngraph():\n %linalg_norm_1 : [#users=1] = placeholder[target=linalg_norm_1]\n %relu_3 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.relu](args = (), kwargs = {input: %linalg_norm_1, inplace: False})\n return relu_3\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "originalKey": "7a6857bc-fedd-4847-ba17-a5d114de34f3", + "showInput": false, + "customInput": null, + "code_folding": [], + "hidden_ranges": [] + }, + "source": [ + "The `split_mod` contains the child modules supported by TRT or eager gpu. We can iterate them to transform the module into TRT engine." + ] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "174fd2eb-a864-49cf-a204-6d24a8e2849d", + "showInput": true, + "customInput": null, + "collapsed": false, + "requestMsgId": "cf7fdfe4-e781-47c8-9a9a-85b5664c10f7", + "customOutput": null, + "executionStartTime": 1656367502837, + "executionStopTime": 1656367510024, + "code_folding": [], + "hidden_ranges": [] + }, + "source": [ + "def get_submod_inputs(mod, submod, inputs):\n", + " acc_inputs = None\n", + "\n", + " def get_input(self, inputs):\n", + " nonlocal acc_inputs\n", + " acc_inputs = inputs\n", + "\n", + " handle = submod.register_forward_pre_hook(get_input)\n", + " mod(*inputs)\n", + " handle.remove()\n", + " return acc_inputs\n", + "\n", + "# Since the model is splitted into three segments. We need to lower each TRT eligible segment.\n", + "# If we know the model can be fully lowered, we can skip the splitter part.\n", + "for name, _ in split_mod.named_children():\n", + " if \"_run_on_acc\" in name:\n", + " submod = getattr(split_mod, name)\n", + " # Get submodule inputs for fx2trt\n", + " acc_inputs = get_submod_inputs(split_mod, submod, inputs)\n", + "\n", + " # fx2trt replacement\n", + " interp = TRTInterpreter(\n", + " submod,\n", + " InputTensorSpec.from_tensors(acc_inputs),\n", + " explicit_batch_dimension=True,\n", + " )\n", + " r = interp.run(lower_precision=LowerPrecision.FP32)\n", + " trt_mod = TRTModule(*r)\n", + " setattr(split_mod, name, trt_mod)\n", + "\n", + "lowered_model_output = split_mod(*inputs)" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "I0627 150503.073 fx2trt.py:190] Run Module elapsed time: 0:00:00.014965\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "I0627 150504.996 fx2trt.py:241] Build TRT engine elapsed time: 0:00:01.922029\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "I0627 150505.026 fx2trt.py:190] Run Module elapsed time: 0:00:00.000302\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "I0627 150509.953 fx2trt.py:241] Build TRT engine elapsed time: 0:00:04.925192\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "originalKey": "f1db3e1e-3a70-4735-a403-baa557b0f8a6", + "showInput": false, + "customInput": null, + "code_folding": [], + "hidden_ranges": [] + }, + "source": [ + "Model can be saved by torch.save and loaded with torch.load. Then we can compare the results with eager mode inference. " + ] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "a7c4fa0f-cac6-4959-8fa6-13b3455137d3", + "showInput": true, + "customInput": null, + "collapsed": false, + "requestMsgId": "f0c264ac-2bda-4c8e-a236-e2bd475e601e", + "customOutput": null, + "executionStartTime": 1656367515833, + "executionStopTime": 1656367516184 + }, + "source": [ + "torch.save(split_mod, \"trt.pt\")\n", + "reload_trt_mod = torch.load(\"trt.pt\")\n", + "reload_model_output = reload_trt_mod(*inputs)\n", + "\n", + "# Make sure the results match\n", + "regular_model_output = model(*inputs)\n", + "torch.testing.assert_close(\n", + " reload_model_output, regular_model_output, atol=3e-3, rtol=1e-2\n", + ")" + ], + "execution_count": 9, + "outputs": [] + } + ] +} From fcf7e01c66dc9cef8b05b246849c43ef97c87f99 Mon Sep 17 00:00:00 2001 From: Wei Date: Mon, 27 Jun 2022 15:17:11 -0700 Subject: [PATCH 03/10] Update and rename get_started_fx_path.ipynb to getting_started_with_fx_path_module.ipynb --- ...getting_started_with_fx_path_module.ipynb} | 20 ++++--------------- 1 file changed, 4 insertions(+), 16 deletions(-) rename notebooks/{get_started_fx_path.ipynb => getting_started_with_fx_path_module.ipynb} (96%) diff --git a/notebooks/get_started_fx_path.ipynb b/notebooks/getting_started_with_fx_path_module.ipynb similarity index 96% rename from notebooks/get_started_fx_path.ipynb rename to notebooks/getting_started_with_fx_path_module.ipynb index fb88c64714..5ee8884790 100644 --- a/notebooks/get_started_fx_path.ipynb +++ b/notebooks/getting_started_with_fx_path_module.ipynb @@ -44,30 +44,18 @@ { "cell_type": "markdown", "metadata": { - "originalKey": "f9189964-8f5f-4c3d-b58c-ebff076ba890", - "showInput": true, + "originalKey": "aac0295c-e26e-45cb-b1b6-7796ee860152", + "showInput": false, "customInput": null, "code_folding": [], "hidden_ranges": [] }, - "source": [ - "Here is a benchmark example demonstrates the basic usage of `lower_to_trt` interface.\n", - "It shows the boosted performance of TensorRT after lowering. " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "originalKey": "aac0295c-e26e-45cb-b1b6-7796ee860152", - "showInput": false, - "customInput": null - }, "source": [ "The purpose of this example is to demonstrate the overall flow of lowering a PyTorch\n", "model to TensorRT via FX with existing FX based tooling. The general lowering flow would be like:\n", "1. Use splitter to split the model if there're ops in the model that we don't want to lower to TensorRT for some reasons like the ops are not supported in TensorRT or running them on other backends provides better performance.\n", - "2. Lower the model (or part of the model if splitter is used) to TensorRT via fx2trt.\n", - "If we know the model is fully supported by fx2trt then we can skip the splitter." + "2. Lower the model (or part of the model if splitter is used) to TensorRT via fx path.\n", + "If we know the model is fully supported by fx path (without op unsupported) then we can skip the splitter." ] }, { From 672de80e43fc20509d74be9e14d4ba7e206da287 Mon Sep 17 00:00:00 2001 From: Wei Date: Mon, 27 Jun 2022 23:49:04 -0700 Subject: [PATCH 04/10] Create getting_started_with_fx_path_lower_to_trt.ipynb --- ...ng_started_with_fx_path_lower_to_trt.ipynb | 432 ++++++++++++++++++ 1 file changed, 432 insertions(+) create mode 100644 notebooks/getting_started_with_fx_path_lower_to_trt.ipynb diff --git a/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb b/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb new file mode 100644 index 0000000000..22bae41ac7 --- /dev/null +++ b/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb @@ -0,0 +1,432 @@ +{ + "metadata": { + "dataExplorerConfig": {}, + "bento_stylesheets": { + "bento/extensions/flow/main.css": true, + "bento/extensions/kernel_selector/main.css": true, + "bento/extensions/kernel_ui/main.css": true, + "bento/extensions/new_kernel/main.css": true, + "bento/extensions/system_usage/main.css": true, + "bento/extensions/theme/main.css": true + }, + "kernelspec": { + "display_name": "accelerators", + "language": "python", + "name": "bento_kernel_accelerators", + "metadata": { + "kernel_name": "bento_kernel_accelerators", + "nightly_builds": true, + "fbpkg_supported": true, + "cinder_runtime": false, + "is_prebuilt": true + } + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3" + }, + "last_server_session_id": "c6f6ab3c-9274-41e7-8592-b1b583442e00", + "last_kernel_id": "fcbf3a69-76a4-4730-9b41-bcd0b24729ca", + "last_base_url": "https://devgpu005.ftw6.facebook.com:8093/", + "last_msg_id": "e28f842c-f32dde25c1b80ef7d423dfee_407", + "outputWidgetContext": {} + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "originalKey": "8ca7695d-8a19-454e-b32b-3d5c36d52faf", + "showInput": false, + "customInput": null, + "code_folding": [], + "hidden_ranges": [] + }, + "source": [ + "The purpose of this example is to demostrate the onverall flow of lowering a PyTorch model\n", + "to TensorRT conveniently with lower.py. We integrated the transformation process including `TRTInterpreter`, `TRTModule`, pass optimization into the `lower_to_trt` API, users are encouraged to check the docstring of the API and tune it to meet your needs." + ] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "7909785f-b9b4-41dd-82af-c144b879df39", + "showInput": true, + "customInput": null, + "collapsed": false, + "requestMsgId": "7db2accc-9fa4-4a1e-8142-d887f2947bcd", + "customOutput": null, + "executionStartTime": 1656395936225, + "executionStopTime": 1656395937851 + }, + "source": [ + "import typing as t\n", + "from copy import deepcopy\n", + "from dataclasses import dataclass, field, replace\n", + "\n", + "import torch\n", + "import torchvision\n", + "from torch_tensorrt.fx.lower import lower_to_trt\n", + "from torch_tensorrt.fx.utils import LowerPrecision" + ], + "execution_count": 4, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "originalKey": "e324a1ff-1bc2-4e78-932f-33534c3ac3f5", + "showInput": false, + "customInput": null, + "code_folding": [], + "hidden_ranges": [] + }, + "source": [ + "Specify the `configuration` class used for FX path lowering and benchmark. To extend, add a new configuration field to this class, and modify the lowering or benchmark behavior in `run_configuration_benchmark()` correspondingly. It automatically stores all its values to a `Result` dataclass. \n", + "`Result` is another dataclass that holds raw essential benchmark result values like Batch size, QPS, accuracy, etc..\n", + "" + ] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "a4455135-8633-4d2d-bdd3-6435a4a9f4dd", + "showInput": true, + "customInput": null, + "code_folding": [], + "hidden_ranges": [], + "collapsed": false, + "requestMsgId": "2835fffa-cc50-479a-9080-c4f7002c0726", + "customOutput": null, + "executionStartTime": 1656398717455, + "executionStopTime": 1656398717662 + }, + "source": [ + "@dataclass\n", + "class Configuration:\n", + " # number of inferences to run\n", + " batch_iter: int\n", + "\n", + " # Input batch size\n", + " batch_size: int\n", + "\n", + " # Friendly name of the configuration\n", + " name: str = \"\"\n", + "\n", + " # Whether to apply TRT lowering to the model before benchmarking\n", + " trt: bool = False\n", + "\n", + " # Whether to apply engine holder to the lowered model\n", + " jit: bool = False\n", + "\n", + " # Whether to enable FP16 mode for TRT lowering\n", + " fp16: bool = False\n", + "\n", + " # Relative tolerance for accuracy check after lowering. -1 means do not\n", + " # check accuracy.\n", + " accuracy_rtol: float = -1 # disable\n", + " \n", + "@dataclass\n", + "class Result:\n", + " module: torch.nn.Module = field(repr=False)\n", + " input: t.Any = field(repr=False)\n", + " conf: Configuration\n", + " time_sec: float\n", + " accuracy_res: t.Optional[bool] = None\n", + "\n", + " @property\n", + " def time_per_iter_ms(self) -> float:\n", + " return self.time_sec * 1.0e3\n", + "\n", + " @property\n", + " def qps(self) -> float:\n", + " return self.conf.batch_size / self.time_sec\n", + "\n", + " def format(self) -> str:\n", + " return (\n", + " f\"== Benchmark Result for: {self.conf}\\n\"\n", + " f\"BS: {self.conf.batch_size}, \"\n", + " f\"Time per iter: {self.time_per_iter_ms:.2f}ms, \"\n", + " f\"QPS: {self.qps:.2f}, \"\n", + " f\"Accuracy: {self.accuracy_res} (rtol={self.conf.accuracy_rtol})\"\n", + " )" + ], + "execution_count": 22, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "originalKey": "3e462cf6-d282-402d-955b-a3ecb400bf0b", + "showInput": true, + "customInput": null, + "code_folding": [], + "hidden_ranges": [] + }, + "source": [ + "Run FX path lowering and benchmark the given model according to the specified benchmark configuration. Prints the benchmark result for each configuration at the end of the run. `benchmark_torch_function` is the actual function that computes the fixed number of iterations of functions runs.\n", + "The FX path lowering and TensorRT engine creation is integrated into `low_to_trt()` API which is defined in `fx/lower.py` file.\n", + "It is good to list it out and show the usage of it. It takes in original module, input and lowering setting, run lowering workflow to turn module into a executable TRT engine \n", + "```\n", + "def lower_to_trt(\n", + " module: nn.Module,\n", + " input: ,\n", + " max_batch_size: int = 2048,\n", + " max_workspace_size=1 << 25,\n", + " explicit_batch_dimension=False,\n", + " lower_precision=LowerPrecision.FP16,\n", + " verbose_log=False,\n", + " timing_cache_prefix=\"\",\n", + " save_timing_cache=False,\n", + " cuda_graph_batch_size=-1,\n", + " dynamic_batch=False,\n", + ") -> nn.Module:\n", + "``` \n", + "\n", + " Args:\n", + " module: Original module for lowering.\n", + " input: Input for module.\n", + " max_batch_size: Maximum batch size (must be >= 1 to be set, 0 means not set)\n", + " max_workspace_size: Maximum size of workspace given to TensorRT.\n", + " explicit_batch_dimension: Use explicit batch dimension in TensorRT if set True, otherwise use implicit batch dimension.\n", + " lower_precision: lower_precision config given to TRTModule.\n", + " verbose_log: Enable verbose log for TensorRT if set True.\n", + " timing_cache_prefix: Timing cache file name for timing cache used by fx2trt.\n", + " save_timing_cache: Update timing cache with current timing cache data if set to True.\n", + " cuda_graph_batch_size: Cuda graph batch size, default to be -1.\n", + "\n", + " Returns:\n", + " A torch.nn.Module lowered by TensorRT.\n", + "We testd a resnet18 network with input size of [128,3,224,224] for [Batch, Channel, Width, Height]" + ] + }, + { + "cell_type": "code", + "metadata": { + "originalKey": "91333212-7f6d-4bde-a248-44d485e83e5e", + "showInput": true, + "customInput": null, + "code_folding": [], + "hidden_ranges": [], + "collapsed": false, + "requestMsgId": "3002935b-b95a-4a08-a57f-f7a35485af5b", + "customOutput": null, + "executionStartTime": 1656397903207, + "executionStopTime": 1656397964752 + }, + "source": [ + "test_model = torchvision.models.resnet18(pretrained=True)\n", + "input = [torch.rand(128, 3, 224, 224)] \n", + "benchmark(test_model, input, 50, 128)\n", + "\n", + "def benchmark_torch_function(iters: int, f, *args) -> float:\n", + " \"\"\"Estimates the average time duration for a single inference call in second\n", + "\n", + " If the input is batched, then the estimation is for the batches inference call.\n", + " \"\"\"\n", + " with torch.inference_mode():\n", + " f(*args)\n", + " torch.cuda.synchronize()\n", + " start_event = torch.cuda.Event(enable_timing=True)\n", + " end_event = torch.cuda.Event(enable_timing=True)\n", + " print(\"== Start benchmark iterations\")\n", + " with torch.inference_mode():\n", + " start_event.record()\n", + " for _ in range(iters):\n", + " f(*args)\n", + " end_event.record()\n", + " torch.cuda.synchronize()\n", + " print(\"== End benchmark iterations\")\n", + " return (start_event.elapsed_time(end_event) * 1.0e-3) / iters\n", + "\n", + "\n", + "def run_configuration_benchmark(\n", + " module,\n", + " input,\n", + " conf: Configuration,\n", + ") -> Result:\n", + " print(f\"=== Running benchmark for: {conf}\", \"green\")\n", + " time = -1.0\n", + "\n", + " if conf.fp16:\n", + " module = module.half()\n", + " input = [i.half() for i in input]\n", + "\n", + " if not conf.trt:\n", + " # Run eager mode benchmark\n", + " time = benchmark_torch_function(conf.batch_iter, lambda: module(*input))\n", + " elif not conf.jit:\n", + " # Run lowering eager mode benchmark\n", + " lowered_module = lower_to_trt(\n", + " module,\n", + " input,\n", + " max_batch_size=conf.batch_size,\n", + " lower_precision=LowerPrecision.FP16 if conf.fp16 else LowerPrecision.FP32,\n", + " )\n", + " time = benchmark_torch_function(conf.batch_iter, lambda: lowered_module(*input))\n", + " else:\n", + " print(\"Lowering with JIT is not available!\", \"red\")\n", + "\n", + " result = Result(module=module, input=input, conf=conf, time_sec=time)\n", + " return result\n", + "\n", + "@torch.inference_mode()\n", + "def benchmark(\n", + " model,\n", + " inputs,\n", + " batch_iter: int,\n", + " batch_size: int,\n", + ") -> None:\n", + " model = model.cuda().eval()\n", + " inputs = [x.cuda() for x in inputs]\n", + "\n", + " # benchmark base configuration\n", + " conf = Configuration(batch_iter=batch_iter, batch_size=batch_size)\n", + "\n", + " configurations = [\n", + " # Baseline\n", + " replace(conf, name=\"CUDA Eager\", trt=False),\n", + " # FP32\n", + " replace(\n", + " conf,\n", + " name=\"TRT FP32 Eager\",\n", + " trt=True,\n", + " jit=False,\n", + " fp16=False,\n", + " accuracy_rtol=1e-3,\n", + " ),\n", + " # FP16\n", + " replace(\n", + " conf,\n", + " name=\"TRT FP16 Eager\",\n", + " trt=True,\n", + " jit=False,\n", + " fp16=True,\n", + " accuracy_rtol=1e-2,\n", + " ),\n", + " ]\n", + "\n", + " results = [\n", + " run_configuration_benchmark(deepcopy(model), inputs, conf_)\n", + " for conf_ in configurations\n", + " ]\n", + "\n", + " for res in results:\n", + " print(res.format())" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "I0627 233143.380 manifold.py:1430] URL manifold://torchvision/tree/models/resnet18-f37072fd.pth was already cached in /home/wwei6/.torch/iopath_cache/manifold_cache/tree/models/resnet18-f37072fd.pth\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "=== Running benchmark for: Configuration(batch_iter=50, batch_size=128, name='CUDA Eager', trt=False, jit=False, fp16=False, accuracy_rtol=-1) green\n== Start benchmark iterations\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "== End benchmark iterations\n=== Running benchmark for: Configuration(batch_iter=50, batch_size=128, name='TRT FP32 Eager', trt=True, jit=False, fp16=False, accuracy_rtol=0.001) green\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "== Log pass before/after graph to /tmp/tmpaayayg72\n== Log pass before/after graph to /tmp/tmpdw_pq71j\n\nSupported node types in the model:\nacc_ops.conv2d: ((), {'input': torch.float32, 'weight': torch.float32})\nacc_ops.batch_norm: ((), {'input': torch.float32, 'running_mean': torch.float32, 'running_var': torch.float32, 'weight': torch.float32, 'bias': torch.float32})\nacc_ops.relu: ((), {'input': torch.float32})\nacc_ops.max_pool2d: ((), {'input': torch.float32})\nacc_ops.add: ((), {'input': torch.float32, 'other': torch.float32})\nacc_ops.adaptive_avg_pool2d: ((), {'input': torch.float32})\nacc_ops.flatten: ((), {'input': torch.float32})\nacc_ops.linear: ((), {'input': torch.float32, 'weight': torch.float32, 'bias': torch.float32})\n\nUnsupported node types in the model:\n\nGot 1 acc subgraphs and 0 non-acc subgraphs\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "I0627 233146.650 fx2trt.py:190] Run Module elapsed time: 0:00:00.244369\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "I0627 233206.570 fx2trt.py:241] Build TRT engine elapsed time: 0:00:19.918630\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "== Start benchmark iterations\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "== End benchmark iterations\n=== Running benchmark for: Configuration(batch_iter=50, batch_size=128, name='TRT FP16 Eager', trt=True, jit=False, fp16=True, accuracy_rtol=0.01) green\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "== Log pass before/after graph to /tmp/tmpnoeblgd5\n== Log pass before/after graph to /tmp/tmpyb1egsof\n\nSupported node types in the model:\nacc_ops.conv2d: ((), {'input': torch.float16, 'weight': torch.float16})\nacc_ops.batch_norm: ((), {'input': torch.float16, 'running_mean': torch.float16, 'running_var': torch.float16, 'weight': torch.float16, 'bias': torch.float16})\nacc_ops.relu: ((), {'input': torch.float16})\nacc_ops.max_pool2d: ((), {'input': torch.float16})\nacc_ops.add: ((), {'input': torch.float16, 'other': torch.float16})\nacc_ops.adaptive_avg_pool2d: ((), {'input': torch.float16})\nacc_ops.flatten: ((), {'input': torch.float16})\nacc_ops.linear: ((), {'input': torch.float16, 'weight': torch.float16, 'bias': torch.float16})\n\nUnsupported node types in the model:\n\nGot 1 acc subgraphs and 0 non-acc subgraphs\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "I0627 233208.996 fx2trt.py:190] Run Module elapsed time: 0:00:00.217076\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "I0627 233244.147 fx2trt.py:241] Build TRT engine elapsed time: 0:00:35.150950\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "== Start benchmark iterations\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "== End benchmark iterations\n== Benchmark Result for: Configuration(batch_iter=50, batch_size=128, name='CUDA Eager', trt=False, jit=False, fp16=False, accuracy_rtol=-1)\nBS: 128, Time per iter: 15.00ms, QPS: 8530.72, Accuracy: None (rtol=-1)\n== Benchmark Result for: Configuration(batch_iter=50, batch_size=128, name='TRT FP32 Eager', trt=True, jit=False, fp16=False, accuracy_rtol=0.001)\nBS: 128, Time per iter: 7.95ms, QPS: 16098.45, Accuracy: None (rtol=0.001)\n== Benchmark Result for: Configuration(batch_iter=50, batch_size=128, name='TRT FP16 Eager', trt=True, jit=False, fp16=True, accuracy_rtol=0.01)\nBS: 128, Time per iter: 4.36ms, QPS: 29365.31, Accuracy: None (rtol=0.01)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "originalKey": "80bbae99-41ff-4baa-94a5-12bf0c9938f3", + "showInput": true, + "customInput": null + }, + "source": [ + "" + ] + } + ] +} From 193b29ccbf67d12466dee8bf33e162603d094d0c Mon Sep 17 00:00:00 2001 From: Wei Date: Mon, 27 Jun 2022 23:50:55 -0700 Subject: [PATCH 05/10] Update getting_started_with_fx_path_lower_to_trt.ipynb --- .../getting_started_with_fx_path_lower_to_trt.ipynb | 9 +-------- 1 file changed, 1 insertion(+), 8 deletions(-) diff --git a/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb b/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb index 22bae41ac7..5bbe61659d 100644 --- a/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb +++ b/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb @@ -51,7 +51,7 @@ "hidden_ranges": [] }, "source": [ - "The purpose of this example is to demostrate the onverall flow of lowering a PyTorch model\n", + "The purpose of this example is to demostrate the overall flow of lowering a PyTorch model\n", "to TensorRT conveniently with lower.py. We integrated the transformation process including `TRTInterpreter`, `TRTModule`, pass optimization into the `lower_to_trt` API, users are encouraged to check the docstring of the API and tune it to meet your needs." ] }, @@ -324,13 +324,6 @@ ], "execution_count": 21, "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "I0627 233143.380 manifold.py:1430] URL manifold://torchvision/tree/models/resnet18-f37072fd.pth was already cached in /home/wwei6/.torch/iopath_cache/manifold_cache/tree/models/resnet18-f37072fd.pth\n" - ] - }, { "output_type": "stream", "name": "stdout", From c00b15800d0e49c96f74e95972572565ba145a1b Mon Sep 17 00:00:00 2001 From: Wei Date: Tue, 28 Jun 2022 00:18:35 -0700 Subject: [PATCH 06/10] Update getting_started_with_fx_path_lower_to_trt.ipynb --- notebooks/getting_started_with_fx_path_lower_to_trt.ipynb | 1 + 1 file changed, 1 insertion(+) diff --git a/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb b/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb index 5bbe61659d..5ef957fa36 100644 --- a/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb +++ b/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb @@ -202,6 +202,7 @@ " timing_cache_prefix: Timing cache file name for timing cache used by fx2trt.\n", " save_timing_cache: Update timing cache with current timing cache data if set to True.\n", " cuda_graph_batch_size: Cuda graph batch size, default to be -1.\n", + " dynamic_batch: batch dimension (dim=0) is dynamic.\n", "\n", " Returns:\n", " A torch.nn.Module lowered by TensorRT.\n", From c19c6b903f4448aaf7cbd09163cbf1163c6ec5ba Mon Sep 17 00:00:00 2001 From: Wei Wei Date: Tue, 28 Jun 2022 10:02:07 -0700 Subject: [PATCH 07/10] add version() in setup.py --- py/setup.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/py/setup.py b/py/setup.py index f195abdbfd..ceaa681016 100644 --- a/py/setup.py +++ b/py/setup.py @@ -143,6 +143,7 @@ def finalize_options(self): def run(self): if FX_ONLY: + gen_version_file() develop.run(self) else: global CXX11_ABI @@ -163,6 +164,7 @@ def finalize_options(self): def run(self): if FX_ONLY: + gen_version_file() install.run(self) else: global CXX11_ABI From 7db85f3111d02ccfd6aa615d663c4db61940f598 Mon Sep 17 00:00:00 2001 From: Wei Wei Date: Tue, 28 Jun 2022 10:08:14 -0700 Subject: [PATCH 08/10] make html --- .../classtorch__tensorrt_1_1DataType.html | 2 +- ...rch__tensorrt_1_1Device_1_1DeviceType.html | 2 +- .../classtorch__tensorrt_1_1TensorFormat.html | 2 +- ...ensorrt_1_1ptq_1_1Int8CacheCalibrator.html | 2 +- ...ch__tensorrt_1_1ptq_1_1Int8Calibrator.html | 2 +- ...8h_1a18d295a837ac71add5578860b55e5502.html | 2 +- ...8h_1a282fd3c0b1c3a215148ae372070e1268.html | 2 +- ...8h_1a31398a6d4d27e28817afb0f0139e909e.html | 2 +- ...8h_1a35703561b26b1a9d2738ad7d58b27827.html | 2 +- ...8h_1abd1465eb38256d3f22cc1426b23d516b.html | 2 +- ...8h_1abe87b341f562fd1cf40b7672e4d759da.html | 2 +- ...8h_1ad19939408f7be171a74a89928b36eb59.html | 2 +- ...8h_1adad592a7b1b7eed529cdf6acd584c883.html | 2 +- docs/_cpp_api/dir_cpp.html | 2 +- docs/_cpp_api/dir_cpp_include.html | 2 +- .../dir_cpp_include_torch_tensorrt.html | 2 +- ...8h_1a130f65408ad8cbaee060f05e8db69558.html | 2 +- ...8h_1a3fbe5d72e4fc624dbd038853079620eb.html | 8 +- ..._cpp_include_torch_tensorrt_logging.h.html | 2 +- ...e_cpp_include_torch_tensorrt_macros.h.html | 2 +- ...file_cpp_include_torch_tensorrt_ptq.h.html | 2 +- ...clude_torch_tensorrt_torch_tensorrt.h.html | 2 +- ...8h_1a0593f776f469c20469e2f729fc7861a3.html | 2 +- ...8h_1a0c012cb374addd90eb1f42eaec570650.html | 2 +- ...8h_1a56e110feaaba2c3fd44bd201fd21a76a.html | 2 +- ...8h_1a7cb50492421ea9de4e3db895819df6f2.html | 2 +- ...8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html | 2 +- ...8h_1ad2efd47b6c3689e58ccc595680579ae5.html | 2 +- ...8h_1af8f3443813315af7901903d25dd495cc.html | 2 +- ...8h_1a83ff2be7e0b80bc7434de415861dc039.html | 2 +- ...8h_1a9835f6e605dce1abf442a55b64d6dffa.html | 2 +- ...8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html | 2 +- ...8h_1a6e19490a08fb1553c9dd347a5ae79db9.html | 2 +- ...8h_1a710df824a7718b440e4bc17bf9693cef.html | 2 +- ...8h_1ac4ab8313ae72c2c899ea31548b528528.html | 2 +- ...8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html | 2 +- ...8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html | 2 +- ...8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html | 2 +- docs/_cpp_api/namespace_torch_tensorrt.html | 2 +- .../namespace_torch_tensorrt__logging.html | 2 +- .../namespace_torch_tensorrt__ptq.html | 2 +- ...namespace_torch_tensorrt__torchscript.html | 2 +- ..._cpp_include_torch_tensorrt_logging.h.html | 2 +- ...e_cpp_include_torch_tensorrt_macros.h.html | 2 +- ...file_cpp_include_torch_tensorrt_ptq.h.html | 2 +- ...clude_torch_tensorrt_torch_tensorrt.h.html | 2 +- .../structtorch__tensorrt_1_1Device.html | 2 +- .../structtorch__tensorrt_1_1Input.html | 2 +- ...ensorrt_1_1torchscript_1_1CompileSpec.html | 2 +- docs/_cpp_api/torch_tensort_cpp.html | 2 +- docs/_cpp_api/unabridged_orphan.html | 2 +- docs/_notebooks/CitriNet-example.html | 24 +- docs/_notebooks/EfficientNet-example.html | 24 +- docs/_notebooks/Hugging-Face-BERT.html | 28 +- docs/_notebooks/Resnet50-example.html | 24 +- docs/_notebooks/dynamic-shapes.html | 4 +- .../getting_started_with_fx_path_module.html | 1093 +++++++++++++++++ .../getting_started_with_fx_path_module.ipynb | 469 +++++++ docs/_notebooks/lenet-getting-started.html | 16 +- .../_notebooks/ssd-object-detection-demo.html | 24 +- docs/_notebooks/vgg-qat.html | 44 +- ...ting_started_with_fx_path_module.ipynb.txt | 441 +++++++ .../getting_started_with_fx_path.rst.txt | 304 +++++ docs/contributors/conversion.html | 2 +- docs/contributors/lowering.html | 2 +- docs/contributors/partitioning.html | 2 +- docs/contributors/phases.html | 2 +- docs/contributors/runtime.html | 2 +- docs/contributors/system_overview.html | 2 +- docs/contributors/useful_links.html | 2 +- docs/contributors/writing_converters.html | 2 +- docs/genindex.html | 256 +--- docs/index.html | 2 +- docs/indices/supported_ops.html | 2 +- docs/objects.inv | Bin 24856 -> 23628 bytes docs/py_api/logging.html | 203 +-- docs/py_api/ptq.html | 112 +- docs/py_api/torch_tensorrt.html | 340 +---- docs/py_api/ts.html | 227 +--- docs/search.html | 2 +- docs/searchindex.js | 2 +- .../pytorch-sphinx-theme/docs/changelog.html | 2 +- .../docs/configuring.html | 2 +- .../pytorch-sphinx-theme/docs/demo/api.html | 2 +- .../pytorch-sphinx-theme/docs/demo/demo.html | 4 +- .../docs/demo/lists_tables.html | 2 +- .../pytorch-sphinx-theme/docs/demo/long.html | 2 +- .../docs/demo/structure.html | 2 +- docs/src/pytorch-sphinx-theme/docs/index.html | 2 +- .../pytorch-sphinx-theme/docs/installing.html | 2 +- ...creating_torchscript_module_in_python.html | 2 +- .../getting_started_with_cpp_api.html | 2 +- .../getting_started_with_fx_path.html | 916 ++++++++++++++ .../getting_started_with_python_api.html | 2 +- docs/tutorials/installation.html | 2 +- docs/tutorials/ptq.html | 2 +- docs/tutorials/runtime.html | 2 +- .../serving_torch_tensorrt_with_triton.html | 2 +- docs/tutorials/torchtrtc.html | 2 +- docs/tutorials/use_from_pytorch.html | 2 +- docs/tutorials/using_dla.html | 2 +- docsrc/conf.py | 2 +- 102 files changed, 3452 insertions(+), 1271 deletions(-) create mode 100644 docs/_notebooks/getting_started_with_fx_path_module.html create mode 100644 docs/_notebooks/getting_started_with_fx_path_module.ipynb create mode 100644 docs/_sources/_notebooks/getting_started_with_fx_path_module.ipynb.txt create mode 100644 docs/_sources/tutorials/getting_started_with_fx_path.rst.txt create mode 100644 docs/tutorials/getting_started_with_fx_path.html diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html b/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html index 7d2b43a650..a59d53413a 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html b/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html index 3acf6242f8..1b1e3c38fd 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html b/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html index c794f56758..cad1ec9f5b 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html index 25f2a76005..9bc569f705 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html index 30a841989d..f6e9e5acc3 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html b/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html index 068f461588..35f58d0ff8 100644 --- a/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html +++ b/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html b/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html index 8523b0f2ab..f85b69a8a2 100644 --- a/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html +++ b/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html b/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html index 91ae6b4bc4..3c69beaabe 100644 --- a/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html +++ b/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html b/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html index 31c9e74d99..2cf8f5bf13 100644 --- a/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html +++ b/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html b/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html index 98dfc1b64a..3d84e4fc97 100644 --- a/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html +++ b/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html b/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html index 54e1b888c6..7e1fb36098 100644 --- a/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html +++ b/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html b/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html index d0f03666bf..230b5da237 100644 --- a/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html +++ b/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html b/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html index 2e9a5ad66b..7d8daff60e 100644 --- a/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html +++ b/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/dir_cpp.html b/docs/_cpp_api/dir_cpp.html index b5a8da952c..22b6adf413 100644 --- a/docs/_cpp_api/dir_cpp.html +++ b/docs/_cpp_api/dir_cpp.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/dir_cpp_include.html b/docs/_cpp_api/dir_cpp_include.html index d65425efc9..63ec5b512c 100644 --- a/docs/_cpp_api/dir_cpp_include.html +++ b/docs/_cpp_api/dir_cpp_include.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html b/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html index f28daeb41a..6ebe38e365 100644 --- a/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html +++ b/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html b/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html index 193f257934..58f2ae067f 100644 --- a/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html +++ b/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html b/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html index 89b614bb83..56d0400a60 100644 --- a/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html +++ b/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
@@ -365,17 +365,17 @@

Enum Documentation
-enumerator kSTANDARD
+enumerator kSTANDARD
-enumerator kSAFETY
+enumerator kSAFETY
-enumerator kDLA_STANDALONE
+enumerator kDLA_STANDALONE
diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html index c62df2f40d..5f927b4668 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html index 03d6a3d087..8a66432732 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html index f16bb9cbe1..468869ddb3 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html index 77a3f66aaa..c5baadd29b 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html b/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html index f4ec7cf898..8cc3af913c 100644 --- a/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html +++ b/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html b/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html index 53d6ea2b83..7dfd971c02 100644 --- a/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html +++ b/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html b/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html index 3aac0afd52..abc2d66097 100644 --- a/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html +++ b/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html b/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html index a17a31c20f..492bbc1bb0 100644 --- a/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html +++ b/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html b/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html index 20be71d2a1..bb598c1214 100644 --- a/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html +++ b/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html b/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html index 811a21aa5b..6a65f08d88 100644 --- a/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html +++ b/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html b/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html index fab20d1457..3dfa1cba90 100644 --- a/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html +++ b/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.html b/docs/_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.html index c6812c54b7..cc7e47407a 100644 --- a/docs/_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.html +++ b/docs/_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.html b/docs/_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.html index 283ecf2907..6d31473b19 100644 --- a/docs/_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.html +++ b/docs/_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html b/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html index 267423c7b2..e07b816931 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html b/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html index 7328eaddc6..3a4998e76f 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.html b/docs/_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.html index 4b4fb4b142..8c0dfb6bcd 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html index 0106231d18..f913a43ed4 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html index bd94c10b75..84fbd2033c 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html index 65f72c8326..5d3a3ea80a 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html index 7725f1ac84..d4ac6dbf90 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/namespace_torch_tensorrt.html b/docs/_cpp_api/namespace_torch_tensorrt.html index b12e1d909d..3c0b040b09 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt.html +++ b/docs/_cpp_api/namespace_torch_tensorrt.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/namespace_torch_tensorrt__logging.html b/docs/_cpp_api/namespace_torch_tensorrt__logging.html index 3915f9942a..2d7553fb68 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt__logging.html +++ b/docs/_cpp_api/namespace_torch_tensorrt__logging.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/namespace_torch_tensorrt__ptq.html b/docs/_cpp_api/namespace_torch_tensorrt__ptq.html index e780be2799..0817e41cdc 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt__ptq.html +++ b/docs/_cpp_api/namespace_torch_tensorrt__ptq.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html b/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html index 7422ce4aff..6c5b5353f9 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html +++ b/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html index 8de4dfa497..1b4df13eaf 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html index fccc343fdd..9ef5d96570 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html index ff4fec239f..6381a34fca 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html index a0191faee5..300ed123f6 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/structtorch__tensorrt_1_1Device.html b/docs/_cpp_api/structtorch__tensorrt_1_1Device.html index 2178f4c32e..6f683302d8 100644 --- a/docs/_cpp_api/structtorch__tensorrt_1_1Device.html +++ b/docs/_cpp_api/structtorch__tensorrt_1_1Device.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/structtorch__tensorrt_1_1Input.html b/docs/_cpp_api/structtorch__tensorrt_1_1Input.html index ecb48d8acb..a41f548feb 100644 --- a/docs/_cpp_api/structtorch__tensorrt_1_1Input.html +++ b/docs/_cpp_api/structtorch__tensorrt_1_1Input.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html b/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html index 9e870c731d..b78b61a977 100644 --- a/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html +++ b/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/torch_tensort_cpp.html b/docs/_cpp_api/torch_tensort_cpp.html index 48d8b11c14..81e9c7f584 100644 --- a/docs/_cpp_api/torch_tensort_cpp.html +++ b/docs/_cpp_api/torch_tensort_cpp.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_cpp_api/unabridged_orphan.html b/docs/_cpp_api/unabridged_orphan.html index 232e61fedf..5d243535cb 100644 --- a/docs/_cpp_api/unabridged_orphan.html +++ b/docs/_cpp_api/unabridged_orphan.html @@ -197,7 +197,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
diff --git a/docs/_notebooks/CitriNet-example.html b/docs/_notebooks/CitriNet-example.html index fb1282d7cd..548bbbd8ca 100644 --- a/docs/_notebooks/CitriNet-example.html +++ b/docs/_notebooks/CitriNet-example.html @@ -199,7 +199,7 @@
- master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
@@ -618,7 +618,7 @@ -

2acf632451c2482b8eee3d1e461fb6c5

+

058c2a32b62b4b52a6bf5f2233a2258a

Torch-TensorRT Getting Started - CitriNet

@@ -640,7 +640,9 @@

ContentBenchmark Torch-TensorRT models

  • Conclusion

  • -

    ## 1. Requirements

    +
    +

    ## 1. Requirements

    +

    Follow the steps in README to prepare a Docker container, within which you can run this notebook. This notebook assumes that you are within a Jupyter environment in a docker container with Torch-TensorRT installed, such as an NGC monthly release of nvcr.io/nvidia/pytorch:<yy.mm>-py3 (where yy indicates the last two numbers of a calendar year, and mm indicates the month in two-digit numerical form)

    Now that you are in the docker, the next step is to install the required dependencies.

    -

    ## 2. Download Citrinet model

    +
    +

    ## 2. Download Citrinet model

    +

    Next, we download a pretrained Nemo Citrinet model and convert it to a Torchscript module:

    diff --git a/docs/_notebooks/EfficientNet-example.html b/docs/_notebooks/EfficientNet-example.html index 05393fa342..2e91f44e38 100644 --- a/docs/_notebooks/EfficientNet-example.html +++ b/docs/_notebooks/EfficientNet-example.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    @@ -618,7 +618,7 @@ -

    783b2cf2fc5d4e06a7736325633fdd88

    +

    41bd2c3185814f14a40caa4b3963533a

    Torch-TensorRT Getting Started - EfficientNet-B0

    @@ -691,16 +691,22 @@

    Contentlatest pytorch container to run this notebook.

    Otherwise, you can follow the steps in notebooks/README to prepare a Docker container yourself, within which you can run this demo notebook.

    -

    ## 2. EfficientNet Overview

    +
    +

    ## 2. EfficientNet Overview

    +

    PyTorch has a model repository called timm, which is a source for high quality implementations of computer vision models. We can get our EfficientNet model from there pretrained on ImageNet.

    Model Description

    This model is based on the EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks paper.

    alt

    -

    ## 3. Running the model without optimizations

    +
    +

    ## 3. Running the model without optimizations

    +

    PyTorch has a model repository called timm, which is a source for high quality implementations of computer vision models. We can get our EfficientNet model from there pretrained on ImageNet.

    [4]:
    @@ -975,7 +981,9 @@ 

    Model Descriptiondocumentation.

    @@ -1126,7 +1134,9 @@

    FP16 (half precision) -

    ## 5. Conclusion

    +
    +

    ## 5. Conclusion

    +

    In this notebook, we have walked through the complete process of compiling TorchScript models with Torch-TensorRT for EfficientNet-B0 model and test the performance impact of the optimization. With Torch-TensorRT, we observe a speedup of 1.35x with FP32, and 3.13x with FP16 on an NVIDIA 3090 GPU. These acceleration numbers will vary from GPU to GPU(as well as implementation to implementation based on the ops used) and we encorage you to try out latest generation of Data center compute cards for maximum acceleration.

    diff --git a/docs/_notebooks/Hugging-Face-BERT.html b/docs/_notebooks/Hugging-Face-BERT.html index 42c58b5cef..5fd0d4ca30 100644 --- a/docs/_notebooks/Hugging-Face-BERT.html +++ b/docs/_notebooks/Hugging-Face-BERT.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    @@ -618,7 +618,7 @@ -

    2e8a7944f7a54c9a93c9656fc33a0ab3

    +

    8ebcdec6af2d48ce9991ef016c10f3fd

    Masked Language Modeling (MLM) with Hugging Face BERT Transformer

    @@ -635,7 +635,9 @@

    ContentsBenchmarking

  • Conclusion

  • -

    ## 1. Requirements

    +
    +

    ## 1. Requirements

    +

    NVIDIA’s NGC provides a PyTorch Docker Container which contains PyTorch and Torch-TensorRT. Starting with version 22.05-py3, we can make use of latest pytorch container to run this notebook.

    Otherwise, you can follow the steps in notebooks/README to prepare a Docker container yourself, within which you can run this demo notebook.

    @@ -688,13 +690,17 @@

    Contentsbert-base-uncased model (BERT’s smallest and simplest form, which does not employ text capitalization) for MLM.

    -

    ## 3. Creating TorchScript modules

    +
    +

    ## 3. Creating TorchScript modules

    +

    First, create a pretrained BERT tokenizer from the bert-base-uncased model

    -

    ## 1. Requirements

    +
    +

    ## 1. Requirements

    +

    NVIDIA’s NGC provides PyTorch Docker Container which contains PyTorch and Torch-TensorRT. We can make use of latest pytorch container to run this notebook.

    Otherwise, you can follow the steps in notebooks/README to prepare a Docker container yourself, within which you can run this demo notebook.

    -

    ## 2. ResNet-50 Overview

    +
    +

    ## 2. ResNet-50 Overview

    +

    PyTorch has a model repository called the PyTorch Hub, which is a source for high quality implementations of common models. We can get our ResNet-50 model from there pretrained on ImageNet.

    Model Description

    This ResNet-50 model is based on the Deep Residual Learning for Image Recognition paper, which describes ResNet as “a method for detecting objects in images using a single deep neural network”. The input size is fixed to 32x32.

    alt

    -

    ## 3. Running the model without optimizations

    +
    +

    ## 3. Running the model without optimizations

    +

    PyTorch has a model repository called timm, which is a source for high quality implementations of computer vision models. We can get our EfficientNet model from there pretrained on ImageNet.

    [3]:
    @@ -1222,7 +1228,9 @@ 

    Model Descriptiondocumentation.

    @@ -1345,7 +1353,9 @@

    FP16 (half precision) -

    ## 5. Conclusion

    +
    +

    ## 5. Conclusion

    +

    In this notebook, we have walked through the complete process of compiling TorchScript models with Torch-TensorRT for EfficientNet-B0 model and test the performance impact of the optimization. With Torch-TensorRT, we observe a speedup of 1.84x with FP32, and 5.2x with FP16 on an NVIDIA 3090 GPU. These acceleration numbers will vary from GPU to GPU(as well as implementation to implementation based on the ops used) and we encorage you to try out latest generation of Data center compute cards for maximum acceleration.

    diff --git a/docs/_notebooks/dynamic-shapes.html b/docs/_notebooks/dynamic-shapes.html index 172b61fbce..b8694b4eec 100644 --- a/docs/_notebooks/dynamic-shapes.html +++ b/docs/_notebooks/dynamic-shapes.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    @@ -618,7 +618,7 @@ -

    195ac3794a674b1a8c327ebde46a3be4

    +

    22724bc77cb446a7944bbacf7074a017

    Torch-TensorRT - Using Dynamic Shapes

    Torch-TensorRT is a compiler for PyTorch/TorchScript, targeting NVIDIA GPUs via NVIDIA’s TensorRT Deep Learning Optimizer and Runtime. Unlike PyTorch’s Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into a module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extension and compiles modules that integrate into diff --git a/docs/_notebooks/getting_started_with_fx_path_module.html b/docs/_notebooks/getting_started_with_fx_path_module.html new file mode 100644 index 0000000000..dbeab43b3a --- /dev/null +++ b/docs/_notebooks/getting_started_with_fx_path_module.html @@ -0,0 +1,1093 @@ + + + + + + + + + + + + + <no title> — Torch-TensorRT master documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

    + + + + + + + + + + + +
    +
    +
    + + + + + + + + + + + + + + + + +
    + + + + +
    +
    + +
    + Shortcuts +
    +
    + +
    +
    + + + +
    + +
    +
    + + + +

    The purpose of this example is to demonstrate the overall flow of lowering a PyTorch model to TensorRT via FX with existing FX based tooling. The general lowering flow would be like: 1. Use splitter to split the model if there’re ops in the model that we don’t want to lower to TensorRT for some reasons like the ops are not supported in TensorRT or running them on other backends provides better performance. 2. Lower the model (or part of the model if splitter is used) to TensorRT via fx path. If +we know the model is fully supported by fx path (without op unsupported) then we can skip the splitter.

    +
    +
    [1]:
    +
    +
    +
    import torch
    +import torch.fx
    +import torch.nn as nn
    +from torch_tensorrt.fx.utils import LowerPrecision
    +import torch_tensorrt.fx.tracer.acc_tracer.acc_tracer as acc_tracer
    +from torch_tensorrt.fx import InputTensorSpec, TRTInterpreter, TRTModule
    +from torch_tensorrt.fx.tools.trt_splitter import TRTSplitter
    +
    +
    +
    +
    +
    [2]:
    +
    +
    +
    class Model(nn.Module):
    +    def __init__(self):
    +        super().__init__()
    +        self.linear = nn.Linear(10, 10)
    +        self.relu = nn.ReLU()
    +
    +    def forward(self, x):
    +        x = self.linear(x)
    +        x = self.relu(x)
    +        x = torch.linalg.norm(x, ord=2, dim=1)
    +        x = self.relu(x)
    +        return x
    +
    +
    +inputs = [torch.randn((1, 10), device=torch.device('cuda'))]
    +model = Model().cuda().eval()
    +
    +
    +
    +

    acc_tracer is a custom fx tracer that maps nodes whose targets are PyTorch operators to acc ops.

    +
    +
    [3]:
    +
    +
    +
    traced = acc_tracer.trace(model, inputs)
    +
    +
    +
    +

    Splitter will split the model into several submodules. The name of submodules will be either run_on_acc_{} or run_on_gpu_{}. Submodules named run_on_acc_{} can be fully lowered to TensorRT via fx2trt while submodules named run_on_gpu_{} has unsupported ops and can’t be lowered by fx2trt. We can still run run_on_gpu_{} submodules on GPU if ops there have cuda implementation.

    +
    +
    [4]:
    +
    +
    +
    splitter = TRTSplitter(traced, inputs)
    +
    +
    +
    +

    Preview functionality allows us to see what are the supported ops and unsupported ops. We can optionally the dot graph which will color supported ops and unsupported ops differently.

    +
    +
    [5]:
    +
    +
    +
    splitter.node_support_preview()
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +Supported node types in the model:
    +acc_ops.linear: ((), {'input': torch.float32, 'weight': torch.float32, 'bias': torch.float32})
    +acc_ops.relu: ((), {'input': torch.float32})
    +
    +Unsupported node types in the model:
    +acc_ops.linalg_norm: ((), {'input': torch.float32})
    +
    +
    +
    +
    +
    [5]:
    +
    +
    +
    +
    +"\nSupported node types in the model:\nacc_ops.linear: ((), {'input': torch.float32, 'weight': torch.float32, 'bias': torch.float32})\nacc_ops.relu: ((), {'input': torch.float32})\n\nUnsupported node types in the model:\nacc_ops.linalg_norm: ((), {'input': torch.float32})\n"
    +
    +
    +

    After split, there are three submodules, _run_on_acc_0 and _run_on_gpu_1.

    +
    +
    [6]:
    +
    +
    +
    split_mod = splitter()
    +print(split_mod.graph)
    +
    +
    +
    +
    +
    +
    +
    +
    +Got 2 acc subgraphs and 1 non-acc subgraphs
    +graph():
    +    %x : [#users=1] = placeholder[target=x]
    +    %_run_on_acc_0 : [#users=1] = call_module[target=_run_on_acc_0](args = (%x,), kwargs = {})
    +    %_run_on_gpu_1 : [#users=1] = call_module[target=_run_on_gpu_1](args = (%_run_on_acc_0,), kwargs = {})
    +    %_run_on_acc_2 : [#users=1] = call_module[target=_run_on_acc_2](args = (%_run_on_gpu_1,), kwargs = {})
    +    return _run_on_acc_2
    +
    +
    +
    +
    [7]:
    +
    +
    +
    print(split_mod._run_on_acc_0.graph)
    +print(split_mod._run_on_gpu_1.graph)
    +print(split_mod._run_on_acc_2.graph)
    +
    +
    +
    +
    +
    +
    +
    +
    +graph():
    +    %x : [#users=1] = placeholder[target=x]
    +    %linear_weight : [#users=1] = get_attr[target=linear.weight]
    +    %linear_bias : [#users=1] = get_attr[target=linear.bias]
    +    %linear_1 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.linear](args = (), kwargs = {input: %x, weight: %linear_weight, bias: %linear_bias})
    +    %relu_2 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.relu](args = (), kwargs = {input: %linear_1, inplace: False})
    +    return relu_2
    +graph():
    +    %relu_2 : [#users=1] = placeholder[target=relu_2]
    +    %linalg_norm_1 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.linalg_norm](args = (), kwargs = {input: %relu_2, ord: 2, dim: 1, keepdim: False})
    +    return linalg_norm_1
    +graph():
    +    %linalg_norm_1 : [#users=1] = placeholder[target=linalg_norm_1]
    +    %relu_3 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.relu](args = (), kwargs = {input: %linalg_norm_1, inplace: False})
    +    return relu_3
    +
    +
    +

    The split_mod contains the child modules supported by TRT or eager gpu. We can iterate them to transform the module into TRT engine.

    +
    +
    [8]:
    +
    +
    +
    def get_submod_inputs(mod, submod, inputs):
    +    acc_inputs = None
    +
    +    def get_input(self, inputs):
    +        nonlocal acc_inputs
    +        acc_inputs = inputs
    +
    +    handle = submod.register_forward_pre_hook(get_input)
    +    mod(*inputs)
    +    handle.remove()
    +    return acc_inputs
    +
    +# Since the model is splitted into three segments. We need to lower each TRT eligible segment.
    +# If we know the model can be fully lowered, we can skip the splitter part.
    +for name, _ in split_mod.named_children():
    +    if "_run_on_acc" in name:
    +        submod = getattr(split_mod, name)
    +        # Get submodule inputs for fx2trt
    +        acc_inputs = get_submod_inputs(split_mod, submod, inputs)
    +
    +        # fx2trt replacement
    +        interp = TRTInterpreter(
    +            submod,
    +            InputTensorSpec.from_tensors(acc_inputs),
    +            explicit_batch_dimension=True,
    +        )
    +        r = interp.run(lower_precision=LowerPrecision.FP32)
    +        trt_mod = TRTModule(*r)
    +        setattr(split_mod, name, trt_mod)
    +
    +lowered_model_output = split_mod(*inputs)
    +
    +
    +
    +
    +
    +
    +
    +
    +I0627 150503.073 fx2trt.py:190] Run Module elapsed time: 0:00:00.014965
    +I0627 150504.996 fx2trt.py:241] Build TRT engine elapsed time: 0:00:01.922029
    +I0627 150505.026 fx2trt.py:190] Run Module elapsed time: 0:00:00.000302
    +I0627 150509.953 fx2trt.py:241] Build TRT engine elapsed time: 0:00:04.925192
    +
    +
    +

    Model can be saved by torch.save and loaded with torch.load. Then we can compare the results with eager mode inference.

    +
    +
    [9]:
    +
    +
    +
    torch.save(split_mod, "trt.pt")
    +reload_trt_mod = torch.load("trt.pt")
    +reload_model_output = reload_trt_mod(*inputs)
    +
    +# Make sure the results match
    +regular_model_output = model(*inputs)
    +torch.testing.assert_close(
    +    reload_model_output, regular_model_output, atol=3e-3, rtol=1e-2
    +)
    +
    +
    +
    + + +
    + +
    +
    + + + + +
    + + + +
    +

    + © Copyright 2021, NVIDIA Corporation. + +

    +
    + +
    + Built with Sphinx using a theme provided by Read the Docs. +
    + + +
    + +
    +
    + +
    +
    +
    +
      +
    + +
    +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    +
    +

    Docs

    +

    Access comprehensive developer documentation for PyTorch

    + View Docs +
    + +
    +

    Tutorials

    +

    Get in-depth tutorials for beginners and advanced developers

    + View Tutorials +
    + +
    +

    Resources

    +

    Find development resources and get your questions answered

    + View Resources +
    +
    +
    +
    + + + + + + + + + +
    +
    +
    +
    + + +
    +
    +
    + + +
    + + + + + + + + \ No newline at end of file diff --git a/docs/_notebooks/getting_started_with_fx_path_module.ipynb b/docs/_notebooks/getting_started_with_fx_path_module.ipynb new file mode 100644 index 0000000000..f17ad14e03 --- /dev/null +++ b/docs/_notebooks/getting_started_with_fx_path_module.ipynb @@ -0,0 +1,469 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "code_folding": [], + "customInput": null, + "hidden_ranges": [], + "originalKey": "aac0295c-e26e-45cb-b1b6-7796ee860152", + "showInput": false + }, + "source": [ + "The purpose of this example is to demonstrate the overall flow of lowering a PyTorch\n", + "model to TensorRT via FX with existing FX based tooling. The general lowering flow would be like:\n", + "1. Use splitter to split the model if there're ops in the model that we don't want to lower to TensorRT for some reasons like the ops are not supported in TensorRT or running them on other backends provides better performance.\n", + "2. Lower the model (or part of the model if splitter is used) to TensorRT via fx path.\n", + "If we know the model is fully supported by fx path (without op unsupported) then we can skip the splitter." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false, + "customInput": null, + "customOutput": null, + "executionStartTime": 1656367410991, + "executionStopTime": 1656367412604, + "originalKey": "ca68b029-68a6-42d6-968e-95bb7c1aae73", + "requestMsgId": "f56944ff-ade2-4041-bdd6-3bce44b1405f", + "showInput": true + }, + "outputs": [], + "source": [ + "import torch\n", + "import torch.fx\n", + "import torch.nn as nn\n", + "from torch_tensorrt.fx.utils import LowerPrecision\n", + "import torch_tensorrt.fx.tracer.acc_tracer.acc_tracer as acc_tracer\n", + "from torch_tensorrt.fx import InputTensorSpec, TRTInterpreter, TRTModule\n", + "from torch_tensorrt.fx.tools.trt_splitter import TRTSplitter" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "code_folding": [], + "collapsed": false, + "customInput": null, + "customOutput": null, + "executionStartTime": 1656367414494, + "executionStopTime": 1656367422756, + "hidden_ranges": [], + "originalKey": "8f974ab2-d187-4ffe-a09b-16cd85949be4", + "requestMsgId": "564359f5-ac69-4666-91e1-41b299495ed1", + "showInput": true + }, + "outputs": [], + "source": [ + "class Model(nn.Module):\n", + " def __init__(self):\n", + " super().__init__()\n", + " self.linear = nn.Linear(10, 10)\n", + " self.relu = nn.ReLU()\n", + "\n", + " def forward(self, x):\n", + " x = self.linear(x)\n", + " x = self.relu(x)\n", + " x = torch.linalg.norm(x, ord=2, dim=1)\n", + " x = self.relu(x)\n", + " return x\n", + "\n", + "\n", + "inputs = [torch.randn((1, 10), device=torch.device('cuda'))]\n", + "model = Model().cuda().eval()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "code_folding": [], + "customInput": null, + "hidden_ranges": [], + "originalKey": "0d407e92-e9e7-48aa-9c9e-1c21a9b5fd8f", + "showInput": false + }, + "source": [ + "acc_tracer is a custom fx tracer that maps nodes whose targets are PyTorch operators\n", + "to acc ops." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "code_folding": [], + "collapsed": false, + "customInput": null, + "customOutput": null, + "executionStartTime": 1656367480626, + "executionStopTime": 1656367482881, + "hidden_ranges": [], + "originalKey": "a1d9c8c2-8ec7-425a-8518-6f7e53ab1e67", + "requestMsgId": "ee2da608-5f1c-4f63-9927-544717e84e8a", + "showInput": true + }, + "outputs": [], + "source": [ + "traced = acc_tracer.trace(model, inputs)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "code_folding": [], + "customInput": null, + "hidden_ranges": [], + "originalKey": "246613eb-14b5-488e-9aae-35306fc99db1", + "showInput": false + }, + "source": [ + "Splitter will split the model into several submodules. The name of submodules will\n", + "be either `run_on_acc_{}` or `run_on_gpu_{}`. Submodules named `run_on_acc_{}` can\n", + "be fully lowered to TensorRT via fx2trt while submodules named `run_on_gpu_{}` has\n", + "unsupported ops and can't be lowered by fx2trt. We can still run `run_on_gpu_{}`\n", + "submodules on GPU if ops there have cuda implementation.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false, + "customInput": null, + "customOutput": null, + "executionStartTime": 1656367487073, + "executionStopTime": 1656367487154, + "originalKey": "1103c70a-3766-4d89-ad2f-cdcb1c3891e0", + "requestMsgId": "feb888ea-ef9c-4577-b0c6-cf95bc1dd25e", + "showInput": true + }, + "outputs": [], + "source": [ + "splitter = TRTSplitter(traced, inputs)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "code_folding": [], + "customInput": null, + "hidden_ranges": [], + "originalKey": "3d65e07e-57ed-47d5-adb9-4685c69c9c6b", + "showInput": false + }, + "source": [ + "Preview functionality allows us to see what are the supported ops and unsupported\n", + "ops. We can optionally the dot graph which will color supported ops and unsupported\n", + "ops differently." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false, + "customInput": null, + "customOutput": null, + "executionStartTime": 1656367489373, + "executionStopTime": 1656367489556, + "originalKey": "6aaed2d5-61b7-438e-a72a-63f91d0709e2", + "requestMsgId": "2948c2f8-854b-4bc2-b399-321469da320c", + "showInput": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Supported node types in the model:\n", + "acc_ops.linear: ((), {'input': torch.float32, 'weight': torch.float32, 'bias': torch.float32})\n", + "acc_ops.relu: ((), {'input': torch.float32})\n", + "\n", + "Unsupported node types in the model:\n", + "acc_ops.linalg_norm: ((), {'input': torch.float32})\n", + "\n" + ] + }, + { + "data": { + "text/plain": [ + "\"\\nSupported node types in the model:\\nacc_ops.linear: ((), {'input': torch.float32, 'weight': torch.float32, 'bias': torch.float32})\\nacc_ops.relu: ((), {'input': torch.float32})\\n\\nUnsupported node types in the model:\\nacc_ops.linalg_norm: ((), {'input': torch.float32})\\n\"" + ] + }, + "execution_count": 5, + "metadata": { + "bento_obj_id": "139812830161136" + }, + "output_type": "execute_result" + } + ], + "source": [ + "splitter.node_support_preview()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "customInput": null, + "originalKey": "8d8035ab-869e-4096-b8e1-3539a0cfe1af", + "showInput": false + }, + "source": [ + "After split, there are three submodules, _run_on_acc_0 and _run_on_gpu_1. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "code_folding": [], + "collapsed": false, + "customInput": null, + "customOutput": null, + "executionStartTime": 1656367495077, + "executionStopTime": 1656367495250, + "hidden_ranges": [], + "originalKey": "80e03730-955a-4cc8-b071-7f92a2cff3df", + "requestMsgId": "2ca46574-7176-4699-a809-2a2e2d5ffda0", + "showInput": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Got 2 acc subgraphs and 1 non-acc subgraphs\n", + "graph():\n", + " %x : [#users=1] = placeholder[target=x]\n", + " %_run_on_acc_0 : [#users=1] = call_module[target=_run_on_acc_0](args = (%x,), kwargs = {})\n", + " %_run_on_gpu_1 : [#users=1] = call_module[target=_run_on_gpu_1](args = (%_run_on_acc_0,), kwargs = {})\n", + " %_run_on_acc_2 : [#users=1] = call_module[target=_run_on_acc_2](args = (%_run_on_gpu_1,), kwargs = {})\n", + " return _run_on_acc_2\n" + ] + } + ], + "source": [ + "split_mod = splitter()\n", + "print(split_mod.graph)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false, + "customInput": null, + "customOutput": null, + "executionStartTime": 1656367496353, + "executionStopTime": 1656367496452, + "originalKey": "9ce75161-978e-468e-9989-ecdbc9af0d5b", + "requestMsgId": "0370de27-39ec-4be0-826b-9aec90df1155", + "showInput": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "graph():\n", + " %x : [#users=1] = placeholder[target=x]\n", + " %linear_weight : [#users=1] = get_attr[target=linear.weight]\n", + " %linear_bias : [#users=1] = get_attr[target=linear.bias]\n", + " %linear_1 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.linear](args = (), kwargs = {input: %x, weight: %linear_weight, bias: %linear_bias})\n", + " %relu_2 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.relu](args = (), kwargs = {input: %linear_1, inplace: False})\n", + " return relu_2\n", + "graph():\n", + " %relu_2 : [#users=1] = placeholder[target=relu_2]\n", + " %linalg_norm_1 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.linalg_norm](args = (), kwargs = {input: %relu_2, ord: 2, dim: 1, keepdim: False})\n", + " return linalg_norm_1\n", + "graph():\n", + " %linalg_norm_1 : [#users=1] = placeholder[target=linalg_norm_1]\n", + " %relu_3 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.relu](args = (), kwargs = {input: %linalg_norm_1, inplace: False})\n", + " return relu_3\n" + ] + } + ], + "source": [ + "print(split_mod._run_on_acc_0.graph)\n", + "print(split_mod._run_on_gpu_1.graph)\n", + "print(split_mod._run_on_acc_2.graph)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "code_folding": [], + "customInput": null, + "hidden_ranges": [], + "originalKey": "7a6857bc-fedd-4847-ba17-a5d114de34f3", + "showInput": false + }, + "source": [ + "The `split_mod` contains the child modules supported by TRT or eager gpu. We can iterate them to transform the module into TRT engine." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "code_folding": [], + "collapsed": false, + "customInput": null, + "customOutput": null, + "executionStartTime": 1656367502837, + "executionStopTime": 1656367510024, + "hidden_ranges": [], + "originalKey": "174fd2eb-a864-49cf-a204-6d24a8e2849d", + "requestMsgId": "cf7fdfe4-e781-47c8-9a9a-85b5664c10f7", + "showInput": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "I0627 150503.073 fx2trt.py:190] Run Module elapsed time: 0:00:00.014965\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "I0627 150504.996 fx2trt.py:241] Build TRT engine elapsed time: 0:00:01.922029\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "I0627 150505.026 fx2trt.py:190] Run Module elapsed time: 0:00:00.000302\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "I0627 150509.953 fx2trt.py:241] Build TRT engine elapsed time: 0:00:04.925192\n" + ] + } + ], + "source": [ + "def get_submod_inputs(mod, submod, inputs):\n", + " acc_inputs = None\n", + "\n", + " def get_input(self, inputs):\n", + " nonlocal acc_inputs\n", + " acc_inputs = inputs\n", + "\n", + " handle = submod.register_forward_pre_hook(get_input)\n", + " mod(*inputs)\n", + " handle.remove()\n", + " return acc_inputs\n", + "\n", + "# Since the model is splitted into three segments. We need to lower each TRT eligible segment.\n", + "# If we know the model can be fully lowered, we can skip the splitter part.\n", + "for name, _ in split_mod.named_children():\n", + " if \"_run_on_acc\" in name:\n", + " submod = getattr(split_mod, name)\n", + " # Get submodule inputs for fx2trt\n", + " acc_inputs = get_submod_inputs(split_mod, submod, inputs)\n", + "\n", + " # fx2trt replacement\n", + " interp = TRTInterpreter(\n", + " submod,\n", + " InputTensorSpec.from_tensors(acc_inputs),\n", + " explicit_batch_dimension=True,\n", + " )\n", + " r = interp.run(lower_precision=LowerPrecision.FP32)\n", + " trt_mod = TRTModule(*r)\n", + " setattr(split_mod, name, trt_mod)\n", + "\n", + "lowered_model_output = split_mod(*inputs)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "code_folding": [], + "customInput": null, + "hidden_ranges": [], + "originalKey": "f1db3e1e-3a70-4735-a403-baa557b0f8a6", + "showInput": false + }, + "source": [ + "Model can be saved by torch.save and loaded with torch.load. Then we can compare the results with eager mode inference. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false, + "customInput": null, + "customOutput": null, + "executionStartTime": 1656367515833, + "executionStopTime": 1656367516184, + "originalKey": "a7c4fa0f-cac6-4959-8fa6-13b3455137d3", + "requestMsgId": "f0c264ac-2bda-4c8e-a236-e2bd475e601e", + "showInput": true + }, + "outputs": [], + "source": [ + "torch.save(split_mod, \"trt.pt\")\n", + "reload_trt_mod = torch.load(\"trt.pt\")\n", + "reload_model_output = reload_trt_mod(*inputs)\n", + "\n", + "# Make sure the results match\n", + "regular_model_output = model(*inputs)\n", + "torch.testing.assert_close(\n", + " reload_model_output, regular_model_output, atol=3e-3, rtol=1e-2\n", + ")" + ] + } + ], + "metadata": { + "bento_stylesheets": { + "bento/extensions/flow/main.css": true, + "bento/extensions/kernel_selector/main.css": true, + "bento/extensions/kernel_ui/main.css": true, + "bento/extensions/new_kernel/main.css": true, + "bento/extensions/system_usage/main.css": true, + "bento/extensions/theme/main.css": true + }, + "dataExplorerConfig": {}, + "kernelspec": { + "display_name": "accelerators", + "language": "python", + "metadata": { + "cinder_runtime": false, + "fbpkg_supported": true, + "is_prebuilt": true, + "kernel_name": "bento_kernel_accelerators", + "nightly_builds": true + }, + "name": "bento_kernel_accelerators" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3" + }, + "last_base_url": "https://devgpu005.ftw6.facebook.com:8093/", + "last_kernel_id": "a08a7dfc-0fcc-4486-a2d5-604483260888", + "last_msg_id": "3f4cd9a4-65001843cf56aec954e05889_80", + "last_server_session_id": "42b65868-6af0-4f04-bf2f-b7e2511f23dd", + "outputWidgetContext": {} + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_notebooks/lenet-getting-started.html b/docs/_notebooks/lenet-getting-started.html index 27012a117b..16ce55d61d 100644 --- a/docs/_notebooks/lenet-getting-started.html +++ b/docs/_notebooks/lenet-getting-started.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    @@ -618,7 +618,7 @@ -

    e35ce4ca215c4513810fb9d533909cc9

    +

    2f280e0eb74d46ecafdf6432a54d6ea6

    Torch-TensorRT Getting Started - LeNet

    @@ -641,7 +641,9 @@

    ContentCreating TorchScript modules

  • Compiling with Torch-TensorRT

  • -

    ## 1. Requirements

    +
    +

    ## 1. Requirements

    +

    Follow the steps in notebooks/README to prepare a Docker container, within which you can run this notebook.

    [1]:
    @@ -744,7 +746,9 @@ 

    Content @@ -1033,7 +1037,9 @@

    Scripting

    TorchScript traced model

    diff --git a/docs/_notebooks/ssd-object-detection-demo.html b/docs/_notebooks/ssd-object-detection-demo.html index ad0fcb17bb..8e7ad225a9 100644 --- a/docs/_notebooks/ssd-object-detection-demo.html +++ b/docs/_notebooks/ssd-object-detection-demo.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    @@ -618,7 +618,7 @@

    -

    aa77691fd7754170ac652a03d651d0b9

    +

    3185e4b1941b4216b8d84f22f38f5cf7

    Object Detection with Torch-TensorRT (SSD)


    @@ -647,7 +647,9 @@

    ContentsConclusion


    -

    ## 1. Requirements

    +
    +

    ## 1. Requirements

    +

    Follow the steps in notebooks/README to prepare a Docker container, within which you can run this demo notebook.

    In addition to that, run the following cell to obtain additional libraries specific to this demo.

    @@ -765,7 +767,9 @@

    Contents -

    ## 2. SSD

    +
    +

    ## 2. SSD

    +

    Single Shot MultiBox Detector model for object detection

    @@ -1078,7 +1082,9 @@

    Benchmark utility -

    ## 3. Creating TorchScript modules

    +
    +

    ## 3. Creating TorchScript modules

    +

    To compile with Torch-TensorRT, the model must first be in TorchScript. TorchScript is a programming language included in PyTorch which removes the Python dependency normal PyTorch models have. This conversion is done via a JIT compiler which given a PyTorch Module will generate an equivalent TorchScript Module. There are two paths that can be used to generate TorchScript: Tracing and Scripting. - Tracing follows execution of PyTorch generating ops in TorchScript corresponding to what it sees. - Scripting does an analysis of the Python code and generates TorchScript, this allows the resulting graph to include control flow which tracing cannot do.

    Tracing however due to its simplicity is more likely to compile successfully with Torch-TensorRT (though both systems are supported).

    @@ -1134,7 +1140,9 @@

    Benchmark utility -

    ## 4. Compiling with Torch-TensorRT TorchScript modules behave just like normal PyTorch modules and are intercompatible. From TorchScript we can now compile a TensorRT based module. This module will still be implemented in TorchScript but all the computation will be done in TensorRT.

    +
    +

    ## 4. Compiling with Torch-TensorRT TorchScript modules behave just like normal PyTorch modules and are intercompatible. From TorchScript we can now compile a TensorRT based module. This module will still be implemented in TorchScript but all the computation will be done in TensorRT.

    +
    [15]:
     
    @@ -1173,7 +1181,9 @@

    Benchmark utility -

    ## 5. Running Inference

    +
    +

    ## 5. Running Inference

    +

    Next, we run object detection

    [16]:
    diff --git a/docs/_notebooks/vgg-qat.html b/docs/_notebooks/vgg-qat.html
    index 6e29fe90a0..588e574d5c 100644
    --- a/docs/_notebooks/vgg-qat.html
    +++ b/docs/_notebooks/vgg-qat.html
    @@ -199,7 +199,7 @@
                   
                   
                     
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    @@ -618,7 +618,7 @@
    -

    ea58b17a1b2146f390fb14f89011e298

    +

    f4642ae2930e4f81bafc0d2cea4c2431

    Deploying Quantization Aware Trained models in INT8 using Torch-TensorRT

    @@ -635,7 +635,9 @@

    OverviewInference using Torch-TensorRT

  • References

  • -

    ## 1. Requirements Please install the required dependencies and import these libraries accordingly

    +
    +

    ## 1. Requirements Please install the required dependencies and import these libraries accordingly

    +
    [ ]:
     
    @@ -683,8 +685,12 @@

    Overview

    -

    ## 3. Training a baseline VGG16 model We train VGG16 on CIFAR10 dataset. Define training and testing datasets and dataloaders. This will download the CIFAR 10 data in your data directory. Data preprocessing is performed using torchvision transforms.

    +
    +

    ## 2. VGG16 Overview ### Very Deep Convolutional Networks for Large-Scale Image Recognition VGG is one of the earliest family of image classification networks that first used small (3x3) convolution filters and achieved significant improvements on ImageNet recognition challenge. The network architecture looks as follows 67bfeaf143e44c928a91cc8c029d57f2

    +
    +
    +

    ## 3. Training a baseline VGG16 model We train VGG16 on CIFAR10 dataset. Define training and testing datasets and dataloaders. This will download the CIFAR 10 data in your data directory. Data preprocessing is performed using torchvision transforms.

    +
    [2]:
     
    @@ -980,7 +986,9 @@

    Overviewquant_modules.initialize() will ensure quantized version of modules will be called instead of original modules. For example, when you define a model with convolution, linear, pooling layers, QuantConv2d, QuantLinear and QuantPooling will be called. QuantConv2d basically wraps quantizer nodes around inputs and weights of regular Conv2d. Please refer to all the quantized modules in pytorch-quantization toolkit for more information. A QuantConv2d is represented in pytorch-quantization toolkit as follows.

    def forward(self, input):
    @@ -1038,7 +1046,9 @@ 

    Overviewmax, histogram and entropy. We use max calibration technique as it is simple and effective.

    [10]:
    @@ -1266,7 +1276,9 @@ 

    Overviewmax, clamp, round and mul ops.

    # amax is absolute maximum value for an input
    @@ -1316,8 +1328,10 @@ 

    Overviewhttps://pytorch.org/docs/stable/jit.html. Setting quant_nn.TensorQuantizer.use_fb_fake_quant = True enables the QAT model to use torch.fake_quantize_per_tensor_affine and torch.fake_quantize_per_channel_affine operators instead of tensor_quant function to export quantization operators. In torchscript, they -are represented as aten::fake_quantize_per_tensor_affine and aten::fake_quantize_per_channel_affine.

    +
    +

    ## 7. Export to Torchscript Export the model to Torch script. Trace the model and convert it into torchscript for deployment. To learn more about Torchscript, please refer to https://pytorch.org/docs/stable/jit.html. Setting quant_nn.TensorQuantizer.use_fb_fake_quant = True enables the QAT model to use torch.fake_quantize_per_tensor_affine and torch.fake_quantize_per_channel_affine operators instead of tensor_quant function to export quantization operators. In torchscript, they

    +
    +

    are represented as aten::fake_quantize_per_tensor_affine and aten::fake_quantize_per_channel_affine.

    [13]:
     
    @@ -1475,8 +1489,10 @@

    OverviewQuantizeLayer and DequantizeLayer. We can observe the entire VGG QAT graph quantization nodes from the debug log of Torch-TensorRT. To enable debug logging, you can set -torch_tensorrt.logging.set_reportable_log_level(torch_tensorrt.logging.Level.Debug). For example, QuantConv2d layer from pytorch_quantization toolkit is represented as follows in Torchscript

    +
    +

    ## 8. Inference using Torch-TensorRT In this phase, we run the exported torchscript graph of VGG QAT using Torch-TensorRT. Torch-TensorRT is a Pytorch-TensorRT compiler which converts Torchscript graphs into TensorRT. TensorRT 8.0 supports inference of quantization aware trained models and introduces new APIs; QuantizeLayer and DequantizeLayer. We can observe the entire VGG QAT graph quantization nodes from the debug log of Torch-TensorRT. To enable debug logging, you can set

    +
    +

    torch_tensorrt.logging.set_reportable_log_level(torch_tensorrt.logging.Level.Debug). For example, QuantConv2d layer from pytorch_quantization toolkit is represented as follows in Torchscript

    %quant_input : Tensor = aten::fake_quantize_per_tensor_affine(%x, %636, %637, %638, %639)
     %quant_weight : Tensor = aten::fake_quantize_per_channel_affine(%394, %640, %641, %637, %638, %639)
     %input.2 : Tensor = aten::_convolution(%quant_input, %quant_weight, %395, %687, %688, %689, %643, %690, %642, %643, %643, %644, %644)
    @@ -1623,7 +1639,9 @@ 

    Performance benchmarking`_. + +* **Step 2: Build TensorRT engine** +There are `two different modes `_ for how TensorRT handles batch dimension, explicit batch dimension and implicit batch dimension. This mode was used by early versions of TensorRT, and is now deprecated but continues to be supported for backwards compatibility. In explicit batch mode, all dimensions are explicit and can be dynamic, that is their length can change at execution time. Many new features, such as dynamic shapes and loops, are available only in this mode. User can still choose to use implicit batch mode when they set ``explicit_batch_dimension=False`` in ``lower_to_trt()``. We do not recommend to use it since it will lack of support in future TensorRT versions. + +Explicit batch is the default mode and it must be set for dynamic shape. For most of vision task, user can choose to enable ``dynamic_batch`` in ``lower_to_trt()`` if they want to get the similar effects as implicit mode where only batch dimension changes. It has some requirements: +1. Shapes of inputs, outputs and activations are fixed except batch dimension. +2. Inputs, outputs and activations have batch dimension as the major dimension. +3. All the operators in the model do not modify batch dimension (permute, transpose, split, etc.) or compute over batch dimension (sum, softmax, etc.). + +For examples of the last path, if we have a 3D tensor t shaped as (batch, sequence, dimension), operations such as torch.transpose(0, 2). If any of these three are not satisfied, we’ll need to specify InputTensorSpec as inputs with dynamic range. + +.. code-block:: shell + + import deeplearning.trt.fx2trt.converter.converters + from torch.fx.experimental.fx2trt.fx2trt import InputTensorSpec, TRTInterpreter + + # InputTensorSpec is a dataclass we use to store input information. + # There're two ways we can build input_specs. + # Option 1, build it manually. + input_specs = [ + InputTensorSpec(shape=(1, 2, 3), dtype=torch.float32), + InputTensorSpec(shape=(1, 4, 5), dtype=torch.float32), + ] + # Option 2, build it using sample_inputs where user provide a sample + inputs = [ + torch.rand((1,2,3), dtype=torch.float32), + torch.rand((1,4,5), dtype=torch.float32), + ] + input_specs = InputTensorSpec.from_tensors(inputs) + + # IMPORTANT: If dynamic shape is needed, we need to build it slightly differently. + input_specs = [ + InputTensorSpec( + shape=(-1, 2, 3), + dtype=torch.float32, + # Currently we only support one set of dynamic range. User may set other dimensions but it is not promised to work for any models + # (min_shape, optimize_target_shape, max_shape) + # For more information refer to fx/input_tensor_spec.py + shape_ranges = [ + ((1, 2, 3), (4, 2, 3), (100, 2, 3)), + ], + ), + InputTensorSpec(shape=(1, 4, 5), dtype=torch.float32), + ] + + # Build a TRT interpreter. Set explicit_batch_dimension accordingly. + interpreter = TRTInterpreter( + acc_mod, input_specs, explicit_batch_dimension=True/False + ) + + # The output of TRTInterpreter run() is wrapped as TRTInterpreterResult. + # The TRTInterpreterResult contains required parameter to build TRTModule, + # and other informational output from TRTInterpreter run. + class TRTInterpreterResult(NamedTuple): + engine: Any + input_names: Sequence[str] + output_names: Sequence[str] + serialized_cache: bytearray + + #max_batch_size: set accordingly for maximum batch size you will use. + #max_workspace_size: set to the maximum size we can afford for temporary buffer + #lower_precision: the precision model layers are running on (TensorRT will choose the best perforamnce precision). + #sparse_weights: allow the builder to examine weights and use optimized functions when weights have suitable sparsity + #force_fp32_output: force output to be fp32 + #strict_type_constraints: Usually we should set it to False unless we want to control the precision of certain layer for numeric #reasons. + #algorithm_selector: set up algorithm selection for certain layer + #timing_cache: enable timing cache for TensorRT + #profiling_verbosity: TensorRT logging level + trt_interpreter_result = interpreter.run( + max_batch_size=64, + max_workspace_size=1 << 25, + sparse_weights=False, + force_fp32_output=False, + strict_type_constraints=False, + algorithm_selector=None, + timing_cache=None, + profiling_verbosity=None, + ) + + +*Common Errors:* + +RuntimeError: Conversion of function xxx not currently supported! +- This means we don’t have the support for this xxx operator. Please refer to section “How to add a missing op” below for further instructions. + +* **Step 3: Run the model** +One way is using TRTModule, which is basically a PyTorch nn.Module. + +.. code-block:: shell + + from torch_tensorrt.fx import TRTModule + mod = TRTModule( + trt_interpreter_result.engine, + trt_interpreter_result.input_names, + trt_interpreter_result.output_names) + # Just like all other PyTorch modules + outputs = mod(*inputs) + torch.save(mod, "trt.pt") + reload_trt_mod = torch.load("trt.pt") + reload_model_output = reload_trt_mod(*inputs) + +So far, we give a detailed explanation of major steps in convterting a PyTorch model into TensorRT engine. Users are welcome to refer to the source code for some parameters explanations. In the converting scheme, there are two important actions in it. One is acc tracer which helps us to convert a PyTorch model to acc graph. The other is FX path converter which helps to convert the acc graph's operation to corresponding TensorRT operation and build up the TensoRT engine for it. + +Acc Tracer +--------- + +Acc tracer is a custom FX symbolic tracer. It does a couple more things compare to the vanilla FX symbolic tracer. We mainly depend on it to convert PyTorch ops or builtin ops to acc ops. There are two main purposes for fx2trt to use acc ops: + +1. there’re many ops that do similar things in PyTorch ops and builtin ops such like torch.add, builtin.add and torch.Tensor.add. Using acc tracer, we normalize these three ops to a single acc_ops.add. This helps reduce the number of converters we need to write. +2. acc ops only have kwargs which makes writing converter easier as we don’t need to add additional logic to find arguments in args and kwargs. + +FX2TRT +-------- +After symbolic tracing, we have the graph representation of a PyTorch model. fx2trt leverages the power of fx.Interpreter. fx.Interpreter goes through the whole graph node by node and calls the function that node represents. fx2trt overrides the original behavior of calling the function with invoking corresponding converts for each node. Each converter function adds corresponding TensorRT layer(s). + +Below is an example of a converter function. The decorator is used to register this converter function with the corresponding node. In this example, we register this converter to a fx node whose target is acc_ops.sigmoid. + +.. code-block:: shell + + @tensorrt_converter(acc_ops.sigmoid) + def acc_ops_sigmoid(network, target, args, kwargs, name): + """ + network: TensorRT network. We'll be adding layers to it. + + The rest arguments are attributes of fx node. + """ + input_val = kwargs['input'] + + if not isinstance(input_val, trt.tensorrt.ITensor): + raise RuntimeError(f'Sigmoid received input {input_val} that is not part ' + 'of the TensorRT region!') + + layer = network.add_activation(input=input_val, type=trt.ActivationType.SIGMOID) + layer.name = name + return layer.get_output(0) + +How to Add a Missing Op +**************** + +You can actually add it wherever you want just need to remember import the file so that all acc ops and mapper will be registered before tracing with acc_tracer. + +* **Step 1. Add a new acc op** + +TODO: Need to explain more on the logistic of acc op like when we want to break down an op and when we want to reuse other ops. + +In `acc tracer `_, we convert nodes in the graph to acc ops if there’s a mapping registered for the node to an acc op. + +In order to make the conversion to acc ops to happen, there’re two things required. One is that there should be an acc op function defined and the other is there should be a mapping registered. + +Defining an acc op is simple, we first just need a function and register the function as an acc op via this decorator `acc_normalizer.py `_. e.g. the following code adds an acc op named foo() which adds two given inputs. + +.. code-block:: shell + + # NOTE: all acc ops should only take kwargs as inputs, therefore we need the "*" + # at the beginning. + @register_acc_op + def foo(*, input, other, alpha): + return input + alpha * other + +There’re two ways to register a mapping. One is `register_acc_op_mapping() `_. Let’s register a mapping from torch.add to foo() we just created above. We need to add decorator register_acc_op_mapping to it. + +.. code-block:: shell + + this_arg_is_optional = True + + @register_acc_op_mapping( + op_and_target=("call_function", torch.add), + arg_replacement_tuples=[ + ("input", "input"), + ("other", "other"), + ("alpha", "alpha", this_arg_is_optional), + ], + ) + @register_acc_op + def foo(*, input, other, alpha=1.0): + return input + alpha * other + +``op_and_target`` determines which node will trigger this mapping. op and target are the attributes of FX node. In acc_normalization when we see a node with the same op and target as set in the ``op_and_target``, we will trigger the mapping. Since we want to map from ``torch.add``, then op would be call_function and target would be ``torch.add``. ``arg_replacement_tuples`` determines how we construct kwargs for new acc op node using args and kwargs from original node. Each tuple in ``arg_replacement_tuples`` represents one argument mapping rule. It contains two or three elements. The third element is a boolean variable that determines whether this kwarg is optional in *original node*. We only need to specify the third element if it’s True. The first element is the argument name in original node which will be used as the acc op node’s argument whose name is the second element in the tuple. The sequence of the tuples does matter because the position of the tuple determines where the argument is in original node’s args. We use this information to map args from original node to kwargs in acc op node. +We don’t have to specify arg_replacement_tuples if none of the followings are true. + +1. kwargs of original nodes and acc op nodes have different name. +2. there’re optional arguments. + +The other way to register a mapping is through `register_custom_acc_mapper_fn() `_. This one is designed to reduce the redundant op registration as it allows you to use a function to map to one or more existing acc ops throught some combinations. In the function, you can do basically whatever you want. Let’s use an example to explain how it works. + +.. code-block:: shell + + @register_acc_op + def foo(*, input, other, alpha=1.0): + return input + alpha * other + + @register_custom_acc_mapper_fn( + op_and_target=("call_function", torch.add), + arg_replacement_tuples=[ + ("input", "input"), + ("other", "other"), + ("alpha", "alpha", this_arg_is_optional), + ], + ) + def custom_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node: + """ + `node` is original node, which is a call_function node with target + being torch.add. + """ + alpha = 1 + if "alpha" in node.kwargs: + alpha = node.kwargs["alpha"] + foo_kwargs = {"input": node["input"], "other": node["other"], "alpha": alpha} + with node.graph.inserting_before(node): + foo_node = node.graph.call_function(foo, kwargs=foo_kwargs) + foo_node.meta = node.meta.copy() + return foo_node + + +In the custom mapper function, we construct an acc op node and return it. The node we returns here would take over all the children nodes of original nodes `acc_normalizer.py `_. + +The last step would be *adding unit test* for the new acc op or mapper function we added. The place to add the unit test is here `test_acc_tracer.py `_. + +* **Step 2. Add a new fx2trt converter** + +All the developed converters for acc ops are all in `acc_op_converter.py `_. It could give you a good example of how the converter is added. + +Essentially, the converter is the mapping mechanism that maps the acc ops to a TensorRT layer. If we are able to find all the TensorRT layers we need we can get start to add a converter for the node using `TensorRT APIs `_. + +.. code-block:: shell + + @tensorrt_converter(acc_ops.sigmoid) + def acc_ops_sigmoid(network, target, args, kwargs, name): + """ + network: TensorRT network. We'll be adding layers to it. + + The rest arguments are attributes of fx node. + """ + input_val = kwargs['input'] + + if not isinstance(input_val, trt.tensorrt.ITensor): + raise RuntimeError(f'Sigmoid received input {input_val} that is not part ' + 'of the TensorRT region!') + + layer = network.add_activation(input=input_val, type=trt.ActivationType.SIGMOID) + layer.name = name + return layer.get_output(0) + +We need to use ``tensorrt_converter`` decorator to register the converter. The argument for the decorator is the target of the fx node that we need to convert. In the converter, we can find the inputs to the fx node in kwargs. As in the example, the original node is `acc_ops.sigmoid` which only has one argument “input” in acc_ops.py. We get the input and check if it’s a TensorRT tensor. After that, we add a sigmoid layer to TensorRT network and return the output of the layer. The output we returned will be passed to the children nodes of acc_ops.sigmoid by fx.Interpreter. + +**What if we can not find corresponding layers in TensorRT that do the same thing as the node.** + +In this case, we would need to do a bit more work. TensorRT provides plugins which serves as custom layers. *We have not implement this feature yet. We will update once it is enabled*. + +Last step would be adding the unit test for the new converter we added. User could add corresponding unit test in this `folder `_. diff --git a/docs/contributors/conversion.html b/docs/contributors/conversion.html index 79e58ac7ea..22e91ace05 100644 --- a/docs/contributors/conversion.html +++ b/docs/contributors/conversion.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    diff --git a/docs/contributors/lowering.html b/docs/contributors/lowering.html index 2fab6272d7..b21b1a64ea 100644 --- a/docs/contributors/lowering.html +++ b/docs/contributors/lowering.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    diff --git a/docs/contributors/partitioning.html b/docs/contributors/partitioning.html index bc6779ca03..2e6d5dc08d 100644 --- a/docs/contributors/partitioning.html +++ b/docs/contributors/partitioning.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    diff --git a/docs/contributors/phases.html b/docs/contributors/phases.html index e669062975..df77dfdd5b 100644 --- a/docs/contributors/phases.html +++ b/docs/contributors/phases.html @@ -197,7 +197,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    diff --git a/docs/contributors/runtime.html b/docs/contributors/runtime.html index 4e08b66384..20019af73d 100644 --- a/docs/contributors/runtime.html +++ b/docs/contributors/runtime.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    diff --git a/docs/contributors/system_overview.html b/docs/contributors/system_overview.html index 32ecb37e00..e103093f2a 100644 --- a/docs/contributors/system_overview.html +++ b/docs/contributors/system_overview.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    diff --git a/docs/contributors/useful_links.html b/docs/contributors/useful_links.html index 9d4dad487e..6ca5012842 100644 --- a/docs/contributors/useful_links.html +++ b/docs/contributors/useful_links.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    diff --git a/docs/contributors/writing_converters.html b/docs/contributors/writing_converters.html index 8bb88e41f6..4601ecd006 100644 --- a/docs/contributors/writing_converters.html +++ b/docs/contributors/writing_converters.html @@ -199,7 +199,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    diff --git a/docs/genindex.html b/docs/genindex.html index bc175152ae..7428831f21 100644 --- a/docs/genindex.html +++ b/docs/genindex.html @@ -196,7 +196,7 @@
    - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
    @@ -348,16 +348,7 @@

    Index

    - _ - | A - | C - | D - | E - | F - | G - | I - | L - | M + D | P | R | S @@ -366,197 +357,14 @@

    Index

    | X
    -

    _

    -

    - -
    - -

    A

    - - -
    - -

    C

    - - - -
    -

    D

    - -
    - -

    E

    - - - -
    - -

    F

    - -
    -

    G

    - - - -
    - -

    I

    - - - -
    - -

    L

    - - - -
    - -

    M

    - - -
    -

    P

      @@ -573,8 +381,6 @@

      P

      R

      @@ -592,20 +398,6 @@

      R

      S

      - @@ -614,38 +406,6 @@

      S

      T

      - +
      • torch_tensorrt::ptq::Int8CacheCalibrator (C++ class)
      • torch_tensorrt::ptq::Int8CacheCalibrator::getBatch (C++ function) @@ -878,14 +638,6 @@

        T

        W

        - diff --git a/docs/index.html b/docs/index.html index 3543a93f12..4ab408acff 100644 --- a/docs/index.html +++ b/docs/index.html @@ -198,7 +198,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/indices/supported_ops.html b/docs/indices/supported_ops.html index 43b24f615e..0e995072a6 100644 --- a/docs/indices/supported_ops.html +++ b/docs/indices/supported_ops.html @@ -198,7 +198,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/objects.inv b/docs/objects.inv index 9c36d6179ba890625baf75997822ddace49c05a6..cb2e300169ce111d3293d5cc64cd4819574f03a7 100644 GIT binary patch literal 23628 zcmZs?Q*b6u@b4XSW81cE+fJU?wv!Duwrx9kV%xT}(Z;sl-~XIb@5QNeHC;13Q!`a_ z(f#RflM$;qSy?-H5nDTWm^-*Rx_A?Nn7g=IJ30`v!jTaxyExjIo4WB5t2?@wS}~}b zJGeT!sH*?BqWQnQc!}+eUER!Gh^bi^Ss9s)nd#V!xw)9x%}i+ib5gf5Cw4KnH@0># z`_IMEg4oT<+LhSC+RmK#ztPmu-pR$>)z#dL*xl9I!IId=&f0_#&TI3y=fdTXyOr^^ zFE1Evmqo?>xgm+`_JGZoGRN97)zh4Jr?t9EDTli-7SF!bT!un**6k;2En_X43I~Lo zBIy9~uY{_mlzX`ZvTdy+0|-1882k&8C$3;%kXO&LynUEfHIBZ-4GcmtWNzf6*FT{d zd8_wfIFLtsB$K(&P>{cGy|%<4)F5F`4{GXD4^ppX0cRH@~}l!)uGcp3bhmZ&JEh&a3`#M(2oQm8lm6q_A-qgfw|@vI6^q zI>+S^(7A>nTT%;FG${FsE3pHVzhqMn4D}M*S0muQ>S&g4n$mW5#AsXdtU+h537dK5 zUQiqiYmO-8lo7&UVDLWU;)JCT+Mtw$@GNT61HFz|kY8VbPEN9O-*Jy=2E_rS>r=#5F1_pcW1H z$%zc?0)zfgIvUMnh^ZR=qB>e!0wX6Hh@1jN(EjJ=+m{Q^o@k-%ICU8qL?|@&zu!8#J)Fu{ zk(Fv8^8ibHEu5aZu~+PR8!o8>>+S;~;p%-HqC@pMN}sgQaL0^BoyLR#5=mCyZ9f^C z{O~?4U;exa4k=+Od{&p9_u^}0i2PD5+d=zJz=J?}K>s6>#1sL9s-Z1Gld`Y&b^mQi zjkF=zb^{nH)dhm$c>zq3CiF#_ca}t&_}WStO34W^fKTO78w%B}%P`kK5o(m(7l`7iVEcyAjd%(Bf+gZ^Z?xdB48+Wj?h?2<~ zfIG0`>uY?}9A*?!Aki7aDZo(U`J)P442!u-`G*p;%U=g5WR;r5$1ocJ-$=F`F?zhQ zYbE6Y?GN&-(@IdB$9Sr7=ghxssX9P(L_G!6ME;d#HEN--#->NNBPMa`p69rGNDp*ke8w?5G}nr z@{ptQqpd;)VzCm>gxf2B^TKFFk6DQb^<#)H@XPMnoJ@UsYf2Ox7>p31k;8bBHIB4zFf>2K=;{N7z$S6Ih|u$|Dgwd_Bwn360)i$c2DbyuzZGw*`d*i4J*p%;^V{puf%xTm zFz(2GRIZa$-<2t6THKYmcTWr ze6RMW9h)};^z*-W{jh((91sK+kgvKHYaI7``W=C#J`DG;3`z>D5Pu#qI%p|7&u7_09i(CY1^Y1Hu#fpk3qVq2dtQ z>NA%f!9mmCU*+B}TM{Kjvs%|Ll@_RwZ^|z9j?zy^(1c-HQ8$%SM)i^l#wnT$s9)&R z3f5(i$5_?takq&t9YwR4Z=9RVM4 zzdoxVnqI7@i&w(P$gb7smgg9shd2Eg8=#bNGi@6S9$wL6J|O&XLl>Ln4lsn7uw)+F zbsP>t#5myxk3nDJ4LM-!ZHcQ{7jLRb{e(FF@=?DBje+19f3L;?pTrHo2LYC6KAVka zZn^@^geQydxN$@r=UK#gVB^^V0!z|T3vtFfrl5pYXFuHfEq|e--gRCYh@tf!sWprv z+~Xm&Hy6zwnz9NN*r|Y4D2#ZvVtJZ@ze3yR3zx^{M*>b&L8gC`E;ai_^~?uZ_(Fry z65H@aNM-#RizJBf+iE6xqPH^^f}w6!`1=Z@E%;%`r&u0Si22X&?G>AWaBfa$L5tT> zFeLSOim|^Tb{;ZrU+lmXf`&t%j2+|&)&(47)7Tq_j+h+aZgNmwSGW7~Ew|>KUy0mV z=|xkZ<>_g79S5x*kq-7gwKH;6KL$=aEC<@t`}TUQ%^j4$2>Y;qe*N!Y>9T^O9|D6| zb^XV~+0)hEwfXt@1VnehMGJF;tviQlEoC|_+pI;#VoIXTlwlu=F}o9o=!VeFj>IQTdvUPqD$3?;xaA!C-00gG>9X_W)V;~{Rw$HkULESmWS zlybkVeRAsnhZzel^VhsT@Gl;T`-bE9P>#HE?!X$U@yNW!M_MnS(OjSF6^_|x8?6t6g>r-TYrD`l#~;cT zhNaTX&DpXi(#Iq#TZW3{g`+U%^t;d}5B^pT--LJry`A|T>R?5qUbQI#IEQ$rUfen( zR4CQBhu-T-dL<$bC?fjHFKRtk-5eR}Ec4QMc}D}*$65E>uobiX%Lb+%y+1GCaGEIn zg4){$r5)|PDQhTHww{)dAW#jqf?jlrhNNDkN7u8jh0BA2K!<4v&BA!t<^qmV=?n9Z zl7TB{t{)QGr`sdxlPkFv7H~`J`Df2*SuXj(6`cWwP23Ncg0sj3{#EoRRJZUYa2Bj9 z{#&NpMyqea_g8g9xkqM&PU=-z$cSw-%-N>d+hUA&-j9ddT#%uo<0pPTEbVI@ItM^a z`rfiE!7I=WgP|C4btM-MNSaF#f?*aS*6GEcD(E0@-`7-#CD3!vZtHBY^Zm@5m9zo! zPdw_87%pF(g0SKa2AKOEDY_&-Q2DCB<8?Ueh!~QQ&-~sT8d?`}^dUC0%Jo1I2UQIQ|4Ha*x2-vVpOj}`Ny!M;1}#;Fi8+*YZ-BlHXHw(p^NV*~(e7BVo*h0RkL-uWT`Q~qi-vx_IPSv(TQ|aI zS-3Z-;ba}LFb>vljeNZUyix*kszS_J!+sWWN8XgHtAkc>e8%Z~7@^`akdo}O{gY15 z*l6pAEmPD(p!|`wxi|b#J|c2oRoWPvG*pM`RAu!`r;aG2^`@C9 zfX(B+J|J56F11eNf-%YTH^v+bK#K19*7&W-gzz{(qVeEL6_WF_vA=@AFmawf$$-Xa z2fEH}YT|T#Dhl1C(OhKqJEfCD^5rABN)OApzOU-!#P~5b2`B$?L_qAyf6e?W7su#w zF}~fD+rP(`hgrWjQjJ7>_caQq{mEq3f&xY&d#v~n8Z3xZUqa-thD4S!kAq0*;;;rpecJTJh-sZB+ssrI+8AkBCVtNbI-S*T(p3Nfw8fdfvj#skn;tod^>aQFnTf1QfMfs^r`jG4-Vqw-{Y#N7VWvDQ} zjQ-iFF9f8GJ*)ghHu;-3bwDX4mK$Jo-+VNZ?a+}ql8qsxxasPRK|BUR(x_r(Dm0AQ zLhQsWiVR8kqXgihvl!=d!$&sZBZNrs0Tl`A&I3S|018zP)72yAwrHKfG34%=TkrsK zO6q+hbmlNXxO{p`Sl^=mLZpSZG}U~NwLAJHCz{g2t3MH7Y`=QuS)6{;|5-h48@RBG zDaJAJ+WBVNG%E?XRI<(*m_7Jth9fFYig}>doyL5;s2Rn)x44xL3GF==o@4Vr;)ZfZ z<`h7OaxgN*rOgX*b#0bDMb1!2+ueOn z3+wgBtH+v1ElcvojU8a?v)@Oi4LNy{PpX;KxvoqZRdVvjE)`;yxtERJR-^fXIN3K& z`A(Hd($YQ3leB)}$zj?T$!h-iOpH#_;F}YS-Ti)`?7{wroQ363s6vq;`5{KlPkw!*saSRKEEN!vO*`PW$@F?nwG_dUGt?r@lR)91I`AUeAiWTVtYlfZ299&2A@Z}< zxH3|2Wg@XeS5)E>Tf5z?(b={8T$?k;Fp}DFsxo=mmUghd%U71*>E?b$)b-3=JNOvC zGqaebdQFo8kY6Bct8!gh7OGZ>b%=o!P)E>KPQ_K87WlIWT?hIZ!2X1*ELCdrD^Z51 zG=i=stk%nHI?d}r6icQv-vYvkA^>O5BKi?B!fyNk?C@bWo6ZZ=S0C2ai0u^*NLbo-AYi*@W1VmF;nfR zJvn`^<@aR5aSOXNAG_>3-*Ml~8d2V1i;ZPP@^duolE@$Qhh~(r9s?hFZb(7BdG11S z!==XznNRfEgN55Q);^TTO#>Dc(GdE3TqF+CgWO9+hNp~4&tb|n!lqNv%of{w1j!tp zxbcGMcjQwJH#dEb4+Hn*a4UM-iR`M~fQu7}oEzG#(Tqa?KRf8$5S9e)AGDibf~Xg_ z+;Cog2Nt&x7=p|_l<9n^>}}xB`P-AYYyltczgK!BLqz@}wgb>anw(m|#!tSpo7vPF zR3>4_#C~nGp;ol0+dt}=Cil-t*N&mRN_O6{1-N~k-nEu{*;%~}bx9&8jWr|0q1Y%R z`6t4qT*kx8*Ivs$_6ctV==FVIHsku?j5Du#B&Je|JDk(NzfiFV*$E1;jTvG~u1-Pl4_>^x$noVW|RmC}*!kj{zecJQh)9qB@9EmgWH}D(z8Fn0G z8dg-CYBz`bA-|UW6}xk7Op5WBF=Z(;6dwe)9DL7rI+t20FU)v}Dsm{~yree-Juw{S zVu7)^KdTxJxxVJvFl9inJsdq*?gW&DDEr7KKI|Cpw`;qYpfEd7Z z$ljWJhDHZ6-zE?tfQAb8`{bi82&4c6TXRZOmdL@x;8+#e=06@a)R?=Ue`qGaDmt1H zv^3mDCMr4w zH~h-Pic_*E<+*5OEQtyw^-xw)Xf1=SW^kg;VUjc{hCMC;Y*I3IZB~Ss-&HMbiVh4{ zR}UkB0UdZqj{&~EK|k7cD_hwqiXT_CC2_0YJ`ncdEnGYVQZ|mX@9MOD)S~`Hq$wyo z-REHc3t>%3Q2xRu-U=Tk>z7J9(aSUOy*OB1-K}#Rg)ms!Et05zrYu%d@TIFNZs{Ww z*$TQ+kR5B>%nlY@nf&jD`4uqc;)r#f{}+5SZl})%S(321s!iSk`1%?-F*($ShfHr_ zA=S*S$HeeBD&gqYesY7o8(&E%h9_=DM+tf-o}!`4T9|94^@i=usNWHZ)>nJW9#3Q|vs*GSxT&h}FmIa!4liBAsNpe^I@gAhymD zfRX7C;-7vD>~O5X1!T_Lsn3p|MO(R~f?iK6wV*k5og-o0wF9HzOx^W$?>5Kv*Le|N z!bbbb;IWF`h{pG;#GM;S-W;(!xz@OvW~|eHg#YnGX^_XV z1S4=~E_XN7_i}&@&lg+Ea*HFW7^(eL!r?;7w5j)PdFvSsWfBcrZ@~|aF#Zs1KwxrW z2q~%)F%T;28rVr~$A1Rb7eSvXKC)+@kM(`oc@)&`#+Z;)FhjI-2E&4wO^25)S7~?7 z?$hG{6LWhzGx7Lwa(4B;JDZx(c-Reu-6YFc_Kh=^PHrpKTlDSid-Zy{6+-{jPQeqr z6MWK)SvRr3fW=>~aeA#f-~m}grhRkDsn)O@@vL$|0KHzQ#l)jrZ-b*$xtUi}M;KL~ z(@bA~B=9z;#L!d0kF;QYZ;or9y^1B*sgHkme^6cX7G>=I#$CLSFF8<0|LBr!_>qXx zJq5FyTH3uO`&QY;<8?Q7NS)bqz(IA55Pm|q^@@>4wo>c_>?frilO}Gv6#UocBR0i~ zLeLWnUN?Tr`%&8yhzG|^h+&W;cH!6#=~s9MchH!C@w#IdNLwH$6o%kZq=(5zltuLf zk>u|bJqFTzoElIT4J~s1SWhG4*rpny4=5>-nlt}gUPB$+h^?~9Jf!BZY7e0m!@tg# zy@l!uV(lyh7^Qx)j6;?@c0DuYeT*w1kv_LhB95gkgg-hmF}oln9N+99!u{3=mEm+B z_$mifMN{%5SwI57ZO7(OR8W=+7UmHb`-3Dw7ZOB95$BBNRE61>Yt@A!kZzfMYdmJl z-ff8cgBU9?PeB~j;Zgq#P9U^xZ-~yqG6Ii*JQHY)Yndbv9hPOk}=w zlD#%RzEE%IfEIZE>}j(?^OOe7qQEv7W^HWdi%1>{0VQE^s*SGti+>0*tW)mPq~b5? zs#}Xb6*3Fb#G>WHWctT9t~(FZlr?JoIiXq2!ZBgif*W5X=ccnfPgr$A)8crYs7za$ zW+#wA$zf-ZHR`!anbOXtzqHIc6kQa8!7hB*8M*Nn8+jV602VD@ykZ#KELoJL7mr~b zO(p}^giZ1^xy_##NtfAT#qOeqgr=~ZhYB&W3;uKKF_vSPS+QB!LtZ3~9bH{J^ovaU zr{&i7=FMu+%!W#DY|tTC`Y~3TUoh?!3JF9Yd%vVl!_t}_PR*##_z!xol_iTEP8P`X zz@F+PCdqdQOJEl@I-@o4CXMi?;{M7VU2@bhsVvnNf{vN~5=U>*`on5GH53Qmh=NTi z86;&dZGgKz4qA9T-!I(T#B}!Gp>pf-D*c`v2-#mV_~I`NH{j~m_Zaw6s}&U2E{^56 zV@_mVkUUc{7Z}TKwpLM>Hz`rA(gfw^$k9!pvEll5T>-*D@hniFPX6Ftpe4c`I-acR z*rboRkK%G=nl)nqdwsrr1uC?Lq#;Wc_7**ZO+UXW}xsE0OfrwdRxA3)LO03Nn46KGsPT@mVSMAR8s6gn58c4A zB$=!6d-5q}joE*DgZC?A3lKT@wYC$qu9RB0wZTxVNM8%+#D#SF9{(m+Vk&Fw%F4kc zDygHou^y_c-o039uL5-Y5a?enuN%+@X!uq1bbsCkho}1qd6sE2h8SdKDQ;beXY0f6 z^^D7jZ?jiEd&KPVK}Q%QFJ)Xf3w zdwH?pV;Fy39o2sS==7&&ipSBKZL40L+(D%b8QpLN*SYh}Ee$S6Y@AweoO*AZ>TKW- z()TnHEE>1lT^>L{v40|Gf~<2B4}0*#5I=zh2k-VaCO1Yo>i5a!zOS+l5tmcl!R-SGCqg53n8U#V5F0-!B zvrd?A!$0*di^m@;KpZR!AM8i4lONhutVnJQMk`{9NYcSw2t|;#gnxHW;|*4MO2NzR zn6a94RY;#-gIPMOq2j`~9ni~r>qw{Bm1&RDQzrAF<&jf5tXy`pze6cvZb}fcn=J

        kL#G>G8L8CmNwqU4i66Uw%wArIYKjg z*pmDrV$p}A`6U+WbgCL(G~cK%#B9HJw)4t|)5aC>-H}}J6vJA@&go}Ll^`g!WWBw9 z4i8cn5Y66UcerUW{LE+>ZN1r*RhRm2v~LCpJDv7?hu&{FY+p27l}HTh;}a&^ zuHXpZR2UeDcVn`>J38^td}Yc~=5%R&UPQuXju9aHG&%}^Tv!~tu_RbiH0AW6$(CO} zO?9hn=5shG?CCDLCxDT3WLu`{cjuonn~hwYfA%U-XZwZ22@XAeeg)2pL&s3Y2%tft zOsm7En!@SBV$R);sjA$T4ciMVe_&g>rO>8Xnq+Wku3CKKkoJ%DkPkXc`;7Qjtn(|o z^R($~Wz3Iqne2Ndm&@H7&PZD#saeF@tROVU^OyWiYLZ0VziDN$%VPSlN!~ztsMhe1 zv#Zxkv`4Ajgj|)%v%y%!NU1b1^1Ut996(|5jXZJ_gKuGTQ{@Y-LzYok2HM8}o;JIS z?Q2)J{3olNd{#PHsYlMWF!$OBHHjaq6U?d4Ie=hAwNX_V$VeUQ<#iFtu~$!_<|;w+ zODNX`kGElb`(L(Wntpp(iDIW}bghG1wxM<^=)B8-mLlmr6+Sqf58(>~y((nil`Ptf z?-olW#XVj1Kg;EuS3%bG8c!1Kx=ciCx8|Jj2ch{!IESpU-~18`-3k*eN;DmqjB7Jk z6u$-o(^M{ST4u%1RM!N5si{a_muM!y{M*Ym_r+NawIu@U-AE#EK7p>JB5{`mcY`#( z8LRKvt}1NzHFan;&_llargfjlmN)&Au^OV&mTn;Tcb6r_rnSMWS*|}-= zZ%JpJ$?WuFvXb0Br)t?p^kP#NR%UY#gA}SscA7lUK))>UTVYqTbPv6I@GT4xWT&}5 z(>{ka_VFeJx%#*X!hu$TDisAwxOb_uJK^VoKz$6NmhX}!9Sf0o<4nja`%JjX zB6Cc3Me2n$H%89;VWkCH!Xj6OKD@+=9SpRO{UZrhsNNK%u;^?B45h4c|G5_Q0@h*@ zIs+c6NCXqvaoJCo-w0iOxHwYLE0kwIL@x%I=&9eN5;7KQj?m(W!alLRp8Z)q{7yZl zd+S%Jtg)4;uj!2R8SQ7;XYA-dfE_0lqyvTY)(;3YtJ$>&zjnY77oq2TG-l*QL(OvY z;^)507g%y-EUB`-6S^mR_pFM(L8fNa+Zg&tL^q<9Z2lM)I$ai(v08rk1)6Od8E#w9 z8E9?I_W^s9*w;wLF{k>w4AyNV2mcdRGW*Jck-YM=^FgobbO<(Kb>{8~3>0U(gCI2P zULvkY?srHP5NrrsM^o_bwJco;zuN9ymcL_=uMmnnpW8%udPR# z1+EGmSFKiZW$N9{Jlz~ek;wr3Cuer+xCbfkGMyQ|#*h_DM_5OMB0?L^*s@cHY}u+4 zU6I_7!6*txj(k0$J-R!#=~vTlzpUe_oLXt@I7aj0&ITRsntmd9=+=*#2F-SiIOg;; zgNu01mtku6q#if)9d_pbow~%v)f6ooKQ8WHlj3&FkIo!PHCo&ia&u4fkHTuVzbfO$ znfI2)uXJhWsmrj}edW09vokiw=mHp26{}$`C=I9#{M>u!s6of%_{Z=_VoiA?JiIqB44gX-l&n> z|5OoZwP*C((1V)|WHmy0zvc5z}yh>fIed;K3$GUUo zET{oT1VGfW%~+^8($X>ot|3IV(_0Io23?D$9v#aQTGx9JNY725R)JV5Ek2lLe>6jP zl9(g~vF0~yB{F$dq@Km9>O3T1?9rDo5t;$&mX~KxItC);7o{2|g~sltt1hQ*u-TB} z7ZLpT675gtu#CFfvjMx8Wl=qY)yF=P>oqEVi4N@6J)x-k$Jd_a!hmuNiBj_JXSoK) z`bPy+8`>|EOyy>M!Lb{s;TzY2NX5Q^^p%`%{Mud23R2_rFYvhlwQ;~2%BLtAisFr6 zkZr)J_L>VT?1E(kzR*Rs_$96?xa)I3d_Z=QISniGt;@im}Kf#Dhhg? zyw=Yh?5vpo2f|+}iAEyF3$I&sg%X=Cbsp)~(jROf>(K(sM@ZGl;8F{{0m^#L;8XCJ zn|@JXgC$37PHBqzK9;tD;^;-33oB zX@<+x3NWpD&++Y_*(}xH=Y0l zvqx7ZU-Y81mn%6I*Oe?W7f0=k`e;0eNY}g$cq(I257)e^8MbBc&+Ymze*V?Un~?OM zu*we>wr?tZ_Q|QoZ({P;IwU|-)MsOsHn28w4L2}%G=1gu!l7iVm2va;>>LZtz(;AA zpkt49*631a&@fK%jI2_gRaGr&(g!b;PEo6lH9ZT5Dp#7>_ufR-+n*JD#`Ch}D`7&x zua_yluPR{%)n?Hsh|ngv)h7f`q|~r7sOrlYcLQ#G0atFHbEi=kISQ=LK)U^HpTBq_ zo$dn%Dx&vIf2$^WULm*iZYshm#~)qd&t^N!an$lXbzGcuo26^38)GO0tgt1yO~85I z67Mw>iv)EU6MMPH6W!vp@laagboC&rV)e5}UI=IT7xcxqU=E{Sd;9b)-2h# zz-X`fVHDDFx4LcEO6G#c%!9(E7vN}`oOq$vXQ(%!HyBv?pf@RW%^v$#dH&Tk|4iVA zZBuvapll?*E>ZSOk%wlSN7N-FuD#i&{gBQ5e4k&FJZ0w_e@-udL14w>y-F|nj3C?{ zo+#x9$`bfURynK2Cfgv{wnw}uBrur^uqZnL^9d1XCsxGQ;3y1s_6fA(9jb?5X zoRiN%T<{ttGW^FRRGNE1$Z%2JMyUyzpH`WdUis}!mym8v>lClflyVki^G9FJT3NL< zcbdkr7$bdYLG#@DXcQ;k%DrIPIbP|0p!ahIl5#-OM4%j6@cUgGg;ODss_S)Fae7CbSQ=(Smcp#Lk)>qAc0 z=_ErK`9)-f2OU|#?J`Zjdw}a>smlnm`2!d52TS)|w6Q&!S_dhF1_#|BR}h;{L@zFE4Xw?d-9F0i?bin|>RMJw&fT^b^+96?OL#Wh^ zml=J*%|pq0>o{i2{+|nD9bt2gXS8XO2A8HDYSym1(&<#w&|9KZfh~$LvM{4xAyf;EEzSJ;{Lfxy#Lp>~~$X>DkCli{s*OW8m z{@s!NRds(FE12pzckKV~ewWQV9ra#SG#1T23t+ z=GDoZpb&wsDMN@k!jHbS&$^AKxFVLQb#C(tEykK|54cm@d(d$Vd6irx186W=TVfAL z(G_t@y$=(x9DDQj(z_+%Zk6;gJ}FDq9AB;qXH zX5$NoLRqz-VS!MEO{zB5_4n+n79_^2uWUE+89 z5#G}F9uv-jD$}NsCz0-Mrd~TS%sQH{@>lYX%qguJ))lF{VX33bN{w~OGG6kdV+kqS ze^~hyewoV)0cO^lkR6+t-?QomIkQ$)sgk{aCbyY>{rRs7wCIZb}IU9 z*mng&|G{w?UHL@GcFHTP?=C(0CY>1!xJL05I3HxB+@#lx;_AJs#1^vTmv-yg)rT&< zQb^4+LCab)Uk9`fS*5;4Fv`V)DE789nU1}U8%>s!y1cYshe_Tm>4B45F7daVa`U|< zu=c8Jb`jsS?|0-r+w@%bE9Uw4iX{=|S?m&`%sNb3Qwl}298^={fU6$+7(8`7Gr&Pc*lYl7;9c-8hCv0R|Bm?Zt7+%v>#qT!K@ z0>B(ej721H@y@0+v@onY=WJ(=UIA7-9qR@pF{v6$GOIs-$lOsZW!w>1Vw*;89g!h; zuXdOcpU~M~>3; zn`TlAcWF}16IQiY+u8%`roN@m;h|IoCF-sDld(|pZ+D-UKGQ~x2Bu!n!Pm28G{iG$ z>@G1TdH#K=_V+Re3C+aS(L-T^NRCtI6x;HweiSxvFZW9sRyk9;wJc>SF`d4!lwId; zCuUM3NGop2B@Q!V3kl$MH(r+RgBukeh@w3KW@p-HK;DabGu(t2IQ9<_L-|fGXFgr0 zcX4aMtGZ*UOH$m#c%@BFI9{<>@wR`r7$-xXYY|MkRj3l0c%hMf{QBDXoLq8P9b-gh z8Q!2ssXBFarDJ6x>GIg-c*4UoJ0mRn&5n>EuS-(1w5Dk0lTr0`anY4t@bt=m+q?AP z_*}y7-WH>4XE7%qCyb+zV{?JMaom$DaGSDRh3n{6{GwG`B`M-L<0zxtS1~CMi ztrwRD;FgY0{}jzn+IK4Y3j~@#)YBM(zSwG&Hqoq4yoh^qGR2-(n~Akdwx%*jtyT4FD^^!C z1m$RMc?$f#v9hh6JXZ+a%wZZ4`T45S@@6{M=W%$R+vws2tR(AiR4bw=xDh02O%TQ6 z-g>&9>iDDzB1LXbT4vKkr*@B(P^vqpO3<)7|LHaXP1~NWrVNZOOVv`4tTwA|G=v}1 zWLtG|XtqMQusB?0sROzqEQPfPFvQpnk#fODa8Y-eNa>0O9R+*<6(se>mPyM+SJlUz zT{R+Yv$asQBD!ku<+M5LY)NGJhQ78rqz^d)(&M2ISJawcM}>lV<~{Aako$&|obIGE zmo~V9>5bo21OnAjy;}XxnL7K$2!~xzB;&K+{a5cx-g>HFd}Zh^k=?$cJavCBM~A)gKh!hGk^u?T4RzsJK*YtJP&82|ubR{;fnuS|S0m{xl}Vvt%0_4^d5nylPwT22Ut)P~Y~KX66CO_BTQ^afjH zw#t62iAIcZdC!%LT@9FR@-`mlqFxnqPG8gD;?&YYAxGvN5h-|{I5Lq_BiC)XDQ;@# zMA_z|;YKu#D89NaeG%b=R#1oI$kdagenQt-Ommn1^Qyth{~kzu7Z>MrWPcaA?YKn< zc<>7z^`VR0hNOl>myZ7-GQ89h&WVJXKn7l8XvCXUg45oiHi)B#f3QnnY)?f6ieT(k zSsa#-b_!S!HI?N4sElY~IY^+a0ERIzAkGX#KlT+#KTtLPhLiutO_{t$dGz*ToCNB71KQA{K-yjU*47J8tveO&)@uG2c?1WSRRmEf&Pn znw{_Sb<-pih*%g2)!$qYiI)1J4$`O0SQ^rI?p`x~RKf4K4M$n@`w;pY%=IboF$3SnSHrbJ;fm3tpZi{_u@^+uKd@Nh@WHBvPjva8aC6}}LwZaT;e|kV zrkG~QIK52NexuB%VEfAw`5OBKO(gUhBm`RgP|KDIP!2*?=6tfH=D<3ZI*bu*@Xq{| z-RyUYk(#RG zl4>727a@PV!c_AZ0zKwdA7Ro$iF?SD&dHS!u}$NKP=#NEzPtVzpGy3ao$H8bQ~i6Q zk~7TKm_ziUt3tyf4Ssoxz8W2+1oEYvQ#j){OB*IlgjhL!-Qy)~{46o%$-RVe>|55$ zxM=EvTu8kjVHU;$(kACM#{@*X;rIslxybC`4$n< zOCo?jBb=(XA4D!O7C)gGLt)0u@IMmb_y!WyjYUXl%A!dMYnr^k2VyUO60M=&py&r} zFsbSAlfLE+So8wJ@8OsNSTV zZ+Uuz>iiXNH0B$ebKFGm(?Io2lW1PsNU_X;)FEc% zT|974+t5wY@VQ|0hN1n9tUX}W5DZsi1X8oGtvO|9f zy}0mcH4=+>S5(Zi5QRi=AS(4xfC0@r92oackZ#vC;sJlgQ&ay0d5$ORu;z6p&moye z7{_+H_b`>LOG)iLZre3%HR5lLfK$}0|IKSJDn5$3b;vQf)TT{wP%8zXLWNe?K&R$`WBprI^;(P#E0HMlmXpO;h4$3m|_1KC~;K| z6hmdqex@hCPwNK@|81PqoJR&*gA|DIi#-+(xFrO#;vQ!b8wlBN5dST?Zg(583yVsh z(H`4V>C|R*CDYQXEJ^vD8tZzFbpm%>D>mOy*DD)F&cxw!;@NvEB5)7hbmtZ4Y4C7r z2TuoK+_jxiP7upk$LM>(J_&meNllK?unyA>u}%d%I1k)zgoN;dYqq*N;UjuU>Px}m zO9Ap#=|4D*Jwb|Wj?C!#1XIpAiU^iFSs;ur3m?C`a^0IF(75woxGw+&=!);W{%O4I zx@kU`7}C(f)DJknPg28&qEP)a9VAhqQK0&(OkdVuZ2H6_DNPhgt%bVfye=zYW)D5R z6bd7ZG-0+=a~*OdqIGb`tow%5aY|U=nrd+AC0-}%*Uv%E>E|kkRF4`vAM*W)J#X`c z3$c40ZhGip5AP18(S_m*)Z1cw6N@Ej2urS$j!((1CH1&3cyDKR=u!d z|Iozxf~V|%k<6+34!AZeua=|EGp6zjheHJvuLn5(Edh%``{^bA>};p1`s&n2rP#22 z#~zXK!NcDjp13b%>CAzv@@Vz!YTJaqYekn<1Pv%<{A!H61&-I;(C+kxN5NyT=um-I zjY!}BSe6d{m`|MqVq}f>lFcAq*yGS_{3oP33S#KVJig)J!hNw`vk&kFx%FtZ&kINZ z%N}9W-RC6#E3Lcyz*u?zQAGJ}RL;5Iw((zg%4Dvlq86IF=EvRP-Wz1AlF*&ik?mEw zf_Md70$T)2A2`0&5DJ|U?R|TH#@iXr z6~fjg)CcAaZ?y^2UinLI&V2D;>;K-0;0Dt+ionvM91;8Orb_c)H7aet65BezLArF} z7fzQ3JnL0lgV?*aOM8`)@VnC!*`NKd)KGB>3~G*_s8@$+*SBX51eG=gA#fNAlEZEN+1On+j=ChifvW-pxcmYG&^;h^#^*sUtc6UYZ7_ zHooIM2NOD;H$^>9aPIH$-GaMI^zLS_?ZkRkk;hJ)*IVj%}Vj{;%ZWo>-v(0>dEAF<`U-6G<+fpgwTIwR^jU zMFUcqVo!lWs7d__P|`X`{GY0BX}$1%Fj_qQ({r<(7ozqw_`l{hs~XZuVRs#`gfxn} z6lwteg4{DDzCA8Qa#1JTd>zf-X}GWfrm1v^lXisn*TMO;8E& z%1tDEW+mwv0}J-t&CxiEX^*ZUggPw{$b?SX$J+{|*XvauUX7P*mbxj$BydK3h(^c~e~@zClkmMOh{CW*ZX~*V=1<6wCv`A1~hDMseYJ z`mRvp6jRYyBwg6&->VlM+<_nnL%OT>^9L=GBHiECt`D@$JM;f5~XK1d5N2BZe;ISF5wcfYD|=)VuD!y&a#M<%ooki75+O6PGV`m?_xHzd{P%i1 z-mkyUVlLM~Z+o_{#3`Ww=4Lx_&jh8Q$&`0g_+lb)_zSw-b7O6AWy)6R{i`qTJWf5D zI!w-rY{8NeMp+=8Q@ams_M6L|Y}q9V;|B)|bKb`8Lzk_#9fZ5o`Wa1BrFmZ^iiYS< zinlbEBco0dBcdGdev*P)kck-Hws-Lyc(N3^PkAUPYSL#}no=vDr?3Mw*O^}Cbtx$UVfBC+mR zLohvx5W^#raqlLHWt7gk#^7e^)9}Syis_G4ude;HYIhrooFW=7I$w0Nd3{2E6L(LG zV3F7hgS&ASD;ee3=g#*x%Y0A2E?w8g87PePi(b#AVQ5w${@fY5X!DAdMC6b#^73of zEXhofRU4&q0*rSvCuYh4!NyavuwZi27At*alLQg)`NDNLuB;Dt&K|MVW!GC}Q(l2F5Ds@I+ga{1kj>%z{jI4gNUc z@|gynqeEhNWI6LcHeoi2U4bQzxfvTnLwiF|!Ma8STN(EF7DMMJ z=fO4S4pS-K)^XXCbd7|PxSe!)dcIr-bhqPW3C#`j4abU7UFMNJzjoULy_NrX&D>;3 z3#DgKOJuoD`PnIB)o`zv3&4pBA%r+;YFv?=Q!nZ}V)~JOYaxXImAH|7V-sA)@;}7l z8YKf$B-(Rr`@EBMkpiP&LL!6mR^Y*uA^{Ms3R4)io zDBZaKtJJ5?z};pox{>GIm@(0Ni;nRumsEM=FylMhxcc;=F9^c9gZ- z_Cd&5T=ACOXyeRHdmC~rX@*Z>{o}pAZFAV~iu5~TefJ3aGgl!Z(>*x2x(WqoF)L4F z$<&gebA_?XxlEW1P317TsXQ>-)^i3LJATO%;*Z@PeX8iimz!S^@CXC1Ny88eaC#(A zQkameM6sikf62_fc=}v!h4dj}?LCL48p%i8BQp6%B6MD9Mz@EcNIp6)a9uo~o%lpp zl)O-G=sV;cy=k-Aq(D*0Z!{@ZAUz2kS!Y9sg%ux8R{nx@*WivufdG7=@|(oPR4DS% zO6ZFfY1ESuIijl#63MD-bR8azqtSzG(VO8l-Fu}}zLhmPc=CLB>)Zx1^YhgqZ)6O6 z6EOBJp|*N5AhUf?0kPXyQGLzh;e(By8d4wUOHGT|@sL5|N^Viv#+h9OcM{!gQOiZ74qKk8b^nFPNq~q2s^7Jd$OZJDKS>!=dW*#8Nq=a+ zyGHC@w^i~!nbh?KzofbPbx<{;T5&!n^Do)e=Tuv|cuwli{e-2V-Lin?l78rb? zdiJcQF*@^XCFQ8``s8=v)&Y95hlych;96K?dARCl-Gx-AQmN0XB5TjZh1^$^U;0eCgTCge zlJEVEG}~dJ7MxD&{{@;!;QwMg(a;CSUoGEcKF3$vhsAjoc-y;%B!w4BFB(LKAAED| z(-%{eha@o%*Ihgqlh$XJ=>B9PXh|2Z*P|r7K{l)(dr3qz>F}CBalWlL07HitoaI zfY|hj_!4Tcv>oY;mRh>Ini|F^0WQJH3naBKg^BYEv>QoZxgql9sc5@MreoKkflXmu z)HP10MWoy50J3U2jlO8S&vpHN2y_~PgE|U+lSdnYn>5(KNaL<2w9B8LPJe9iilXyi zZy1U_0~8DbKfaorqBY$>YPTL4NXb*D*C(0)>Edt8B3cJe-8VHZI!^2LfuP1UMB%{bdk(=T!0- zEF0FHG>7irpNB`?9W4>q8zi9Xe>gd7YakE|4qbc#RG%SG1hdTICZsX|5k~=TXXWea z?biT=?18DcAskRgL6$CKc4FJNmd(0|AxWSa<_8p{JRIGK z4gfq2LjvszN4z%#0Y-$#plR#zsP{j}$(rAiYzTv~@`7Cg&btr7+=al*)h* z7UzI~b-uVZ{MF>@%?#dImeh1`)4WzZP4gHAZwE%J28iZbg2dReBSP&OE! zxo&C{u_bIRMH#jQOx6_*M1f7Pu6l+ZE2dR?Z!3M8qY?Jf0;SPBXKB z9h)i*qU9)84kU+|> z*1wiqE-65dw}}tc7O(dQY^`B-5d+54Dyw~4>F(&FE|>kWT$8?hWH6SyDl;_ZTb5w^ z>L}6)yxwdh7`jJNHz1FYDB2%msfrnE=}MQOT!k=L%OjOP5gnA@Ds&L-jr!H}2+q0JM+q+Gw zd4N^nG;F#`_iDx=ogQ=wm7r7xd+!vjlB^nrBK-*(6kF9?L|6i`_j-Gx@^%merZFi~ z&tG-`CF!PxLV+Cji+0&Z1qsV=8RBp55LFK!ZiSPp3oWXp7p(y zzdyik1ld5xi6*{)Zo#HYSQ4ZrB@fe*Q_pxFVOQfIbum2BfEd{0UcPLge|85V07K+6 z{++~g=|h)MdaH77A&AtQv`pb|i+hLlq2!kj5MscE#a(J)ZvV;^B9!aGgyp`&*-WAK`yu4Q=I&W`TQ#z;h#ZpHz ztIl%l0#9t~sbaBVf~M@kw}cE5MpohR_|z{hJxe_xxx!>}gu! z3&KIQYf$d@0_Hg=z&k;>+j@Sr-cRa4@~hoI+;Tyv4#zo}mif;c>u-en?~#VZ%6M{A zf$|8*b(J3TOi7t7#Z0?$O|wPn+SsWq_}fdz>_3}NTW|IkafPTipIeM0RTYY}4QHq_ ziicS4HUBavn#i2}5?R?c;$}-^3*9_RRb{fA#M!CKEqqyAk}n21%ig4}rykA2{N%K1 zs`S}rw}DOxRZN+MEJS`0OlOW^gl+NP$TZgFttp9>IP>SrNOYa9uQr#3-_)#FX2*-n zCf*fdc1$jni3Y7Q=TOH@SGut>=8Gf^CF%AUXPcUfCjA}0)ZPR_@ghP@5hjMx`G99$ zNdb_Xz1}EGZBf6nYzWq)c@4PL_aOHl;nyL}hQz~=$R4i4slXDZ z?G%aQb>2GP5m*4c%P`1^EG%0l+r0Ij1zd;xuQV4{YN^gJ70O6rukm24`6oAGZ_6K+ zXXlgyjcV`fi2jobOP_ihvt`ichq@L{+C6`zmatMjIL{BAP90r?qWVv+#|U%lm<@24 z`pR0og53BgU+!s9_2tjpRL+NaDwSvjs&9tycoLZn4>rj&3(}tF`!%j;#qkbl!g==)8X(Gj!YpAQLSn``IKa2D%E73HkgwwTI z;mz`^JYo$i)Lv{t^)R;;O^t0^Ao&UO3M~EJ98=}EKJ@T9YyvXbJHCDQ zL2#G{RqLrX>%T+ zR{7Emma*|qm0@X@645?u3dfFrc+jMgOlG+w=z4E}bm3tEj6q}x;31#DLE&dW31Q;p zE=h*R)Q}sju(L=96YeCBm|}W*vnW*B$(5&Kauc~xl=4mb@gI+(9Zm>8Of*M-Nw7h= zR9=G_`c@Sw4ymA^!s-w-H#+(T7cUs^^)xR5Jn(0iBqCz;fbRJagcJliAOrAC9dW}x z!X=|&Wc0GMF$R53hG4LpN7TI&jyLg3RJ@(XP_8A;aUL{(7}IRmqu9S}ExHqeIeYn~ z!b#&uDd^CBhWA&EqF1ATfBaT>gMQmu{K4FA+xeurhn9sz z>UapX*4UvvcwlLWic>Js7EB-M){DHE`co1FM{Ep(j{J`&BS>OO`qJZT3 zM*H)7OM! z%i#&>OXrmktp;MFk?y>x?79qQsWx{?)h)U=S(pVComkliWnG;-;4QOCSQyw?Js=N?gBXSaE}ZELx2F23X9unT)k_lxJ)x-Bqv z+fMcC=Z{r1Z&o8Bj)VZ?^X^s=S$@^oc3)XtY{XcyuoKI%_*IYVQ|->S=P zwb|Rb0t}ga?PZ!Lrzt5K_RcF6#cj7eYeoF^tlpcXPE@}Ql&ex&zV{p-T0AO%+qEm0 z(9DW_Vw#aPw!*7Q!;3?D3vz+_TKUUPgkmA(Lek=H97R4MVRM4C`kQwkc+$uaG6HoN zqcOs)@Ev%sMh6ppLI8Xr$Px~zK(R&l5;x*2S4&5G^qYp9GTItG!a0r7qHaXRTkBZk zw;T%5m>=pRKsInYwP>F+W~i0toh)LXx|-6TkHu4%Xjf&2Tef6=j1@FTmdg1q|;J%fZZ&MAMdKhZ&cr~M@LkAGm_*erURE_0ILsOm1z zdRWD`VMrUyjsh(3V$`*T;SnWa_9d}VvlNzpUj?h9J*^gh)8{Q2e{t;S9(6~1%<0FC zOWwM(i}qWvO5cPV3QOl&b_~+4q}IFiF@Q5j;D_`ZT7X~X z`-%<4JibIPBerF4x~@K$11WHD*WfYsp7;pO$)!hZ>t?`Xh4S3hwgw|^#Y1hke7w6N zEG+A*Aci%ni@qzBbpZ^lg7Aj^H>fDtkddz|D4Jl~g&U zOqTETJHkb#&^%jMrPyFw6z@JdP(fQ+7po~TWXGnRIR->zh3k9ax-_i!&&2yfK8o-hO*Qi@Wx*68ds6PU0 zlF?hueheZV@aqn_K^odv9Tc;51R^d0cS>=nG+6mur8v9*qJa4#oJz@UNp0Q8@PW{U zcHaM*B*;NhSow04DlQ1M=@x>&j#F1zO#h*gb}HQ2SOZ}xsNC7*7N5Q5rgGmOZ}8=g z#e#a-yGI8{q1l_j;o^$Kv)uO_QGc=>i+yhu-T#)NrGM|4@8^V#1a%<}X>RFqIDaL- zmZe*-|9dcHN?t0P2O_@a-CJLLNS(LL?3|$gWE0l+X!3QWTjY1UtQR}zrUJSr=NG3e zWum(w?E!7Mb$rJS%GFJOoS2qeee>{FAHO9H0*O~PGsOqbcj~SzS_fRNI8x*ny7<|I zx5%tagni2lmhbE9*g9UnK}wxUtQu7wX2qMn2!9wqCYm;hKW6iPS!DzCy&U%DQf=F{NyCo|otehiJHDZEcgkvA&4(sT z&A!Y9todxba(&~o9H0Y!Ly_Mlq%*TsAFE<_(PRU9S0rfUfBf2(KEV=lvPb9m?%RQ4 zCd#~9A8m{4NqsG|cuZ+yI27+I@#e@Y z-tUf;3i|tLq+Nuwgdx*Qo{6uyg)R7tf%)|=d)e0eL;Np78td()bj1!aIN&YD;QajC MS63tp<7b}#3wo6;!Tui zdPs>>94)QvJ&COB-OcP>9h|+0+|8U_tQ_o#SYSwr6rCNc%}iW*h*TY%O)TkE&Fozq zoRwAot*HOE6%Ub}k&CODGZ7Ut0}BI_5fiPsxtXakCl~cU8&yj)B4;x@BP)B;e-;kr zM6Q-rE=1;5wq`{Cq=|!_qqCWdiIMvWiBvetYQT-n_0>%Z9Rf?R={=Cp zSkkKcZY2?v$4@7yBOVyu8=?n}?+=J!wq-a+MD;3O&0zs@{2_UM^Rw-(;4Hl1`ve@` zA02|gd|)JJy!kghepkF}uC9+;>Hw|WL64vES%1%WXOD-g;oV^X;8i=(FA{Fs&C&9s z{D_2>MGgvn+f{T~B>o`0_Bx=qucxOAIW;hrr~yRhjg)Z<Ru$h!CutP@4fE&ros* zaBzA0J&m9A^Z^j;-jhF2BPih!o*pl4e1826~I??n}Zv z^Xxk5kdTr!4-ABA^$p}ZelNQCC|@VNeFX&ZO+~T#v5H`9 z>)YZC*R#0I=&bWT=0Fm=BA+=j<>rs1$2qGvY#gfyyBG@&w?BVFq7(8C=I}uee){&) z7j=bIzIP@O_j0sN7N24-f_iZ7g*4nz1;N_u5BN?bi-AYW1rcdv6hc6yfVet@E`=~C(GZDX&PXE*xAyX=xYkrj$E?`TSdcNfei9V;QP$({Sh0qr zPz#=~zs%dp;h`OO!=|IvL}O^%{by0MYM-ZQaJ`t)9~~4uoxw0*nC~42ruf6)+hqS# z>#%zEZaK)6ls$G!gtY&OGFP7KK6k|#GQ7fk^k>5d_(+h9-UCUhYK_OVh(_~v;6Ah_ z(!gY+5hVHK0_W6D5lg8)#LX+;K8bzNuGI?Uf;@6v7!77xDAxYdreT_T0P8Qu&nlEI zYNjN?6apPJCsWX75X{<(> zGq4X3Y;uAQwi3RZ>_Fk_uc!I+TMcT2%@q9|fEu{lUsH*oU4D9tS+ON@4aQ#V;-!v# zGjb~gUO3fsgZAPYRbQ2`T$JBc91qT8pLc^MOJ6!@mGvbUuUh>;=p(}4>NO6+?_Vnr z2{F#ft4Wt!|1`epO^{ST95@em0qYO_a4aelprO5=3Hk6iJx!kf705zk?7c`gfJbpb zQ1o6FDS)-&$-G4fl>uuR;@IjNoAC}(BZS3x2&i@IlPx%t1M|&rKr@D1w5vjPmBS5_ zYWLl5bY*mu!;k1ahij+S10ybon7JdIb6}Vk^y}=r#6Bj3>o{N&g0^-J_)Aax--^lTw3&aZrX4El_V%q3``IC0mN@WWq6Jjz9^zWUS}ja!K#&%5tLzw;Y^*TMIl z9jtj&pLi(!E*S@<41DWmf6foL+)p#F3VQ?Tn{B4N$B*~6f|!*rWevuA%m+TUovpDn;$Pevzl&K)gSrnBVdW(3h%0Kcw=zVW0T;Zg2;+CCFr0 zjh$6N5XrG9pGmKkRCjkXdW?fkjlcqbo!kOm*N=eB4#NWV_k97*bh!vA3{X!8m$#>YWx#Lt0Y@C6 z(1xEI!0qYZQ_GuaM&Re*vO2oCQzk7kYKbS)y!y2dJ}m^^H5~hKaurVgA)wHKQ1wt- zUa@j}u?e=oGZ5mP^4+lV{ZZvAlv$clC4d}C?=6`6v6sDRH!z#qBO?dtJRHgSM;$O7 z@pE{8j0u)Uw1#wch+`1-g>T~pJ=ucjE|Za^7l#lOIM0O>>GlYa==idpWJZG@Zni(Z zd_N-h*WA&wPn^mfL*KOj;paKg1fp~Rm>s4N{{lP~1ObJKEheP8C2x||kr3i2k@oQ& z`nYuesfCveN2w?Ye#1m4mKZ^$QII|HvhV}~9u)YvNH|#d9B2rT5v~r^Gw3)c2wGr*J z*M#yVnxBwcy~!_Fpn`jF%@N`|uQHA#BnDr?X@mlrdz&w7$Zm0|xWce|8IbGGx3idW zvbd)T%y8au#%l11#`~(n#RreHz!{R3Oq4^MmTI>*odA=JrKD#THY0-3(zZIG@6t9Z z-^=Wji(|;d;ffN>N&}Kko`U_p$e4;ezIY z+oOO(zt-yg5&m$k(d91LmD(xu<-tdGeF-jhDS`aPnWujIU6+CNZQTA53odwHjbxk( ztis1Es*ycHJ#iI>5I46o^HQm^4@>aLKS+#(3S|j7%G>p(=V1!$#>&NA6 z{`uO3nn~4^3zKT*lk1P)U9klWzh+W%ZuG5_eFr`oouguN(eGSDYHF5$M;#2B4~(lj zAgbuQrBP&q-}uG*bm8O+^{T2rfb$)B$!0zz;eU8Io;H0zNjEklCI&fhC&lRP3M1hX z#oBIz#iMp{I4hw6C*2vAZ^NHdxqbWN+fuX{7ie^WL(M1sq;~z1`}2*4q4@i#4_(|m zlD{URk3eL;%{J6-_(2a;co!xV16{TkepIcQTf>$0`R4kx>Ms$;uoWt2anny$Y{SW8 zy=_>M-Os!!%p!Q6U^_Y(rq?%^MB!)NyP0KG#4{XF(yeizFj^QfSzcj;^qWPOzoBN| zZos?T{#5^8`rA>BZV0;$sd(UYeha2JjpG9nFD>K*=l&tZNB2q?+`pPeD+%>7ma3C= zWDU0<8C@r)&ev|@G>se4L>2)uyF4YIU(%~~F%1=Um!EG+0QeH_yl1oMqSwBwrtdj8 zCbx_673SQ&JsAYJHHX7gs3gu_W1j2Y%w`?v(BYS(#Rp!vaJt7?#f!{^U1Kzo2>!W^ z{8zrFnIjE?W*A9%>etJSMcSIse=P z>~I}uvPw8XGFW}W6Q6%k#IHlVig8Aaf0vKE9*cbjnr1DOyaFrFk29S$LFel-@Hn+- zeDLw;E$%R4I}358K| ze>Rxlgt0uI1)X+h3NZ=4{LdS%*8~rDzGkv_2O3SCZYHsk`U|%=$7=q3dtDD=eaB=5 zbJC1b{4pkN0L4G|N5hFX83ZDpehma|z$|1!T3@COY@t=P0R+=5dg+kb7n)M%x49qL zTtr>A`;LMcDIGkS=BH5h{L7K5TG2iyob2Y=Tro}XwDi%8$0JD?o7}KM%f)P-KmWjU zj7`EZ_u2no+p#DKzE-f!T3S5#X@|utDGhoNFrNJaxa}FkI01f5~~TW<5T ziCTIZp>+g-JCPYdwBzdfjc58yX0)Zb)zZh)rvG?UdHx!Iz^ARN-J2?}N!f?<-W5douY53-aw3XYgauo} zY?>C3t5?VY-4C8QOqLg})u>|*qK+8mZyn|}N^>~++Fiy%`P%DB_JNib%_?#flgCO^ zH;@yE+RtN0Be7x?d#oPgP_OIw6tfo1b#=0=m$Lotp`lDo&1<`5+KMYKBY)QmtU6Zi zOv7~6(ya^IzvOxgGrBO8yWTAUn_)a_<-wI{IbCuyIC9XZJYG4q;Kn znP1!L00C^VuNRw-}<3tOmuu1Sy#w<7DfvGuPl6drXfdGm~U zmT@XkoTWJnbfHZm~(L< z*(<2?=kDKtJfC0ZESUch06w~5##)3ajbX)6i`g)Y0oSs!OB*@{h<36d`rpRMKaCX@ zEdp_D=bgh~3UZf?#N_?S57s)-UCu1B&2Oy>HxsRkIsW6)(j9Rr;>?>`BMImp%h;TC z2SHcwRVe~izQ9&w?9V5E61Epa978RPz`B^Z)XP56PA_?bMOxa}1u25ERH>*2lg)J> z59XJ<;x;Iqq5de7d&a8N&u`w$a;Qba{yRdu_oo)W2lPawlnWmbC}( z1C^F{hA5W&drth;j~c!}$Q!GSF_O%wOzWTe1%|O`l=__}g`$ytvX`)Q>(U}MAe`Ou z2}p`YQR|-RBkcV;WA7jPiGp)%Q8$ajw9YH2-8P2P1Jz?GN@3;>{2@x7(48xmJgHt&BylRWU}B&SUFaCUnj+0Exd~6+QdUB)vix)hYpbj4;`(wp-@abmk2ZN`nCH{heUgV;pH9&D};EbKpZRo)f!_3qsa(c1i>r0 zO}pyPD3~*&(N4Q=aQD`&O|Yu?S5Im*qLTBL=EYl(cwOO5Fv%>xL(eSncHT_|V5Q)d zq))6QP+N~RE3PW)v0$-GIEa7?bR;hPaw8&5;`VrXz)B}szPKzYm-i;hNz%G(w3DDH ztm3dqjBnIpZZ(N&=Eo|H`4Kp^LY4K2c-}Zdd$)~h#w*c^_EOBfrq(x0IdCxZA4X~I zwk{5Y80AN1V`ACHXo+hqWlAILkXG`cGA_bgv!CR|aXR2K#%J7Sw6!f7UaqQiXYPhs zR9!>iRO|j)Ix|zx586p!uIQ!kL*zp=Km*JbPW1`A5>%Xw(v8!H7vaWHoO*ygJykoo zU-x_a^CzKT^>tf#r$;bCdjH^UTg43ezQ}z4z#Wn5^u5URP-o)pb=|wQ*6fgDKGETh zGxBHf0^sjcTykrW@<)C2nrn_*(r%{D`=j0>W_eL1U9cQhkW4+xnRc;R=F;yVAAh0d zuEPc53wC1%^Y7wW2&H*`gi2QcrJKrgnRl_4Dz@id-Q+}72wI$+$g$ebrQ4#~P!l=+ zm0nS06$qN#Lqp8az+-#ss*SeE{__s|N4z9unE!Nk>+=ba zH&few(XD96bA4vt=l^9MDY508l(l)3UK2RefXvdq2~c;thhDwcwT`w*9e}F}cqC({ zKIr%IOR!zY3-B)1wsc1# zlLh|TRxr6F`}%UN+f`JAYVYMMJhh8A3zja6cdXW^+gG(pIbK&E_E{wxRQ?&>at^np z>P%aJ$Wk44xsKpvAg@)gz0qd3d61(R=t3`0CIxnX)bM>0HrGHq9}qt%(J@#4UAOl+ z*M^g8vjwqu7_N>+r)lWc*YK{Vt;M}wdIc&enJhF{+!rsfm^`JbN*Z$e6cyaAnw#Wh zGi0|0SByH!GAF62Fh5%%xa=^qEurBwtD6GlZsgUp+8<&2RT#ki$?f6#$MEXxS4MYt z#K+ACs2AXBb@%HfBj=$|n!Kia=_7hn$Zyn&LMbn0obUEGHE^N<#bMy2O;NO{p@NDnn1New+(ChtA>_JhA@iqG*nH5$0D1WbqpViie)WETY4Z+)PCG{iW z=YjI!0Ypq+3(ijGV9x&>(Wxfe;3wC?U zCgS}}T{?aXR_t=glxI(h8=I)F!j1*)heP_#kFMFzbYP8L@$6wRP33&QMNol-lH~C0 z{p`+R@q31qlo~`97mS3Y$xRbwlnXU!v9P0_|5hez{8xu2DW7eI++4U{^s)aM`f7|S zv=RMC)1le5W=5^$yw}kqmC@6jPThOeZ=C>I@_yqnZyjaGwOMDJ5v3j^`dW3*+;7sa zb`mVcb;g`&+7Au-UkSPqu77|&n82{E>Ig0nUX{)v;+NkZq=T?&muN*Q8b8e?Nw2o1 zPtbGm+*8UA_|_fBN0+TvT32mC4po8<|DOI2LUMU~JFR!NS5MppniZ!_FB5M}TlF~3 z7z{zfLO4Nl%i6v7PG#;?z*sK;_>L*mo7#b7oq5TesAp=d%K^#KN#b(~e~!&*x3gpOtt}HgfEPv|*E+1u; z!NxElZKsI|qCR&G6M>`|E)n-GHsKs}{7}uH&!!;AZqd72@jq z?oB|d(70fDoO3ZQh7O@N1vLn@K!=$M(ANE7!9|l&BE%OhrII@>{lus^jQ6whm_k*$ z;hep)_!S;yrSK8HD*mD8k7@|#7W~R$+zUuGAVG;CaM@v7&__LK9+8Ab$1KKV_&oSW z4TN+JNZS9zT@jd$RJNg#^;VF&axVK=EL+Vpt_I&kQcO*;L_$KzMIR6f(&|$rvMD+F)c1uFf@2Bt2%l8-Q-c0OSb?SSjL&`bJ zbI``U2e=1>BaTr}k;9lBSJ#opi;A2{N3yErjc=?O513t*?E2piv@SQgI+SXAf0yc8 z6$dAzPb&#UPFXDNe0U_0pmxXuWBwqg0=1a}-2`2(8J8n(vj#HHGbG<&;WDL(BDvcQZTStc7GFM?f1JsPb|uw_j)p?#w=d&^(Qox9xF{@6wb zMV7ucDZXwz7T$pThU@|!9vH?LU_hu@a3@(F3nKWt)MuJlRLDpyNC7N(%t80q?uazp z-jkr{HKC!1CtiZlG2L5WjWaCw2YrN&wN@i>xweElx&KqOMe>r39yBWx&a!7AEd2^{ z&>jIA?R4a1Ja;9_e8l!oc zl}>-IJwN`#`A67)JGnw4*krr?2tUn&hvYR<3*Hqb3rWoDNR;YM5CTV@8*xli8_6(C z$m@Nts9xyTJA>d-1XA3ja(o?_JRS)tVUX*fyPq$ z-vF4b1h+R7|8~d$q$_zsDOt*I{)-pUz*+&$71% za34IL(UZ-aLYJ{vCo5ku>sG8+7kaB-N6Ys|zGSHqoF0Pl%u25LHQKHQ z{>rMn@%}g%BGz+oG5qY|CY_&1mp5|ZEAaFz%&P6?r~3{t-%C51dqLKBl9UPQFj<`{ zYXS!`?$}p<)bp*jr(Ddr*tFT$jM*Bx94#e|2&Nd8Hc=k9j99&EA;>Pmu<#>ICZUNY z{y#w1;8bv_en&(m*!!71HHYB&s?@}c=jh4XyLm=v_08zvpRCD=!?a0ly!gW%f9mh3 zm!dx8bm&mKn3=C`$Kxh1w$5leiV%%}fYCm!>hp_ACOGZ>c!d*gwZ-2c;pk(5+Zzhw zQS%lFkDmU-EkT<@&+ zX1QyVD4t1-F*Xx0la^Z-H7_KL%@43!?}=USAer23guw`x^x&8xi#9L=d406V_u)I^!(tZ|^Wc`)l-SM*L_ zY+2erZv!HoDogivhbZl^7#f&gi5-g+fVkt4|12=c5{fc51r_a$MPR+PJN=`bs6Xg{ z{djP@mJ_QsMqw-WHaBvJy#K!M)+}#XO-V4Crtq_SQ|sa0#AkcjGBQ>IfPyEt;a-!D zw(_lz&O)6`z1Wnikj24r5JDDIUx7nn%P>?j>N6owk7&oeSSsE?9w%o@v!iQG-~Bux z1X<$@g3(!OH%KJwX+jJ_j@KlA+PE^$8PcRGkvKDi&ytwg) zXsQ+{UZ`@;Sr0Q(-IAFC+M|q?{WdiUW`Z&edYgQVeO{ukW29CY8~7hp>l=y+Wxqf^ zLl|FR;**NVl9%G>R|XfPzmUR3$lR3XIhnmrY@X8F+O-{Csi%jOs@&WZlUM5*^jiry zh<>Y0@SuHUZvri9h@ZejhU=GN_Ns@X_D3zwI;;bC=WA4ojZ(6^K`Il>kCre$?QaXQ71{Hx2q&88iQQ^+ zu;35c=4-~`bjKT$0S_H#qFVsf3s~vxGLWe7#_Ib^h7K!QJIks4_6s<&hK7~Y-X2?e zq!oX*TfpWE*lnIjr9CXH1Wmq}A2b?G_|&5-{L^VyG&AQrWkLSXP3iGxjOXTVv+UMf zIw^3Y-mmge1_sfyfTwn~8%}rqLE|{dz+3G7JU^cUU=9HW+yQ36l1hYQV!vQ< zyy;J%PP-0>XsEYLa}i9&)=4#Q)K;bHeVU;i965SVpM_o`+tG9M#c5Qms!V;_$BwN1 z3~d0;pWV^yRGay=PKu%v+lB#`!|V5o`oWRO&IoirduW1+QPZg}BW1d#d3QS7Rk^}$ zHdz&`>yRF-$STE=G6Y*OU(%_Cazi*%!~ZAp|q(Hfgrc{(4v z4PrNS*}ub6FecI7xe7oq*>mU!@+$)7TagNRN|?0WyL3-Tge+z`R=IVAAO$12lxW4v*E^odw@9Dng?P{}ZW!hIp{cIwSkDM>7iSOR7 zqGE!L9AY~U=+{DSz4<5M>|jnDkA?sA0;JSzFnN7bNgD|DIg~J=ouQ55$JhNr)6fW? zWdE5^lAX8;EPuB06>cl`Lg9F^>JVr%=Pq*M%_LZudSsL@;W{>u)v`A!D{uua&>T() zXv`?*!H(rm^-J%r$66u^AGa=lBM(l3x6hmpn(-)=SSbJbeMvWXFO-h1z}I&%idsQ~ zs}@D6;Yqm?ID$&)U|k}vpjEetx^bqP+DMq4_aKXEee&qt%GnC@4eFiNNuf&T3A}&$ zN#9f(3H(BXO}WaXf2%jFJW?2*6RTpKS@Y;;(}B!fdcbiMigPPh4{S%~mTCOe6znTF zok6aX&P0H3LE7D*#a$yrNDJAfrml&*LnE1KGhKHhnS;&@lV@6wFV5)-rA`!!>GT~= zsjhU+N3qxoAkOgroncN#a6LRhGVKRt5R+wto_pji$bBQwWn&VzJ()N&X#K|0RzfA z-~3@fzKEU!k#eI=%BU0FF9+1hokSOq^jcEoCfksIGdcfD4xMaLYqrHpO*X+}j5l7d zll==t%?hKqE6CJZZG(qY=`Rn--ri!2YN1XN9%^}kZaRvUnjLYoPBk+whYncD(#XAN z$7D4EhDdX$2u^Zz4aQ9P}x37;l`6mh2LV;Nx*z1de z+$AD2EMUc-zF;);$W|hpmDRpY7FZ}m7&%0l)GBPVS(qr&)#?`=bq`tBaR6l4^XTmj z(jq~1dmevGRhecYyf%jWuO6%mT|)`|UsH6I0?C9TZf;Z}mKBA4mW4OP5GD#96F4wD zy9~9+u<%p3&1u7hzcd+zGsn)87>3HKDI2bxc)Pt~a%kLP>eH^UNtz{I#k-bEZ&0j5 zGq(3bK&5~d`a>0%i30O$+}rGAkf+zf2wxQ9w8~oL{SLmBxv5F0UpMQ;8De zs*tO5VdXaBU1Sa55Esc~uChY`iR#$>w`}diiUrzSsa9JYa$vHL(aY;t0cm3QWn{Dg zkrP|J&WT}dGoG+Hv*zS^WSQR6dFb>W?)?Wk$#UCc{Q^ONpU;5recQH?eN*C}S_vHi ztLI7zoZh5-=5W@waW33@o46S}eY^56`KucD$!6;}x~sy8TEUX=FPt+4GdyMGc)_JJ zQ@QY4_Nf9>M|=D|38A1|G|P%Wnj{HUD_oLVvLzUjS|XH%wB3ZX(UumOH{L58QFzPM z`RLxY_p7B^8zr*__CPdpgNzt3BJT`F{h4AmFY2iiEBw9`5%10UD&N}1bsWFhqiO5s z7p5gS9Sb`{iFsz}!Oya=KHFYCxe}{kp{C$PZ}#Z|rge3gNk7~W5+$8_w&aO8wpell z0Aeaie}i_Q*>-9d;lyyokCPW?ca>r@T5U23P|3iYDU> zKL;ukjD3KnVokdTD`U-lgdPy!jQUnK&eXbz{ml6oX!$gw)uoZcSh)snB^CuIZj-pV z7U~wmyFl6onLSFr?q-c5UQ3Foy5}OT3o%w= zD;E1g(S~Tm^Wdi;Sw0;!ic?Xx?1%A;(P@Pqm)#es| ziE}h&-i6x4YpOh{Xm*savfGx!CvYuk?l_H3W0X6&b#Fw4@SqH9S_btC@ZlT@$=;tT z67F{kHLdk1yf-MhQ=X%@%HTJk|6q0b!<28cN9o z5XNlqQ#kcBGT$N?az4|FiA{X;(5CQ zuLt7`(M25y7l@_o?Y9}!-SoGirS0Xn!Dajewt;2Kt8F36mVUVhA{Pv|i6-UsyANPp zS8SKPc`V{LL3~ombGo=nvxV%UI&`N#w9M+xjJAegyx41nM_)=<|BC<6dxPpH1GTTq ziT~(kyhg8N7_HtKPg~*>+}k(!CJQ;8@#FLvB+{v>w_4JUi@-Xr0H5$S*+kJ{$;dS| zadX!TNy6~4P7pQsDZXegyRhJan87U{+4RGfzO@$pSUL(A2knNbPi49`}nz2Aa>X&kzz z_W}Ux+lNM?G0#D4#))i(-%C%Q*FF2|SJz@@w^L$YDH8K%35hYpZz!J0auUz1M#hE* zmbVy%W4AN%(uGZlA}zHdY!%Db2GTehRVf?K3Q$e+g}ha^D-V6QIog?{HHOVgS2M_j z#L{hs%PH8}zlRY87mnm{!|c>eu>weuu5@kPR_(N;)p3|P7B{cZrX3k~o3Bo7#hs(z zH_21d`pL!x4{YA4+9HlAkKufnLl@0~nzDCS)|*o-bZsJ&Bl>pvxW<^18nO{@pk?io zV^g;(4=dLFG~=v2h2smt@ln;Fk(!`JO4PM28fG|F%|OUDB*G8RfgI+fwb&PQ>dylc zFvq2M=`fz&nRdYXb}Uu~$~Wl*(w!$+BS;mdZLMM>__G9qJmOg(bNCoKt{x|}H<+(7 zP^hx{`pIT(2oLS(7pYC((VIb4agz}1;67dkewz_=GR)tUpJbi-ks38TtCFu`lE=rD z8XG*rtbq&D({!>?2EIdwW=j&ENu^e2P=4PvepE{kqmr=NVd>4_7s*02lzqa}BLT-& zTa@V>RQlq!YC8>BuS`C&gO}2pvT5O+6gQZEeKckJ^y$f98YM=+`5PjHrCn#3R~%X= zwvwZKboHw(PIhaDKyq9QV%C)S-lB9LmK{n1lNvf`X6Xf~-*`WEX(5hQRYaI5MymS& zDm&@Cq3zSxW+*JQV*SmKBn(>YHsdg*Ub5q;!^5rG>KvxswWTdQNfd9aLQ4h{iOA9K z$@oEb$7g2B85)~|igKC!vwy6~!-~Rs@-NOj$mC!~5-|yZ1}9HoLns%{sFXOw;s9+@ zT@=#6;S=|y{Os|_G2m4|C250xS?@s<(IQ1T%@&5x7!F#wl|oi#La1kE#*k>*x|@oh zM_JKP47^zdkHK?1n|W$OSdA&i7ul|;jGD5tlrN(kd3oafM;D?@6G9Oc(oy@$(w4nh zaWOJmNVXP_yMSK?v=e?Qy?9P;E_LcO!nf?nRhX7i)G!W(>1mys?6gy@t9hy$c|lD1 z=n^FeQDJmM(MxF(`d(WM!k1{YGq-@@*4K480Rr@*Yz5joluI!A&zNyG;%0RvTl8qe zoC1E730Q*OAbKf*v|o+SR+b{lDZCSB#mPZ=j$O2@Epxh6STXw{UyAUGc~ULqE7M8o zbVIFdN)N-amuf-k@zdV%1erOA`ko(By)78D5=BybGQ=ogaFnbd61yyktT}%a*8oO>gHA6iac>Kqxl~Tfk7RbofmXKA9X* z%q*tjN+=&9nCHvdW$VDo$6l2ySqHYi{8uzBhzO^Now@8Hmv>4Xk9JOxs8b4 zyo4V544RZdy#+*9Y)2zdV86@9!|90a&MAcqA*;Q90exK@=jJ_io8a2NJ$V!o>^ z+x!*+KuYJb`?Z%o`^lN`)a5$#iz0AsV1S&O|BNkn3mUfl;sL!dpGJ5F+v0ahJXF=?W9gNUGzKAar;Gf`@z_oGOSw_6#~}yo@!_Qd13lk^PbJS@;Oicxe*OMcg|rbGH%`^(<42wPDw{5Xds}NbjgO zT?}V|<8IUtv%Q&WfR_4a><1>=2jqip&OE^;5oD=KicsD=LCMWEk$l&-ZZxZHR>+4y zvr_K?<-nm^KZ~+GH=|N9H;A%}Js1r>XJ5m@iLKUIy9&?ki*!!QqS-f23C=vB`V_LZ zcEc*OKqJc%ouXw(H9`BU2OHx1>;?4d*#6tw&&#jw%lXr1RmOs@%8;AJ5*tm8&2myZ zl#nh0arjQ9e56Cg+sOhPJ_ptwcqZ)!>LrJdOMV{mxdewt;5f;Hh72 z$#{m`_Mi?hN>nqyX6s^vlM^dU8y`qK2v4k9PTXI)mSK zKAGhcu5LLs_59GTZSr55J8^#SP`O;`dX#9<1MaVcVym`5z$IKuid(JLSWB0sTMc8v zTwBKhW~^It9ysR3dEZvqR`#0Dv4?Tob#>%94#TNMyPO3_I` zlMGt_1-z*ezzz)nL3@zfl&B($OV<69LN<@-D#HikN&C-8S!O{&@Y1c5=+2K8G~yOr z5n?#fXKxa?D93!zSfHtq^CQwMMVO~<&hN6?u)x#?b(m#IgSF_6;gipuJcf_Q{2=MP z4lCh+?(tl^??a}ejFMUuVCZ=oZ4%jm;i22W@-7y4?x%lc8HMJLZ6 zbw}h$vM^>PNeQcNgUP~)a)N!+7>Mm1TwW7vMI3|95XwWIRxwO|Z_^6w%* z3&sIS*^<|2nB3r{>@@aa2g1uovo}mOuzJ;m!FdP%ZF^9xG z$R$y{(6HhIUSkkA)Z(#yx67_JLiFzq0qn zYTv`ypeNFa7@d6@LZKmh%PH_<`P;YtI$@O5k2_@NSf z>cuiYi7Lolh)@?%A*K(_{tmuS70Af#W>du$`5mu^C1;Va=SiP{_@D04k0Wb-2SFIx zxR$UYO9`)Mz&u}oP8{7WPQ@S|j1Z_r6SEOh&a^UGzmZay$7H3D&Na-g@VAUm65w6}G;HrfYxl*ou3DCWh)@ z$ypv7o%?wJ9?e|wXBrL#hg}{J)*0))J_yMd2Aln}=E1^;1PIa(bDj4Cd>NrmwZ_XX zhWZ+R`>b|9-HBF+r=@l#v@CdY8zY04;PCEFh?ECQPsu)8{aLf27HZQSBD=diKct;Mu>#3KUbn37NTMD}>S;Q}QHVYzIIO zO|ET75yiT*poh!cUx6Fy^VHsGyUH*!=hG%4mRJszN!yb{2MqV2t+6;R11DJZyf_TDnqaB};Hlld$92CAp ziEn}=Sj|mBxXJ~`ti0lw7FKo0-D6>x=Ohh`l|zisqD%O+pTa;3Efvz;o+paq4a<@* zq=iGw+AG;PdC0-+{c8A3;p9LTLrSrTg=y^i%a!Zu8fywNyENKK{Lauc$IpCubyvQ; zJqPp1`k6*fv*x9q8F7dY{noy%Jx$}N;S4&rlt=Z0&$kn)7Kn}NYreEQ^<@W_=d^7< zW$yDU;EZeftn}@K|07^JQeeAxRbND)qR%vA{6F-*fVqJ9t;ti8z6B7d=k7$;fM?RVVB*cr~Y_nj3z(Z&SVq~pg8 zD;tf3@ml*EAi>#6oY0`i%tUblS<23kJxI8ugnvJEQsuJ|^b5l%&LF}hG>)f_i+}t= z0qd1EbZu1aT=4v|1{cd};EiNi>J6X8I(`ha?!lsSw_D^_NCJOrDkc`qY`5lSCyBC; z*c4A{c@b=S-@3(25o>iB&4dF%tEheRkv96x)VTvl9Z3>e`-rPsftSbtC{aEd9^_#4JhQ^XigjU~mn<>i{sZCh7c-1=>Xa!RNha?ms zlq}$xKyq=5l;6KYFTjsY{<=$iX8}m5(P?EvX_cuzEalo4$xAn z>aK9g?#pgCIi?OY>48Sr=H@plM-ZyJ?Sfy4_=~UvZ5g!R^HbVbgt5jx zV)ew?!2kF|6Rtg{tNhh3x!a_~{Qf6aS46m?KMt2o!}pE6I;F8xfLyEn8_9Ulm+;dy zazdG+>Th6%)4eJLFHgR~r;Voq!%&{nb)m_(+$A+Vf=;goBg>~xGMy3^kxHoBQG9_1fL;+s&=#89I zm|_%hhR--}AbMn?_=or3XJ1UGn)9(Qsj_41-bu4i8P~I!AyNdesd|HC2tjRlblBtA zr?gK^8)hKrT;S+zSTxl^)7c@?`LXG`fu{*Tr?cSFmjh2?gHGfjrtJot#|IuMLQdEX zy-W;0QU)J!8vx7=!IOsI@S1~Ankk*N;p;d@Ei;qe1kH<2nI_)(le$*JDe+FFDIbgB zxcEonlrF{aggj$m@~6VM2(Ga|xifwoJ!e>F+*xOO)UdyCfY5tn9*Rjf5_~hHWRCbdvuM*I&9Km*4gWptx-x3X`>oNf|EN%D9I>GD6MA^9#^p&y) zS?zpi+h1q|p3|a@_~~#p&_bG3H^rug3P3~ZcBJH>79dFR);^OQ@^-enHEQ#+o#FDT z(l#$_DOFW~=zF*5v^B%_6@dB0Au?S{HTbqz@?;1XZGAgV<8o(wb)1QpO8T+;8A2&` zcvD56w^KTRgX+#}h$^{Ki) z%dTe-4s*|tu7e|enJW)tj@1Rxu`*!~obS5k-*@qlQIUfhpRi=^3!85`SIZWL7rMH{ z_&~)oR*-qx-XG>U3+VmW5d@Ohz}2zadgcZHD3>_Bx`}1~ckYS|`Z2?#FE|yrjkLV9 z9GaNrIJQ2p{tn0X5mW4YEO2pk_?5aAfbK}WB9NQQP#T8`bBpc>KtDdQ}oqHxfo9nxKcNJ6{EoXIAr#DSI9jo#lffw)Qyo}UL z7v_!l0G*SPnG?$kvfL1C$pJHq^dGsslcBAl0u+UlkMs7KRVeME+OjxBoIoh) zW+pkn4i$(O;nredT>3algnbF)lCv(|ORuZ|Yyh04vZkm+?~fJGcl3X(h2y<8F3Z&O zLCBq6dl+xCO_Zf+n0Ct#f#;L{EOXwaHFZD#WJ>!;{@S>?SmM(E#kYf2QvSjTYcb4U zxuQ&Vz8c2|vNAiukRfulWz3@_2jjA1mnQ$)%?@Tl(h7-aVSgl0FRjRkPk)xq0$uXp zyOENogUZc-aO0Mja&Wa}D0#nmi{rPHou5W78c&qZWP7O)+F<4ihs%79eM&o1EUnW+ zn5Fhq9LJ^_y9E32CsGO#SD zgnTq?blG;az1}>ccx1iBF3=;pJ#MfV7U<7iFGjd5t+n@hMVR<2m9j7~DbT--_1xEg z*Dz4)8^)-lHyh_3;F;tigV%Ltt(kAb-j11f|c}?Zcg}r zY$p(1aYWlqa0<75NOJZn*C?1~o8A`1_&-agh0UxHUaORY9#M~qO$S<~exKjdb1Q8( z9$A5@<`AsOMjOgm3sOF_4d66=-uQH{ajKN$^KIo^f`ht3?0-MuN z`S{QCr?*rz*w1@9<9GRbzj#1rYNV+LA3(<*r61O!jl;RWnk5Q7%H}ftjd+e$Tdp5^ zY&8y|mb&7&b>0-Mp$+y_Fq|^eUX~uIqdQ)D?2=#HxmUd`8eLiKHFMSH-pvcrmP}w} zpGkS~3BztiN@P2le~d9yz6mqR;?8rVTrv?wRaK{bac^bO{q?ZLhmNi_QLC&i|fM@Sv$XEo?cviwOGq{B;KC5 zbzUN=k4#}elLXt#!NrC*Sw0Nndy?JF_ z|9*Z*{v8~)GL!mI9(PscL{v0;{=USoX1_nA=PJd%!X3Ge^V0B z|E46Q_($kGTHdFZZ-K(x7d|0(3eu8m(IQY0ch;Gf4EqmA?q#S{FfgsPF)DtM&O2CS8sUkBpY0JT8h1Vc4BYe5(E0AK11^NiB;d=gH0J3$0E*N z){n28?T4VOc55%FoRsbU9vTaR;S$#D>FIC)`fq22YMml4uAB@Ad#FRh;#G7QWk=*z zOQ%DS7y}Eq23>|L&LSG3e3V!UkxFRG26ntnRVX*_IX3B_`S3Qa-_zyk0WTz=&SI@0 z{Ttp9Py7t`ago_4LIYoZW(>`aR=xyqEt^s(Yk&&qm??qNhEvO4q-X5V?CkSt+zAv_1*G zE3#U&gjrP#B!<%);{1psR7^gn03st=sQ$$+v)kh>Ogm=L+HjO9C1HLmJit#M&3*JE zyuz|)%dUTl4I~HDbWujPDLVX6iP4-P?T}M=4K;>U4=gcoCbJK^6xE*1OBQpDL5-f! zN_H^jwz=BCwEM-{boU6-ya46xDVl^vaVCk?nLODoVo@k;b_{ujI({@=v~9ENmu9A%>=1*Hbgob&CaXi#IkI@vz- z+V~rHh4i=Q~ zZ`Qj!W85P5K31`JFX#LIhxdMS{O2$I=%{djmL}@nZ^m{lKJN{GpJhT~*f>i4=i-=t z0dW@gqd;Q>4;xX$a_=!`@EEyBq~YPl@UP&KpsXVLy;)TRXzd?-3J+8Qu z!hfdP{M_TGPWrgLaf!dF$rnJgVaw+hf)5k$ms!pQqTwV(gj#CfduSofjyFjA>+P3B zL?n$2x*2KMix=#rx>*T7A`>jiI~~perQ9H>>n|qG!&UaMgnMc;ib;{5;JieezR}Ui zmhnG}JTl)N*bNKez&J(zi@_}I#~Q#-v7|%{9quMRyAAoU4aTE8A1}I zU?7ixX1|b$D2(Kjwk-PWdpck~Z9K>k_-Tnq4#|;N_nF~~)>WIYP-$|w)$bd9{oR!% z-{Q-0pdvu^=9 z+x(hO-jl=I{T4bBYAe_L$c>zE8v+*e9q|0>-*fvsK&_a(L{LFnn1r)25k#wQVow6q zcDd$_8*oMDxwQs!o?!d-+y z71S%I=T&<0?LDOsdJ-2HcC$jHpPKnxb3lli)7FseR$kXg z!aY+qfKoi_OIOtM@V->uY)6;um^)O)nppN3#89}y`K@B0b2!Ncafq^o)z50t#i8_z ziyT=a`7RlmiCY(Up{1aeuhW(*JmI%g<+;bKT)|C;ujp3i!o$usXx>TF)APvFYB11W zwb#vN*mgM(NK}~kz4_@d3+_ozVe&|`ZUjAR_3iA0IUl$br)>ZDSV1J~-{l{Jk2CCB zFf(LJvrN*q$=41&Nb!6^KdLU93V^nhY=%e@l^o&&>EAL*u$*8ls2Af=Ho4h^AOe>D zc|{FUU6(!7CzL9B=q)j6WMm!X{#zz!vF0LXx!V=RGUc}ti4P>TCzxG01g^Y2UP_~a za={yRl-j`j>q-!$qD@2TR1A~{d*w?QfI%2Xp7w{yg$HBMC5ykez*wZDnBM}cLKp$< z02WG~%(Bz>?<*7*$efg)z7x5R1m3ifnQ@Xx^9`VU_=jZ)GqRmcQ6yT!V8#VPi#@qv zB?({z*@rlqHvqMn0YRJ&E&BYj&Vj2%6dqhC1M62o&ISWv`Mxrff9Vu)7g`0?thr}1 zd!lBJ-L_-Gg-vdfjg-O{@hHCZ8kHTVL2S06_^Y_5=0!u zmwym|V+Z0mBz>FJ!!AX)+@Iyeg?E*vYAwxi8;2@R+tAq5j$VPihIkBMsK zh?sDlsO2e%{brk~6}UiogAT4D4DpJ?huEkx=ZH1)Yw$GnjUrM>K*Qx*4$OTJ#ah(? z0}QsSEWQtYxmyFn-+>J*9a1&%q!Fyaw#Kb1G&Wi3-zZ1bp8Y<9evRNH?iN82Kb$8s z2<`C40BJx6F5waGR%@-T50OFGOQcx%dA4uC%3_Esd_E7AxF z_}0b<8)8$W5N;v`#l!U$W5q~t*I}uU$Jxi^$FayGdy3rnIt#L@4eFoe4ydh|9x^-T zJ;Wx&8o8g5B6xx4ygQH?sM_l5q;3NFHRr&;^LXI#iX`0_q&QXW<$G16*1OLp;-ra# z00^QAZ${mcWs7=79~*?0V2weyGWJWdQ;(Gi(+{VCW^CnV;`54Vt`k7Y0`By`lwyU6=r%v>IlKxZ^)@_ z5Wx=evniot3jQ{Ebr=e-1B7Xg{Y_7ZzKw?se(;`2oMSMG{cwty<#YrRE8!{?^UiSz zLg8zcwu#`WrC?1?0oAey;@X);YsQ{HKXpuTI5mxks9k_&2LUmzd9)8Y$Uepe=(cZS zi?bKz5vx1nvyPpQD1B}ZqY24K`HTqD<#%AEec%A|lIWp`YxA%(ABHD=M=UiZ-tWud zyq*rWtHNbK{9s5NwI#bBb`w%r@~fg9v|=m6lj%}y01&%lA3Q1`l7em?(G2f(6!8`@ zu{c0&+9*TdO-cc`bPgauD6EE^v`4WT22x8NKA-BZ+JL|3?i-K~Lhj}YvPw5o03@sS z9UvM*;G?PycB-)ezi-%Ri#LC;I`#?33d?3IyjP;%MNzOu)ItK~%L{-JXs+y-#rF3J zngxujGE{HSBp%imxU;O$gXkzSvBup85A!JVNm9-YJ|!~ZD%ZII5>nnJsw0z2bnp>y zoIQ-B1oZ^ZpK-Nmc&$zx#dhyhlbUH}qW~*~E{vITi(&Gd0izva2T!B>QC`-hrJ?$e zPW2N1yyQ?>H(hN^Fg;}=8ZEDa#VCzJV6KWtEVgsuYEIWZsp-iiN<~a|-_qD@GJ=R> zBJJ@>V5_K@NL%DqsUmW}qe$L@e$FpP!gj_ZL;ih#k4Yy=_MzlKNE)%$qa-z|^Ngby z6zfE;vIth&IZZ7TuFT?6!7_38g{?8P6Lj+Lt}>`&_}Yc}h~vrLZX)=2}B zyMA$HzwESm2YlOm<~1F&9_E*Z**Uw=bUG-0bXS;lU=@iVZ)>`<} zVO76C=#(XSK2W#jaMY?Z)f#i_L_L|@dt91W?=a>9Kt;MOUUI0M@f@jSc9T{;V6{lf>g+-DDmRpX(#=_a1etVYn`_`vWTTN$-olRV>`4nXC4s}a1ut~+9s zbcbRm;vn<7l)ZC`n93ublXfn-5a6=gc<1#)z>AFZ)y^S~ag*;$*$(u8$y^USQP$!_ zG@cR7RYTX!{#4jawd>Ps%WjLeH2W|s5C=Of8PXvKnL0-B@PVj8@L12MQg3v6%^!u#ZZzH)hv`vv1Fzt zgi3cL4s21(YO%9g7ketIT}NM0@$#zFugvQTgK*E60n+l#yT6Ri^}h?Ifv~ zV_Tokasz367-NW|nI@}nl=Tc|&~ACkxXGnDzykUZvJLp#IEgSl9oEQ z&q=@0Qh@3WLXf(FtjolB{rg|SA;Xt~!CLf{1k?MC@xip+j4Lf*Fu|r4S+WjVR{?S9 z0Op|lCq|!a<6INwDRI9ku2qluCptjZ_9`P3jLDM-x!pLB|HKC|To252(XkCOT?j%jJ#G5QK$N#s|3on;;r%8F!L%4tv7{YT=9^=e(xo}0dERKdwdHKFtcVzM z)v@05AxXC(Ui(f;OwoX`acCLU4ri>5#uuWf^{IOnOFO9DYU@KcUx-_?9kcnM#r^ZQ z!9PcrCI_Fy)kV}c;bT1GSS!th2uE9PPB}K)ONyTst)ZnlWYgm=SeG5x#5jDio55qI zBQJg{`mI-gUi-5D)NCYXnSRrVlcvHgHqkXla42*I8qoCSxUrXGYTRPj>ht<1?+q`z znbVPsc`z3HE35ued3<+*eg6bMX*gI41P+8pJWPQMa0)8uh$G~qGxFfsM4GUoxy_#f zdmlLk!7hq?5%=GRfV$(oj^j&_8KuBbVthb6sivHw$W*$lGv}4m2d*yfvodbqwBgvD(LBUmS2`7T`Kd!(D~1* z;B2)|$vV9pcUkO1F4}yv5OY7W`%|_adMve$d~h?LAUZXbm!YsOru=Z?I4AvR%jkW* z>*(_i(=CP`R+Ya_xj&y8e^GW6-QF+96(7}nf%qIKy0T#GD7t3qM%A0_G;Hme(=XR@ySo2-x?uhjcyp3d94_&t2fEzPp4=dVjk_yuMbk<=kJnvllW1N` z-$47%SrdmOMKt)*D$Xw2H^^RfVfMd^{A!bKY7L&b+F7j`@6TfJLDVlvEGfK%ZWcN7 z=s0>A*)1ecZjzgPVZL6N{b!wTr_WaXn}(eyiYO~xF*DPVQns$(6J<=I*z^Mv9BUPt zOJm(|Pcrgn`rf9;i9+jl0cpZBRb5meFK%xLJ{?nJDzq<5XF$nWT3`Gc(6MwWmcQ<@ zN=&HGmMv&b9nCAh`UQSdC4?% zqkO^rqzqkNS8wS7_Z?um?Z|q1Y9T*>uFK_la>-6mNDgV(Y)Qcbu+%9lAj4Klq^`Zn z9s-qJY!7|b?(wLpWK&7TM}(!N3?=H?!5nPsyxoo2HZK=o(@@Qgs}KQ#7Q}>p`bnnj zMeVQc;BLHnap7kZ2t0KwVI39^J%BuOTfV;`8Y}2LS{A3{NQpKulIeay@OK-7vp8o-?~Tet$U2rBOZPv!X%7Y0jGpY1GSWRdynk)jx57n@)0}B z)GdF}T&T*lHa3@hz5H%>?T-fR2;(xde|M77Q_iq-xB zeIDX4qeo_@k@17ETJKHXO*S(^hJ?P3hTM58V{MfXXG3-B7pp!kcEnAlthewi|sNk1wH@PuxUE{y+$ifXO0NzX zF7EA1vRpvY^DZjep`qAG{Wc%{5X;n;1*hfu{_(} zE;yEg$440DPm54FklT)H)2MHI0xdAhFcEHnPgeX5rKFqkRd@vo#1Th9;W`9W?{7r@ z$ix)6nF$Usb+<=+#%GHUbP}G@0rHe0(;JWQAS08&2qTyv#rciTZEg3%BuPM8Pm zn9$GQ0*zvR^*AR;QcWI$sdH777QyZ=Wd)Ko^3&-qWm8BF5w=!lFioYR|0IrE;w*6O zFxdpxTLIO-5kh0}oBB}axWYt2d0tqP(GJ0w*`;@6v0R4N=-&}qyx5puku-t2;^1X- zgpxGNYzxH$Buly`BY1L#4TgS4e`>Kob{DfZ&w&PA%>E7_q4og4nFSk0EBUXdl*2gU950cW?akZy5PK8&;viqb3?iy3T& z+u*Bmk{pIJ0XEnuCUg+9} zKgFp6<}a7Ju6y~!*ACX&5I;REQ+$fPHzZ0>BtxaOr`=ycro^f!>0YsFJ^PVVzxtzE{7r^jaCm4jIH&YzV|*$L_Ko&L*8Iu7S?g zpO2>fBcnRC9ow?n0;Bww{8aV)EDQMeL6aB(hci2SbEz_?x}yBPdX#C`&zcd>^~L>s zx#!>(EX&NK1!cl8$vfL_C5ggaoxs~HcDBBFK^ge)TFTF>LYe2JIwm)-pOEuN&)Pl~ z`bGC*y!~%a*vCT2yD2lEK%aT?W=i>K^7hl`i7%Eu&ent#_4w8-(COs)DCF_={McEq zc4)P2wuCuQ&TxfGxDdmYL#Wz!vW7%p!X{9PteUH - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db) @@ -353,207 +353,6 @@

        torch_tensorrt.logging

        -
        -
        -class torch_tensorrt.logging.Level(value)[source]
        -

        Bases: enum.Enum

        -

        Enum to set the minimum required logging level to print a message to stdout

        -
        -
        -Debug = <LogLevel.DEBUG: 4>
        -
        - -
        -
        -Error = <LogLevel.ERROR: 1>
        -
        - -
        -
        -Graph = <LogLevel.GRAPH: 5>
        -
        - -
        -
        -Info = <LogLevel.INFO: 3>
        -
        - -
        -
        -InternalError = <LogLevel.INTERNAL_ERROR: 0>
        -
        - -
        -
        -Warning = <LogLevel.WARNING: 2>
        -
        - -
        - -
        -
        -class torch_tensorrt.logging.debug[source]
        -

        Bases: object

        -

        Context-manager to display full debug information through the logger

        -

        Example:

        -
        -
        with torch_tensorrt.logging.debug():

        model_trt = torch_tensorrt.compile(model, **spec)

        -
        -
        -
        - -
        -
        -class torch_tensorrt.logging.errors[source]
        -

        Bases: object

        -

        Context-manager to limit displayed log messages to just errors and above

        -

        Example:

        -
        -
        with torch_tensorrt.logging.errors():

        outputs = model_torchtrt(inputs)

        -
        -
        -
        - -
        -
        -torch_tensorrt.logging.get_is_colored_output_on() bool[source]
        -

        Get if colored output is enabled for logging

        -
        -
        Returns
        -

        If colored output is one

        -
        -
        Return type
        -

        bool

        -
        -
        -
        - -
        -
        -torch_tensorrt.logging.get_logging_prefix() str[source]
        -

        Get the prefix set for logging messages

        -
        -
        Returns
        -

        Prefix used for logger

        -
        -
        Return type
        -

        str

        -
        -
        -
        - -
        -
        -torch_tensorrt.logging.get_reportable_log_level() torch_tensorrt.logging.Level[source]
        -

        Get the level required for a message to be printed in the log

        -
        -
        Returns
        -

        The enum representing the level required to print

        -
        -
        Return type
        -

        torch_tensorrt.logging.Level

        -
        -
        -
        - -
        -
        -class torch_tensorrt.logging.graphs[source]
        -

        Bases: object

        -

        Context-manager to display the results of intermediate lowering passes -as well as full debug information through the logger

        -

        Example:

        -
        -
        with torch_tensorrt.logging.graphs():

        model_trt = torch_tensorrt.compile(model, **spec)

        -
        -
        -
        - -
        -
        -class torch_tensorrt.logging.info[source]
        -

        Bases: object

        -

        Context-manager to display all info and greater severity messages

        -

        Example:

        -
        -
        with torch_tensorrt.logging.info():

        model_trt = torch_tensorrt.compile(model, **spec)

        -
        -
        -
        - -
        -
        -class torch_tensorrt.logging.internal_errors[source]
        -

        Bases: object

        -

        Context-manager to limit displayed log messages to just internal errors

        -

        Example:

        -
        -
        with torch_tensorrt.logging.internal_errors():

        outputs = model_torchtrt(inputs)

        -
        -
        -
        - -
        -
        -torch_tensorrt.logging.log(level: torch_tensorrt.logging.Level, msg: str)[source]
        -

        Add a new message to the log

        -

        Adds a new message to the log at a specified level. The message -will only get printed out if Level > reportable_log_level

        -
        -
        Parameters
        -
        -
        -
        -
        - -
        -
        -torch_tensorrt.logging.set_is_colored_output_on(colored_output_on: bool)[source]
        -

        Enable or disable color in the log output

        -
        -
        Parameters
        -

        colored_output_on (bool) – If colored output should be enabled or not

        -
        -
        -
        - -
        -
        -torch_tensorrt.logging.set_logging_prefix(prefix: str)[source]
        -

        Set the prefix used when logging messages

        -
        -
        Parameters
        -

        prefix (str) – Prefix to use for logging messages

        -
        -
        -
        - -
        -
        -torch_tensorrt.logging.set_reportable_log_level(level: torch_tensorrt.logging.Level)[source]
        -

        Set the level required for a message to be printed to the log

        -
        -
        Parameters
        -

        level (torch_tensorrt.logging.Level) – The enum representing the level required to print

        -
        -
        -
        - -
        -
        -class torch_tensorrt.logging.warnings[source]
        -

        Bases: object

        -

        Context-manager to limit displayed log messages to just warnings and above

        -

        Example:

        -
        -
        with torch_tensorrt.logging.warnings():

        model_trt = torch_tensorrt.compile(model, **spec)

        -
        -
        -
        -
        diff --git a/docs/py_api/ptq.html b/docs/py_api/ptq.html index b01d1294ff..0a06f36bff 100644 --- a/docs/py_api/ptq.html +++ b/docs/py_api/ptq.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        @@ -353,121 +353,11 @@

        torch_tensorrt.ptq

        -
        -
        -class torch_tensorrt.ptq.CacheCalibrator(*args, **kwargs)[source]
        -

        Bases: object

        -

        Constructs a calibrator class in TensorRT which directly uses pre-existing cache file for calibration. -:param cache_file: path to cache file. -:param algo_type: choice of calibration algorithm.

        -
        - -
        -
        -class torch_tensorrt.ptq.CalibrationAlgo(value)[source]
        -

        Bases: enum.Enum

        -

        An enumeration.

        -
        -
        -ENTROPY_CALIBRATION = <CalibrationAlgo.ENTROPY_CALIBRATION: 1>
        -
        - -
        -
        -ENTROPY_CALIBRATION_2 = <CalibrationAlgo.ENTROPY_CALIBRATION_2: 2>
        -
        - -
        -
        -LEGACY_CALIBRATION = <CalibrationAlgo.LEGACY_CALIBRATION: 0>
        -
        - -
        -
        -MINMAX_CALIBRATION = <CalibrationAlgo.MINMAX_CALIBRATION: 3>
        -
        - -
        - -
        -
        -class torch_tensorrt.ptq.DataLoaderCalibrator(*args, **kwargs)[source]
        -

        Bases: object

        -

        Constructs a calibrator class in TensorRT and uses pytorch dataloader to load/preproces -data which is passed during calibration. -:param dataloader: an instance of pytorch dataloader which iterates through a given dataset. -:param algo_type: choice of calibration algorithm. -:param cache_file: path to cache file. -:param use_cache: flag which enables usage of pre-existing cache. -:param device: device on which calibration data is copied to.

        -
        - -
        -
        -torch_tensorrt.ptq.get_batch(self, names)[source]
        -
        - -
        -
        -torch_tensorrt.ptq.get_batch_size(self)[source]
        -
        - -
        -
        -torch_tensorrt.ptq.get_cache_mode_batch(self)[source]
        -
        - -
        -
        -torch_tensorrt.ptq.read_calibration_cache(self)[source]
        -
        - -
        -
        -torch_tensorrt.ptq.write_calibration_cache(self, cache)[source]
        -
        -

        Classes

        -
        -
        -class torch_tensorrt.ptq.DataLoaderCalibrator(*args, **kwargs)[source]
        -

        Constructs a calibrator class in TensorRT and uses pytorch dataloader to load/preproces -data which is passed during calibration. -:param dataloader: an instance of pytorch dataloader which iterates through a given dataset. -:param algo_type: choice of calibration algorithm. -:param cache_file: path to cache file. -:param use_cache: flag which enables usage of pre-existing cache. -:param device: device on which calibration data is copied to.

        -
        -
        -__init__(**kwargs)[source]
        -
        - -
        - -
        -
        -class torch_tensorrt.ptq.CacheCalibrator(*args, **kwargs)[source]
        -

        Constructs a calibrator class in TensorRT which directly uses pre-existing cache file for calibration. -:param cache_file: path to cache file. -:param algo_type: choice of calibration algorithm.

        -
        -
        -__init__(**kwargs)[source]
        -
        - -
        -

        Enums

        -
        -
        -class torch_tensorrt.ptq.CalibrationAlgo(value)[source]
        -

        An enumeration.

        -
        -
        diff --git a/docs/py_api/torch_tensorrt.html b/docs/py_api/torch_tensorrt.html index 91ded448bc..7bf4918d7c 100644 --- a/docs/py_api/torch_tensorrt.html +++ b/docs/py_api/torch_tensorrt.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        @@ -351,350 +351,14 @@

        torch_tensorrt

        -
        +

        Functions

        -
        -
        -torch_tensorrt.set_device(gpu_id)[source]
        -
        - -
        -
        -torch_tensorrt.compile(module: typing.Any, ir='default', inputs=[], enabled_precisions={<dtype.float: 0>}, **kwargs)[source]
        -

        Compile a PyTorch module for NVIDIA GPUs using TensorRT

        -

        Takes a existing PyTorch module and a set of settings to configure the compiler -and using the path specified in ir lower and compile the module to TensorRT -returning a PyTorch Module back

        -

        Converts specifically the forward method of a Module

        -
        -
        Parameters
        -

        module (Union(torch.nn.Module,torch.jit.ScriptModule) – Source module

        -
        -
        Keyword Arguments
        -
          -
        • inputs (List[Union(torch_tensorrt.Input, torch.Tensor)]) –

          Required List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using -torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum -to select device type.

          -
          input=[
          -    torch_tensorrt.Input((1, 3, 224, 224)), # Static NCHW input shape for input #1
          -    torch_tensorrt.Input(
          -        min_shape=(1, 224, 224, 3),
          -        opt_shape=(1, 512, 512, 3),
          -        max_shape=(1, 1024, 1024, 3),
          -        dtype=torch.int32
          -        format=torch.channel_last
          -    ), # Dynamic input shape for input #2
          -    torch.randn((1, 3, 224, 244)) # Use an example tensor and let torch_tensorrt infer settings
          -]
          -
          -
          -

        • -
        • enabled_precision (Set(Union(torch.dpython:type, torch_tensorrt.dpython:type))) – The set of datatypes that TensorRT can use when selecting kernels

        • -
        • ir (str) – The requested strategy to compile. (Options: default - Let Torch-TensorRT decide, ts - TorchScript with scripting path)

        • -
        • **kwargs – Additional settings for the specific requested strategy (See submodules for more info)

        • -
        -
        -
        Returns
        -

        Compiled Module, when run it will execute via TensorRT

        -
        -
        Return type
        -

        torch.nn.Module

        -
        -
        -
        - -
        -
        -torch_tensorrt.convert_method_to_trt_engine(module: typing.Any, method_name: str, ir='default', inputs=[], enabled_precisions={<dtype.float: 0>}, **kwargs)[source]
        -

        Convert a TorchScript module method to a serialized TensorRT engine

        -

        Converts a specified method of a module to a serialized TensorRT engine given a dictionary of conversion settings

        -
        -
        Parameters
        -

        module (Union(torch.nn.Module,torch.jit.ScriptModule) – Source module

        -
        -
        Keyword Arguments
        -
          -
        • inputs (List[Union(torch_tensorrt.Input, torch.Tensor)]) –

          Required List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using -torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum -to select device type.

          -
          input=[
          -    torch_tensorrt.Input((1, 3, 224, 224)), # Static NCHW input shape for input #1
          -    torch_tensorrt.Input(
          -        min_shape=(1, 224, 224, 3),
          -        opt_shape=(1, 512, 512, 3),
          -        max_shape=(1, 1024, 1024, 3),
          -        dtype=torch.int32
          -        format=torch.channel_last
          -    ), # Dynamic input shape for input #2
          -    torch.randn((1, 3, 224, 244)) # Use an example tensor and let torch_tensorrt infer settings
          -]
          -
          -
          -

        • -
        • enabled_precision (Set(Union(torch.dpython:type, torch_tensorrt.dpython:type))) – The set of datatypes that TensorRT can use when selecting kernels

        • -
        • ir (str) – The requested strategy to compile. (Options: default - Let Torch-TensorRT decide, ts - TorchScript with scripting path)

        • -
        • **kwargs – Additional settings for the specific requested strategy (See submodules for more info)

        • -
        -
        -
        Returns
        -

        Serialized TensorRT engine, can either be saved to a file or deserialized via TensorRT APIs

        -
        -
        Return type
        -

        bytes

        -
        -
        -
        - -
        -
        -torch_tensorrt.get_build_info() str[source]
        -

        Returns a string containing the build information of torch_tensorrt distribution

        -
        -
        Returns
        -

        String containing the build information for torch_tensorrt distribution

        -
        -
        Return type
        -

        str

        -
        -
        -
        - -
        -
        -torch_tensorrt.dump_build_info()[source]
        -

        Prints build information about the torch_tensorrt distribution to stdout

        -
        -

        Classes

        -
        -
        -class torch_tensorrt.Input(*args, **kwargs)[source]
        -

        Defines an input to a module in terms of expected shape, data type and tensor format.

        -
        -
        Variables
        -
          -
        • shape_mode (torch_tensorrt.Input._ShapeMode) – Is input statically or dynamically shaped

        • -
        • shape (Tuple or Dict) –

          Either a single Tuple or a dict of tuples defining the input shape. -Static shaped inputs will have a single tuple. Dynamic inputs will have a dict of the form -``{

          -
          -

          ”min_shape”: Tuple, -“opt_shape”: Tuple, -“max_shape”: Tuple

          -
          -

          }``

          -

        • -
        • dtype (torch_tensorrt.dpython:type) – The expected data type of the input tensor (default: torch_tensorrt.dtype.float32)

        • -
        • format (torch_tensorrt.TensorFormat) – The expected format of the input tensor (default: torch_tensorrt.TensorFormat.NCHW)

        • -
        -
        -
        -
        -
        -__init__(*args, **kwargs)[source]
        -

        __init__ Method for torch_tensorrt.Input

        -

        Input accepts one of a few construction patterns

        -
        -
        Parameters
        -

        shape (Tuple or List, optional) – Static shape of input tensor

        -
        -
        Keyword Arguments
        -
          -
        • shape (Tuple or List, optional) – Static shape of input tensor

        • -
        • min_shape (Tuple or List, optional) – Min size of input tensor’s shape range -Note: All three of min_shape, opt_shape, max_shape must be provided, there must be no positional arguments, shape must not be defined and implictly this sets Input’s shape_mode to DYNAMIC

        • -
        • opt_shape (Tuple or List, optional) – Opt size of input tensor’s shape range -Note: All three of min_shape, opt_shape, max_shape must be provided, there must be no positional arguments, shape must not be defined and implictly this sets Input’s shape_mode to DYNAMIC

        • -
        • max_shape (Tuple or List, optional) – Max size of input tensor’s shape range -Note: All three of min_shape, opt_shape, max_shape must be provided, there must be no positional arguments, shape must not be defined and implictly this sets Input’s shape_mode to DYNAMIC

        • -
        • dtype (torch.dpython:type or torch_tensorrt.dpython:type) – Expected data type for input tensor (default: torch_tensorrt.dtype.float32)

        • -
        • format (torch.memory_format or torch_tensorrt.TensorFormat) – The expected format of the input tensor (default: torch_tensorrt.TensorFormat.NCHW)

        • -
        -
        -
        -

        Examples

        -
          -
        • Input([1,3,32,32], dtype=torch.float32, format=torch.channel_last)

        • -
        • Input(shape=(1,3,32,32), dtype=torch_tensorrt.dtype.int32, format=torch_tensorrt.TensorFormat.NCHW)

        • -
        • Input(min_shape=(1,3,32,32), opt_shape=[2,3,32,32], max_shape=(3,3,32,32)) #Implicitly dtype=torch_tensorrt.dtype.float32, format=torch_tensorrt.TensorFormat.NCHW

        • -
        -
        - -
        -
        -dtype = <dtype.unknown: 5>
        -

        torch_tensorrt.dtype.float32)

        -
        -
        Type
        -

        The expected data type of the input tensor (default

        -
        -
        -
        - -
        -
        -format = <TensorFormat.contiguous: 0>
        -

        torch_tensorrt.TensorFormat.NCHW)

        -
        -
        Type
        -

        The expected format of the input tensor (default

        -
        -
        -
        - -
        -
        -shape = None
        -

        Either a single Tuple or a dict of tuples defining the input shape. Static shaped inputs will have a single tuple. Dynamic inputs will have a dict of the form { "min_shape": Tuple, "opt_shape": Tuple, "max_shape": Tuple }

        -
        -
        Type
        -

        (Tuple or Dict)

        -
        -
        -
        - -
        -
        -shape_mode = None
        -

        Is input statically or dynamically shaped

        -
        -
        Type
        -

        (torch_tensorrt.Input._ShapeMode)

        -
        -
        -
        - -
        - -
        -
        -class torch_tensorrt.Device(*args, **kwargs)[source]
        -

        Defines a device that can be used to specify target devices for engines

        -
        -
        Variables
        -
          -
        • device_type (torch_tensorrt.DeviceType) – Target device type (GPU or DLA). Set implicitly based on if dla_core is specified.

        • -
        • gpu_id (python:int) – Device ID for target GPU

        • -
        • dla_core (python:int) – Core ID for target DLA core

        • -
        • allow_gpu_fallback (bool) – Whether falling back to GPU if DLA cannot support an op should be allowed

        • -
        -
        -
        -
        -
        -__init__(*args, **kwargs)[source]
        -

        __init__ Method for torch_tensorrt.Device

        -

        Device accepts one of a few construction patterns

        -
        -
        Parameters
        -

        spec (str) – String with device spec e.g. “dla:0” for dla, core_id 0

        -
        -
        Keyword Arguments
        -
          -
        • gpu_id (python:int) – ID of target GPU (will get overrided if dla_core is specified to the GPU managing DLA). If specified, no positional arguments should be provided

        • -
        • dla_core (python:int) – ID of target DLA core. If specified, no positional arguments should be provided.

        • -
        • allow_gpu_fallback (bool) – Allow TensorRT to schedule operations on GPU if they are not supported on DLA (ignored if device type is not DLA)

        • -
        -
        -
        -

        Examples

        -
          -
        • Device(“gpu:1”)

        • -
        • Device(“cuda:1”)

        • -
        • Device(“dla:0”, allow_gpu_fallback=True)

        • -
        • Device(gpu_id=0, dla_core=0, allow_gpu_fallback=True)

        • -
        • Device(dla_core=0, allow_gpu_fallback=True)

        • -
        • Device(gpu_id=1)

        • -
        -
        - -
        -
        -allow_gpu_fallback = False
        -

        (bool) Whether falling back to GPU if DLA cannot support an op should be allowed

        -
        - -
        -
        -device_type = None
        -

        Target device type (GPU or DLA). Set implicitly based on if dla_core is specified.

        -
        -
        Type
        -

        (torch_tensorrt.DeviceType)

        -
        -
        -
        - -
        -
        -dla_core = -1
        -

        (int) Core ID for target DLA core

        -
        - -
        -
        -gpu_id = -1
        -

        (int) Device ID for target GPU

        -
        - -
        -

        Enums

        -
        -
        -class torch_tensorrt.dtype
        -

        Enum to specifiy operating precision for engine execution

        -

        Members:

        -
        -

        float : 32 bit floating point number

        -

        float32 : 32 bit floating point number

        -

        half : 16 bit floating point number

        -

        float16 : 16 bit floating point number

        -

        int8 : 8 bit integer number

        -

        int32 : 32 bit integer number

        -

        bool : Boolean value

        -

        unknown : Unknown data type

        -
        -
        - -
        -
        -class torch_tensorrt.DeviceType
        -

        Enum to specify device kinds to build TensorRT engines for

        -

        Members:

        -
        -

        GPU : Specify using GPU to execute TensorRT Engine

        -

        DLA : Specify using DLA to execute TensorRT Engine (Jetson Only)

        -
        -
        - -
        -
        -class torch_tensorrt.EngineCapability
        -

        Enum to specify engine capability settings (selections of kernels to meet safety requirements)

        -

        Members:

        -
        -

        safe_gpu : Use safety GPU kernels only

        -

        safe_dla : Use safety DLA kernels only

        -

        default : Use default behavior

        -
        -
        - -
        -
        -class torch_tensorrt.TensorFormat
        -

        Enum to specifiy the memory layout of tensors

        -

        Members:

        -
        -

        contiguous : Contiguous memory layout (NCHW / Linear)

        -

        channels_last : Channels last memory layout (NHWC)

        -
        -
        -

        Submodules

        diff --git a/docs/py_api/ts.html b/docs/py_api/ts.html index ce71414d68..f87429ebda 100644 --- a/docs/py_api/ts.html +++ b/docs/py_api/ts.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        @@ -353,231 +353,8 @@

        torch_tensorrt.ts

        -
        +

        Functions

        -
        -
        -torch_tensorrt.ts.compile(module: torch.jit._script.ScriptModule, inputs=[], device=None, disable_tf32=False, sparse_weights=False, enabled_precisions={}, refit=False, debug=False, capability=<EngineCapability.default: 0>, num_min_timing_iters=2, num_avg_timing_iters=1, workspace_size=0, calibrator=None, truncate_long_and_double=False, require_full_compilation=False, min_block_size=3, torch_executed_ops=[], torch_executed_modules=[]) torch.jit._script.ScriptModule[source]
        -

        Compile a TorchScript module for NVIDIA GPUs using TensorRT

        -

        Takes a existing TorchScript module and a set of settings to configure the compiler -and will convert methods to JIT Graphs which call equivalent TensorRT engines

        -

        Converts specifically the forward method of a TorchScript Module

        -
        -
        Parameters
        -

        module (torch.jit.ScriptModule) – Source module, a result of tracing or scripting a PyTorch -torch.nn.Module

        -
        -
        Keyword Arguments
        -
          -
        • inputs (List[Union(torch_tensorrt.Input, torch.Tensor)]) –

          Required List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using -torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum -to select device type.

          -
          input=[
          -    torch_tensorrt.Input((1, 3, 224, 224)), # Static NCHW input shape for input #1
          -    torch_tensorrt.Input(
          -        min_shape=(1, 224, 224, 3),
          -        opt_shape=(1, 512, 512, 3),
          -        max_shape=(1, 1024, 1024, 3),
          -        dtype=torch.int32
          -        format=torch.channel_last
          -    ), # Dynamic input shape for input #2
          -    torch.randn((1, 3, 224, 244)) # Use an example tensor and let torch_tensorrt infer settings
          -]
          -
          -
          -

        • -
        • device (Union(torch_tensorrt.Device, torch.device, dict)) –

          Target device for TensorRT engines to run on

          -
          device=torch_tensorrt.Device("dla:1", allow_gpu_fallback=True)
          -
          -
          -

        • -
        • disable_tf32 (bool) – Force FP32 layers to use traditional as FP32 format vs the default behavior of rounding the inputs to 10-bit mantissas before multiplying, but accumulates the sum using 23-bit mantissas

        • -
        • sparse_weights (bool) – Enable sparsity for convolution and fully connected layers.

        • -
        • enabled_precision (Set(Union(torch.dpython:type, torch_tensorrt.dpython:type))) – The set of datatypes that TensorRT can use when selecting kernels

        • -
        • refit (bool) – Enable refitting

        • -
        • debug (bool) – Enable debuggable engine

        • -
        • capability (torch_tensorrt.EngineCapability) – Restrict kernel selection to safe gpu kernels or safe dla kernels

        • -
        • num_min_timing_iters (python:int) – Number of minimization timing iterations used to select kernels

        • -
        • num_avg_timing_iters (python:int) – Number of averaging timing iterations used to select kernels

        • -
        • workspace_size (python:int) – Maximum size of workspace given to TensorRT

        • -
        • truncate_long_and_double (bool) – Truncate weights provided in int64 or double (float64) to int32 and float32

        • -
        • calibrator (Union(torch_tensorrt._C.IInt8Calibrator, tensorrt.IInt8Calibrator)) – Calibrator object which will provide data to the PTQ system for INT8 Calibration

        • -
        • require_full_compilation (bool) – Require modules to be compiled end to end or return an error as opposed to returning a hybrid graph where operations that cannot be run in TensorRT are run in PyTorch

        • -
        • min_block_size (python:int) – The minimum number of contiguous TensorRT convertable operations in order to run a set of operations in TensorRT

        • -
        • torch_executed_ops (List[str]) – List of aten operators that must be run in PyTorch. An error will be thrown if this list is not empty but require_full_compilation is True

        • -
        • torch_executed_modules (List[str]) – List of modules that must be run in PyTorch. An error will be thrown if this list is not empty but require_full_compilation is True

        • -
        -
        -
        Returns
        -

        Compiled TorchScript Module, when run it will execute via TensorRT

        -
        -
        Return type
        -

        torch.jit.ScriptModule

        -
        -
        -
        - -
        -
        -torch_tensorrt.ts.convert_method_to_trt_engine(module: torch.jit._script.ScriptModule, method_name: str, inputs=[], device=None, disable_tf32=False, sparse_weights=False, enabled_precisions={}, refit=False, debug=False, capability=<EngineCapability.default: 0>, num_min_timing_iters=2, num_avg_timing_iters=1, workspace_size=0, truncate_long_and_double=False, calibrator=None) str[source]
        -

        Convert a TorchScript module method to a serialized TensorRT engine

        -

        Converts a specified method of a module to a serialized TensorRT engine given a dictionary of conversion settings

        -
        -
        Parameters
        -
          -
        • module (torch.jit.ScriptModule) – Source module, a result of tracing or scripting a PyTorch -torch.nn.Module

        • -
        • method_name (str) – Name of method to convert

        • -
        -
        -
        Keyword Arguments
        -
          -
        • inputs (List[Union(torch_tensorrt.Input, torch.Tensor)]) –

          Required List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using -torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum -to select device type.

          -
          input=[
          -    torch_tensorrt.Input((1, 3, 224, 224)), # Static NCHW input shape for input #1
          -    torch_tensorrt.Input(
          -        min_shape=(1, 224, 224, 3),
          -        opt_shape=(1, 512, 512, 3),
          -        max_shape=(1, 1024, 1024, 3),
          -        dtype=torch.int32
          -        format=torch.channel_last
          -    ), # Dynamic input shape for input #2
          -    torch.randn((1, 3, 224, 244)) # Use an example tensor and let torch_tensorrt infer settings
          -]
          -
          -
          -

        • -
        • device (Union(torch_tensorrt.Device, torch.device, dict)) –

          Target device for TensorRT engines to run on

          -
          device=torch_tensorrt.Device("dla:1", allow_gpu_fallback=True)
          -
          -
          -

        • -
        • disable_tf32 (bool) – Force FP32 layers to use traditional as FP32 format vs the default behavior of rounding the inputs to 10-bit mantissas before multiplying, but accumulates the sum using 23-bit mantissas

        • -
        • sparse_weights (bool) – Enable sparsity for convolution and fully connected layers.

        • -
        • enabled_precision (Set(Union(torch.dpython:type, torch_tensorrt.dpython:type))) – The set of datatypes that TensorRT can use when selecting kernels

        • -
        • refit (bool) – Enable refitting

        • -
        • debug (bool) – Enable debuggable engine

        • -
        • capability (torch_tensorrt.EngineCapability) – Restrict kernel selection to safe gpu kernels or safe dla kernels

        • -
        • num_min_timing_iters (python:int) – Number of minimization timing iterations used to select kernels

        • -
        • num_avg_timing_iters (python:int) – Number of averaging timing iterations used to select kernels

        • -
        • workspace_size (python:int) – Maximum size of workspace given to TensorRT

        • -
        • truncate_long_and_double (bool) – Truncate weights provided in int64 or double (float64) to int32 and float32

        • -
        • calibrator (Union(torch_tensorrt._C.IInt8Calibrator, tensorrt.IInt8Calibrator)) – Calibrator object which will provide data to the PTQ system for INT8 Calibration

        • -
        -
        -
        Returns
        -

        Serialized TensorRT engine, can either be saved to a file or deserialized via TensorRT APIs

        -
        -
        Return type
        -

        bytes

        -
        -
        -
        - -
        -
        -torch_tensorrt.ts.check_method_op_support(module: torch.jit._script.ScriptModule, method_name: str) bool[source]
        -

        Checks to see if a method is fully supported by torch_tensorrt

        -

        Checks if a method of a TorchScript module can be compiled by torch_tensorrt, if not, a list of operators -that are not supported are printed out and the function returns false, else true.

        -
        -
        Parameters
        -
          -
        • module (torch.jit.ScriptModule) – Source module, a result of tracing or scripting a PyTorch -torch.nn.Module

        • -
        • method_name (str) – Name of method to check

        • -
        -
        -
        Returns
        -

        True if supported Method

        -
        -
        Return type
        -

        bool

        -
        -
        -
        - -
        -
        -torch_tensorrt.ts.embed_engine_in_new_module(serialized_engine: bytes, device=None) torch.jit._script.ScriptModule[source]
        -

        Takes a pre-built serialized TensorRT engine and embeds it within a TorchScript module

        -

        Takes a pre-built serialied TensorRT engine (as bytes) and embeds it within a TorchScript module. -Registers the forward method to execute the TensorRT engine with the function signature:

        -
        -

        forward(Tensor[]) -> Tensor[]

        -
        -
        -
        TensorRT bindings must have names with the following format:
          -
        • [symbol].[index in input / output array]

        • -
        -

        ex. -- [x.0, x.1, x.2] -> [y.0]

        -
        -
        -

        Module can be save with engine embedded with torch.jit.save and moved / loaded according to torch_tensorrt portability rules

        -
        -
        Parameters
        -

        serialized_engine (bytes) – Serialized TensorRT engine from either torch_tensorrt or TensorRT APIs

        -
        -
        Keyword Arguments
        -

        device (Union(torch_tensorrt.Device, torch.device, dict)) – Target device to run engine on. Must be compatible with engine provided. Default: Current active device

        -
        -
        Returns
        -

        New TorchScript module with engine embedded

        -
        -
        Return type
        -

        torch.jit.ScriptModule

        -
        -
        -
        - -
        -
        -torch_tensorrt.ts.TensorRTCompileSpec(inputs=[], device=None, disable_tf32=False, sparse_weights=False, enabled_precisions={}, refit=False, debug=False, capability=<EngineCapability.default: 0>, num_min_timing_iters=2, num_avg_timing_iters=1, workspace_size=0, truncate_long_and_double=False, calibrator=None) <torch._C.ScriptClass object at 0x7f9f791ec5b0>[source]
        -

        Utility to create a formated spec dictionary for using the PyTorch TensorRT backend

        -
        -
        Keyword Arguments
        -
          -
        • inputs (List[Union(torch_tensorrt.Input, torch.Tensor)]) –

          Required List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using -torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum -to select device type.

          -
          input=[
          -    torch_tensorrt.Input((1, 3, 224, 224)), # Static NCHW input shape for input #1
          -    torch_tensorrt.Input(
          -        min_shape=(1, 224, 224, 3),
          -        opt_shape=(1, 512, 512, 3),
          -        max_shape=(1, 1024, 1024, 3),
          -        dtype=torch.int32
          -        format=torch.channel_last
          -    ), # Dynamic input shape for input #2
          -    torch.randn((1, 3, 224, 244)) # Use an example tensor and let torch_tensorrt infer settings
          -]
          -
          -
          -

        • -
        • device (Union(torch_tensorrt.Device, torch.device, dict)) –

          Target device for TensorRT engines to run on

          -
          device=torch_tensorrt.Device("dla:1", allow_gpu_fallback=True)
          -
          -
          -

        • -
        • disable_tf32 (bool) – Force FP32 layers to use traditional as FP32 format vs the default behavior of rounding the inputs to 10-bit mantissas before multiplying, but accumulates the sum using 23-bit mantissas

        • -
        • sparse_weights (bool) – Enable sparsity for convolution and fully connected layers.

        • -
        • enabled_precision (Set(Union(torch.dpython:type, torch_tensorrt.dpython:type))) – The set of datatypes that TensorRT can use when selecting kernels

        • -
        • refit (bool) – Enable refitting

        • -
        • debug (bool) – Enable debuggable engine

        • -
        • capability (torch_tensorrt.EngineCapability) – Restrict kernel selection to safe gpu kernels or safe dla kernels

        • -
        • num_min_timing_iters (python:int) – Number of minimization timing iterations used to select kernels

        • -
        • num_avg_timing_iters (python:int) – Number of averaging timing iterations used to select kernels

        • -
        • workspace_size (python:int) – Maximum size of workspace given to TensorRT

        • -
        • truncate_long_and_double (bool) – Truncate weights provided in int64 or double (float64) to int32 and float32

        • -
        • calibrator – Calibrator object which will provide data to the PTQ system for INT8 Calibration

        • -
        -
        -
        -
        -
        diff --git a/docs/search.html b/docs/search.html index 0e2156cee8..534fb042c5 100644 --- a/docs/search.html +++ b/docs/search.html @@ -196,7 +196,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/searchindex.js b/docs/searchindex.js index 9d9da03a0c..ebc9cccb17 100644 --- a/docs/searchindex.js +++ b/docs/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["_cpp_api/classtorch__tensorrt_1_1DataType","_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType","_cpp_api/classtorch__tensorrt_1_1TensorFormat","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator","_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502","_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268","_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e","_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827","_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b","_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da","_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59","_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883","_cpp_api/dir_cpp","_cpp_api/dir_cpp_include","_cpp_api/dir_cpp_include_torch_tensorrt","_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558","_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb","_cpp_api/file_cpp_include_torch_tensorrt_logging.h","_cpp_api/file_cpp_include_torch_tensorrt_macros.h","_cpp_api/file_cpp_include_torch_tensorrt_ptq.h","_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h","_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3","_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650","_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a","_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2","_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8","_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5","_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc","_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039","_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa","_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797","_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9","_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef","_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528","_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384","_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1","_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2","_cpp_api/namespace_torch_tensorrt","_cpp_api/namespace_torch_tensorrt__logging","_cpp_api/namespace_torch_tensorrt__ptq","_cpp_api/namespace_torch_tensorrt__torchscript","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h","_cpp_api/structtorch__tensorrt_1_1Device","_cpp_api/structtorch__tensorrt_1_1Input","_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec","_cpp_api/torch_tensort_cpp","_cpp_api/unabridged_orphan","_notebooks/CitriNet-example","_notebooks/EfficientNet-example","_notebooks/Hugging-Face-BERT","_notebooks/Resnet50-example","_notebooks/dynamic-shapes","_notebooks/lenet-getting-started","_notebooks/ssd-object-detection-demo","_notebooks/vgg-qat","contributors/conversion","contributors/lowering","contributors/partitioning","contributors/phases","contributors/runtime","contributors/system_overview","contributors/useful_links","contributors/writing_converters","index","indices/supported_ops","py_api/logging","py_api/ptq","py_api/torch_tensorrt","py_api/ts","src/pytorch-sphinx-theme/docs/changelog","src/pytorch-sphinx-theme/docs/configuring","src/pytorch-sphinx-theme/docs/demo/api","src/pytorch-sphinx-theme/docs/demo/demo","src/pytorch-sphinx-theme/docs/demo/lists_tables","src/pytorch-sphinx-theme/docs/demo/long","src/pytorch-sphinx-theme/docs/demo/structure","src/pytorch-sphinx-theme/docs/index","src/pytorch-sphinx-theme/docs/installing","tutorials/creating_torchscript_module_in_python","tutorials/getting_started_with_cpp_api","tutorials/getting_started_with_python_api","tutorials/installation","tutorials/ptq","tutorials/runtime","tutorials/serving_torch_tensorrt_with_triton","tutorials/torchtrtc","tutorials/use_from_pytorch","tutorials/using_dla"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,nbsphinx:4,sphinx:56},filenames:["_cpp_api/classtorch__tensorrt_1_1DataType.rst","_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.rst","_cpp_api/classtorch__tensorrt_1_1TensorFormat.rst","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.rst","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.rst","_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.rst","_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.rst","_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.rst","_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.rst","_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.rst","_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.rst","_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.rst","_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.rst","_cpp_api/dir_cpp.rst","_cpp_api/dir_cpp_include.rst","_cpp_api/dir_cpp_include_torch_tensorrt.rst","_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.rst","_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.rst","_cpp_api/file_cpp_include_torch_tensorrt_logging.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_macros.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst","_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.rst","_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.rst","_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.rst","_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.rst","_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.rst","_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.rst","_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.rst","_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.rst","_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.rst","_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.rst","_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.rst","_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.rst","_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.rst","_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.rst","_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.rst","_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.rst","_cpp_api/namespace_torch_tensorrt.rst","_cpp_api/namespace_torch_tensorrt__logging.rst","_cpp_api/namespace_torch_tensorrt__ptq.rst","_cpp_api/namespace_torch_tensorrt__torchscript.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst","_cpp_api/structtorch__tensorrt_1_1Device.rst","_cpp_api/structtorch__tensorrt_1_1Input.rst","_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.rst","_cpp_api/torch_tensort_cpp.rst","_cpp_api/unabridged_orphan.rst","_notebooks/CitriNet-example.ipynb","_notebooks/EfficientNet-example.ipynb","_notebooks/Hugging-Face-BERT.ipynb","_notebooks/Resnet50-example.ipynb","_notebooks/dynamic-shapes.ipynb","_notebooks/lenet-getting-started.ipynb","_notebooks/ssd-object-detection-demo.ipynb","_notebooks/vgg-qat.ipynb","contributors/conversion.rst","contributors/lowering.rst","contributors/partitioning.rst","contributors/phases.rst","contributors/runtime.rst","contributors/system_overview.rst","contributors/useful_links.rst","contributors/writing_converters.rst","index.rst","indices/supported_ops.rst","py_api/logging.rst","py_api/ptq.rst","py_api/torch_tensorrt.rst","py_api/ts.rst","src/pytorch-sphinx-theme/docs/changelog.rst","src/pytorch-sphinx-theme/docs/configuring.rst","src/pytorch-sphinx-theme/docs/demo/api.rst","src/pytorch-sphinx-theme/docs/demo/demo.rst","src/pytorch-sphinx-theme/docs/demo/lists_tables.rst","src/pytorch-sphinx-theme/docs/demo/long.rst","src/pytorch-sphinx-theme/docs/demo/structure.rst","src/pytorch-sphinx-theme/docs/index.rst","src/pytorch-sphinx-theme/docs/installing.rst","tutorials/creating_torchscript_module_in_python.rst","tutorials/getting_started_with_cpp_api.rst","tutorials/getting_started_with_python_api.rst","tutorials/installation.rst","tutorials/ptq.rst","tutorials/runtime.rst","tutorials/serving_torch_tensorrt_with_triton.rst","tutorials/torchtrtc.rst","tutorials/use_from_pytorch.rst","tutorials/using_dla.rst"],objects:{"":[[5,0,1,"c.STR","STR"],[9,0,1,"c.TORCHTRT_API","TORCHTRT_API"],[11,0,1,"c.TORCHTRT_HIDDEN","TORCHTRT_HIDDEN"],[7,0,1,"c.TORCH_TENSORRT_MAJOR_VERSION","TORCH_TENSORRT_MAJOR_VERSION"],[8,0,1,"c.TORCH_TENSORRT_MINOR_VERSION","TORCH_TENSORRT_MINOR_VERSION"],[6,0,1,"c.TORCH_TENSORRT_PATCH_VERSION","TORCH_TENSORRT_PATCH_VERSION"],[12,0,1,"c.TORCH_TENSORRT_VERSION","TORCH_TENSORRT_VERSION"],[10,0,1,"c.XSTR","XSTR"],[0,1,1,"_CPPv4N14torch_tensorrt8DataTypeE","torch_tensorrt::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value","torch_tensorrt::DataType::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE","torch_tensorrt::DataType::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEv","torch_tensorrt::DataType::DataType"],[0,3,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value","torch_tensorrt::DataType::DataType::t"],[0,3,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE","torch_tensorrt::DataType::DataType::t"],[0,4,1,"_CPPv4N14torch_tensorrt8DataType5ValueE","torch_tensorrt::DataType::Value"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kBoolE","torch_tensorrt::DataType::Value::kBool"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kCharE","torch_tensorrt::DataType::Value::kChar"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value6kFloatE","torch_tensorrt::DataType::Value::kFloat"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kHalfE","torch_tensorrt::DataType::Value::kHalf"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value4kIntE","torch_tensorrt::DataType::Value::kInt"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE","torch_tensorrt::DataType::Value::kUnknown"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kBoolE","torch_tensorrt::DataType::kBool"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kCharE","torch_tensorrt::DataType::kChar"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value6kFloatE","torch_tensorrt::DataType::kFloat"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kHalfE","torch_tensorrt::DataType::kHalf"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value4kIntE","torch_tensorrt::DataType::kInt"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE","torch_tensorrt::DataType::kUnknown"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypecv5ValueEv","torch_tensorrt::DataType::operator Value"],[0,2,1,"_CPPv4N14torch_tensorrt8DataTypecvbEv","torch_tensorrt::DataType::operator bool"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeneE8DataType","torch_tensorrt::DataType::operator!="],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE","torch_tensorrt::DataType::operator!="],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeneE8DataType","torch_tensorrt::DataType::operator!=::other"],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE","torch_tensorrt::DataType::operator!=::other"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType","torch_tensorrt::DataType::operator=="],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE","torch_tensorrt::DataType::operator=="],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType","torch_tensorrt::DataType::operator==::other"],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE","torch_tensorrt::DataType::operator==::other"],[46,1,1,"_CPPv4N14torch_tensorrt6DeviceE","torch_tensorrt::Device"],[46,2,1,"_CPPv4N14torch_tensorrt6Device6DeviceEv","torch_tensorrt::Device::Device"],[1,1,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypeE","torch_tensorrt::Device::DeviceType"],[46,1,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypeE","torch_tensorrt::Device::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv","torch_tensorrt::Device::DeviceType::DeviceType"],[1,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType::t"],[1,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType::t"],[46,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType::t"],[46,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType::t"],[1,4,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE","torch_tensorrt::Device::DeviceType::Value"],[46,4,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE","torch_tensorrt::Device::DeviceType::Value"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::Value::kDLA"],[46,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::Value::kDLA"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::Value::kGPU"],[46,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::Value::kGPU"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::kDLA"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::kGPU"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv","torch_tensorrt::Device::DeviceType::operator Value"],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv","torch_tensorrt::Device::DeviceType::operator Value"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv","torch_tensorrt::Device::DeviceType::operator bool"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv","torch_tensorrt::Device::DeviceType::operator bool"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!="],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!="],[1,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!=::other"],[46,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!=::other"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator=="],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator=="],[1,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator==::other"],[46,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator==::other"],[46,6,1,"_CPPv4N14torch_tensorrt6Device18allow_gpu_fallbackE","torch_tensorrt::Device::allow_gpu_fallback"],[46,6,1,"_CPPv4N14torch_tensorrt6Device11device_typeE","torch_tensorrt::Device::device_type"],[46,6,1,"_CPPv4N14torch_tensorrt6Device8dla_coreE","torch_tensorrt::Device::dla_core"],[46,6,1,"_CPPv4N14torch_tensorrt6Device6gpu_idE","torch_tensorrt::Device::gpu_id"],[17,4,1,"_CPPv4N14torch_tensorrt16EngineCapabilityE","torch_tensorrt::EngineCapability"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability15kDLA_STANDALONEE","torch_tensorrt::EngineCapability::kDLA_STANDALONE"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability7kSAFETYE","torch_tensorrt::EngineCapability::kSAFETY"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability9kSTANDARDE","torch_tensorrt::EngineCapability::kSTANDARD"],[47,1,1,"_CPPv4N14torch_tensorrt5InputE","torch_tensorrt::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE","torch_tensorrt::Input::Input::tensor"],[47,6,1,"_CPPv4N14torch_tensorrt5Input5dtypeE","torch_tensorrt::Input::dtype"],[47,6,1,"_CPPv4N14torch_tensorrt5Input6formatE","torch_tensorrt::Input::format"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9max_shapeE","torch_tensorrt::Input::max_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9min_shapeE","torch_tensorrt::Input::min_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9opt_shapeE","torch_tensorrt::Input::opt_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input5shapeE","torch_tensorrt::Input::shape"],[2,1,1,"_CPPv4N14torch_tensorrt12TensorFormatE","torch_tensorrt::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value","torch_tensorrt::TensorFormat::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE","torch_tensorrt::TensorFormat::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEv","torch_tensorrt::TensorFormat::TensorFormat"],[2,3,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value","torch_tensorrt::TensorFormat::TensorFormat::t"],[2,3,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE","torch_tensorrt::TensorFormat::TensorFormat::t"],[2,4,1,"_CPPv4N14torch_tensorrt12TensorFormat5ValueE","torch_tensorrt::TensorFormat::Value"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE","torch_tensorrt::TensorFormat::Value::kChannelsLast"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE","torch_tensorrt::TensorFormat::Value::kContiguous"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE","torch_tensorrt::TensorFormat::Value::kUnknown"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE","torch_tensorrt::TensorFormat::kChannelsLast"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE","torch_tensorrt::TensorFormat::kContiguous"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE","torch_tensorrt::TensorFormat::kUnknown"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatcv5ValueEv","torch_tensorrt::TensorFormat::operator Value"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormatcvbEv","torch_tensorrt::TensorFormat::operator bool"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat","torch_tensorrt::TensorFormat::operator!="],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator!="],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat","torch_tensorrt::TensorFormat::operator!=::other"],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator!=::other"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat","torch_tensorrt::TensorFormat::operator=="],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator=="],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat","torch_tensorrt::TensorFormat::operator==::other"],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator==::other"],[36,2,1,"_CPPv4N14torch_tensorrt15dump_build_infoEv","torch_tensorrt::dump_build_info"],[34,2,1,"_CPPv4N14torch_tensorrt14get_build_infoEv","torch_tensorrt::get_build_info"],[16,4,1,"_CPPv4N14torch_tensorrt7logging5LevelE","torch_tensorrt::logging::Level"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE","torch_tensorrt::logging::Level::kDEBUG"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kERRORE","torch_tensorrt::logging::Level::kERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE","torch_tensorrt::logging::Level::kGRAPH"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level5kINFOE","torch_tensorrt::logging::Level::kINFO"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE","torch_tensorrt::logging::Level::kINTERNAL_ERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE","torch_tensorrt::logging::Level::kWARNING"],[24,2,1,"_CPPv4N14torch_tensorrt7logging24get_is_colored_output_onEv","torch_tensorrt::logging::get_is_colored_output_on"],[22,2,1,"_CPPv4N14torch_tensorrt7logging18get_logging_prefixEv","torch_tensorrt::logging::get_logging_prefix"],[23,2,1,"_CPPv4N14torch_tensorrt7logging24get_reportable_log_levelEv","torch_tensorrt::logging::get_reportable_log_level"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE","torch_tensorrt::logging::kDEBUG"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kERRORE","torch_tensorrt::logging::kERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE","torch_tensorrt::logging::kGRAPH"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level5kINFOE","torch_tensorrt::logging::kINFO"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE","torch_tensorrt::logging::kINTERNAL_ERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE","torch_tensorrt::logging::kWARNING"],[26,2,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log"],[26,3,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log::lvl"],[26,3,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log::msg"],[27,2,1,"_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb","torch_tensorrt::logging::set_is_colored_output_on"],[27,3,1,"_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb","torch_tensorrt::logging::set_is_colored_output_on::colored_output_on"],[28,2,1,"_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE","torch_tensorrt::logging::set_logging_prefix"],[28,3,1,"_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE","torch_tensorrt::logging::set_logging_prefix::prefix"],[25,2,1,"_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level","torch_tensorrt::logging::set_reportable_log_level"],[25,3,1,"_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level","torch_tensorrt::logging::set_reportable_log_level::lvl"],[3,1,1,"_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE","torch_tensorrt::ptq::Int8CacheCalibrator"],[3,7,1,"_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE","torch_tensorrt::ptq::Int8CacheCalibrator::Algorithm"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE","torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE","torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator::cache_file_path"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::bindings"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::names"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::nbBindings"],[3,2,1,"_CPPv4NK14torch_tensorrt3ptq19Int8CacheCalibrator12getBatchSizeEv","torch_tensorrt::ptq::Int8CacheCalibrator::getBatchSize"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibratorcvPN8nvinfer115IInt8CalibratorEEv","torch_tensorrt::ptq::Int8CacheCalibrator::operator nvinfer1::IInt8Calibrator*"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache::length"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::cache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::length"],[4,1,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator"],[4,7,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator::Algorithm"],[4,7,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator::DataLoaderUniquePtr"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::cache_file_path"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::dataloader"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::use_cache"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::bindings"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::names"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::nbBindings"],[4,2,1,"_CPPv4NK14torch_tensorrt3ptq14Int8Calibrator12getBatchSizeEv","torch_tensorrt::ptq::Int8Calibrator::getBatchSize"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8CalibratorcvPN8nvinfer115IInt8CalibratorEEv","torch_tensorrt::ptq::Int8Calibrator::operator nvinfer1::IInt8Calibrator*"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache::length"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::cache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::length"],[30,2,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator"],[30,7,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator::Algorithm"],[30,3,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator::cache_file_path"],[29,2,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator"],[29,7,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::Algorithm"],[29,7,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::DataLoader"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::cache_file_path"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::dataloader"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::use_cache"],[35,2,1,"_CPPv4N14torch_tensorrt10set_deviceEKi","torch_tensorrt::set_device"],[35,3,1,"_CPPv4N14torch_tensorrt10set_deviceEKi","torch_tensorrt::set_device::gpu_id"],[48,1,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpecE","torch_tensorrt::torchscript::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::inputs"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec10capabilityE","torch_tensorrt::torchscript::CompileSpec::capability"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec5debugE","torch_tensorrt::torchscript::CompileSpec::debug"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec6deviceE","torch_tensorrt::torchscript::CompileSpec::device"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec12disable_tf32E","torch_tensorrt::torchscript::CompileSpec::disable_tf32"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec18enabled_precisionsE","torch_tensorrt::torchscript::CompileSpec::enabled_precisions"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec6inputsE","torch_tensorrt::torchscript::CompileSpec::inputs"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14min_block_sizeE","torch_tensorrt::torchscript::CompileSpec::min_block_size"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec20num_avg_timing_itersE","torch_tensorrt::torchscript::CompileSpec::num_avg_timing_iters"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec20num_min_timing_itersE","torch_tensorrt::torchscript::CompileSpec::num_min_timing_iters"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14ptq_calibratorE","torch_tensorrt::torchscript::CompileSpec::ptq_calibrator"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec5refitE","torch_tensorrt::torchscript::CompileSpec::refit"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec24require_full_compilationE","torch_tensorrt::torchscript::CompileSpec::require_full_compilation"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14sparse_weightsE","torch_tensorrt::torchscript::CompileSpec::sparse_weights"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec22torch_executed_modulesE","torch_tensorrt::torchscript::CompileSpec::torch_executed_modules"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec18torch_executed_opsE","torch_tensorrt::torchscript::CompileSpec::torch_executed_ops"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec24truncate_long_and_doubleE","torch_tensorrt::torchscript::CompileSpec::truncate_long_and_double"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14workspace_sizeE","torch_tensorrt::torchscript::CompileSpec::workspace_size"],[31,2,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support"],[31,3,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support::method_name"],[31,3,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support::module"],[32,2,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile"],[32,3,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile::info"],[32,3,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile::module"],[37,2,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::info"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::method_name"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::module"],[33,2,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module"],[33,3,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module::device"],[33,3,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module::engine"],[71,8,0,"-","torch_tensorrt"]],"torch_tensorrt.Device":[[71,10,1,"","__init__"],[71,11,1,"","allow_gpu_fallback"],[71,11,1,"","device_type"],[71,11,1,"","dla_core"],[71,11,1,"","gpu_id"]],"torch_tensorrt.Input":[[71,10,1,"","__init__"],[71,11,1,"","dtype"],[71,11,1,"","format"],[71,11,1,"","shape"],[71,11,1,"","shape_mode"]],"torch_tensorrt.logging":[[69,9,1,"","Level"],[69,9,1,"","debug"],[69,9,1,"","errors"],[69,12,1,"","get_is_colored_output_on"],[69,12,1,"","get_logging_prefix"],[69,12,1,"","get_reportable_log_level"],[69,9,1,"","graphs"],[69,9,1,"","info"],[69,9,1,"","internal_errors"],[69,12,1,"","log"],[69,12,1,"","set_is_colored_output_on"],[69,12,1,"","set_logging_prefix"],[69,12,1,"","set_reportable_log_level"],[69,9,1,"","warnings"]],"torch_tensorrt.logging.Level":[[69,11,1,"","Debug"],[69,11,1,"","Error"],[69,11,1,"","Graph"],[69,11,1,"","Info"],[69,11,1,"","InternalError"],[69,11,1,"","Warning"]],"torch_tensorrt.ptq":[[70,9,1,"id1","CacheCalibrator"],[70,9,1,"id2","CalibrationAlgo"],[70,9,1,"id0","DataLoaderCalibrator"],[70,12,1,"","get_batch"],[70,12,1,"","get_batch_size"],[70,12,1,"","get_cache_mode_batch"],[70,12,1,"","read_calibration_cache"],[70,12,1,"","write_calibration_cache"]],"torch_tensorrt.ptq.CacheCalibrator":[[70,10,1,"","__init__"]],"torch_tensorrt.ptq.CalibrationAlgo":[[70,11,1,"","ENTROPY_CALIBRATION"],[70,11,1,"","ENTROPY_CALIBRATION_2"],[70,11,1,"","LEGACY_CALIBRATION"],[70,11,1,"","MINMAX_CALIBRATION"]],"torch_tensorrt.ptq.DataLoaderCalibrator":[[70,10,1,"","__init__"]],"torch_tensorrt.ts":[[72,12,1,"","TensorRTCompileSpec"],[72,12,1,"","check_method_op_support"],[72,12,1,"","compile"],[72,12,1,"","convert_method_to_trt_engine"],[72,12,1,"","embed_engine_in_new_module"]],torch_tensorrt:[[71,9,1,"","Device"],[71,9,1,"","DeviceType"],[71,9,1,"","EngineCapability"],[71,9,1,"","Input"],[71,9,1,"","TensorFormat"],[71,12,1,"","compile"],[71,12,1,"","convert_method_to_trt_engine"],[71,9,1,"","dtype"],[71,12,1,"","dump_build_info"],[71,12,1,"","get_build_info"],[69,8,0,"-","logging"],[70,8,0,"-","ptq"],[71,12,1,"","set_device"],[72,8,0,"-","ts"]]},objnames:{"0":["c","macro","C macro"],"1":["cpp","class","C++ class"],"10":["py","method","Python method"],"11":["py","attribute","Python attribute"],"12":["py","function","Python function"],"2":["cpp","function","C++ function"],"3":["cpp","functionParam","C++ function parameter"],"4":["cpp","enum","C++ enum"],"5":["cpp","enumerator","C++ enumerator"],"6":["cpp","member","C++ member"],"7":["cpp","templateParam","C++ template parameter"],"8":["py","module","Python module"],"9":["py","class","Python class"]},objtypes:{"0":"c:macro","1":"cpp:class","10":"py:method","11":"py:attribute","12":"py:function","2":"cpp:function","3":"cpp:functionParam","4":"cpp:enum","5":"cpp:enumerator","6":"cpp:member","7":"cpp:templateParam","8":"py:module","9":"py:class"},terms:{"0":[33,43,44,45,48,51,52,53,54,55,56,57,58,64,66,68,69,70,71,72,73,75,76,83,85,86,88,89,90,91],"00":[51,52,54,55,56,57,58],"0000":77,"00000000":[51,52,54,55,56],"000000037777":57,"000000252219":57,"000000397133":57,"000007":53,"000014":51,"000015":53,"000059":53,"000106":51,"000116":51,"000368":51,"000545":51,"000820":51,"000973":51,"001256":51,"001260":51,"001270":51,"001351":51,"0018":58,"002":54,"002251":53,"002259":53,"0023":58,"002305":53,"0026":58,"003287":53,"003289":53,"003317":53,"003462":51,"003774":51,"004":52,"004128":51,"004205":53,"004206":53,"004256":53,"004825":51,"005":[54,55],"006":[52,55],"006661":51,"006677":53,"006693":53,"006733":51,"006846":51,"006943":53,"0070":58,"008":58,"008071":51,"008453":51,"0087":58,"009802":51,"009803":51,"009836":51,"00f1b6db":[52,54,55],"01":[52,54,55,56,57,58,68,77,83],"0106":58,"010961":51,"011388":51,"013":58,"0151":58,"016114":51,"0163":58,"0169":58,"018642":51,"018643":51,"018670":51,"02":[52,54,55,58],"0208":83,"020804":51,"021143":51,"0220":58,"024492":51,"025":58,"025000":58,"0263":58,"028":58,"0296":58,"03":[51,77],"03291":58,"033488":51,"033572":51,"03466":58,"035722":51,"0358":83,"0383":83,"04":[51,52,57,58,83,85,88],"0435":83,"04609":58,"0464":83,"04743":58,"04807":58,"0491":58,"0493":58,"04it":58,"05":[51,52,53,54,55,57,58],"050000":58,"0505":58,"05080":58,"0530":83,"05311":58,"05374":58,"057":58,"058047":51,"058053":51,"058375":51,"05945":58,"06":[51,52,57],"0622":58,"063":58,"06340":58,"06567":58,"0676ba61":[54,57],"0678":83,"069":58,"07":[52,54,55],"071":58,"071428":51,"072057":51,"07266":58,"076796":51,"08":[52,54,55],"0805":83,"0818":83,"08331":58,"08555":58,"086":58,"09":[52,54,55,56],"0932":83,"096":58,"0a0":[51,52,76],"0a3":51,"0c106ec84f199a0fbcf1199010166986da732f9b0907768c9ac5ea5b120772db":85,"0f":57,"0mib":[52,54,55,56],"0rc1":51,"0s":54,"0x":53,"0x7f9f791ec5b0":72,"1":[3,4,33,43,44,45,47,48,51,52,53,54,55,56,57,58,60,61,63,66,68,69,70,71,72,73,74,76,77,80,82,83,84,85,86,89,90,91],"10":[48,51,52,53,54,55,56,57,58,72,80,82,83,85,86,88],"100":[52,54,55,56,57,58],"1000":[52,54,55,56,57,58,88],"10000":[52,54,55],"100000":58,"10018":58,"10070":58,"101":53,"101168":58,"1012":60,"1013":60,"10130":58,"102":51,"102248":58,"1024":[51,52,54,55,56,57,58,71,72,89],"10240mib":56,"10362":52,"104":[52,54,55],"1045":83,"105":58,"1056":83,"1063":83,"1065":51,"1069":51,"107":[52,54,55],"107194":58,"10732":58,"107625":58,"109":83,"10990":58,"10b0":51,"11":[51,52,53,54,55,56,57,58,60,76,80,83,85,88],"110":[57,58],"11299":58,"112mib":51,"11499":58,"115":56,"115269":58,"115740":58,"11594":58,"117":[52,54,55],"117969":58,"118358":58,"11879":58,"11888":58,"119":82,"1190":51,"119708":51,"11k":[52,54,55],"11w":52,"12":[51,52,53,54,55,56,57,58,60,76,80,82,83,88],"120":[56,58,82,83],"120097":51,"1201":51,"121":[54,56],"1216":53,"121618":51,"122":56,"12288mib":51,"123":[57,77],"12345":51,"126":58,"126382":58,"126834":58,"127":[52,58],"128":[51,52,53,54,55,56,57,58],"128674":58,"129":82,"129518":58,"12k":54,"13":[51,53,54,55,56,57,58,76,80,85],"130":51,"133":52,"13388":58,"135453":58,"135936":58,"136":88,"137":[51,82],"137858":58,"138":82,"138366":58,"139704147265344":58,"13x":52,"14":[51,52,53,54,55,56,57,58,80,88],"1409":86,"141":58,"143":51,"145":58,"145539":58,"146":51,"146053":58,"147871":58,"148353":58,"1488":51,"149":51,"14x":53,"15":[51,53,54,55,56,57,58,76,80],"1500":58,"1502":83,"1516":51,"1531":58,"1535566590":[52,54,55],"1538":51,"154252":58,"154685":58,"1549":[55,83],"1552":55,"1556":86,"1560":55,"1563":58,"156558":58,"1566":55,"1568":55,"157159":58,"1572":55,"1574":55,"1575":55,"1598":55,"15w":54,"15x":53,"16":[51,53,54,55,56,57,58,71,80,82,83,84],"16000":51,"163197":58,"163676":58,"164":[52,54,55],"165":57,"165549":58,"165991":58,"166":57,"167":57,"1691":83,"17":[51,52,53,54,55,56,57,58,80],"173":58,"173305":58,"173926":58,"176034":58,"176697":58,"1771":53,"1776":53,"1777":[51,58],"179":57,"1792":51,"18":[51,52,53,54,55,56,57,58,80,83,85],"182843":58,"183426":58,"185377":58,"185962":58,"188":58,"19":[51,53,54,57,58,77,80],"1906":58,"191966":58,"192424":58,"194325":58,"194817":58,"1971":58,"198":51,"1994":[58,86],"1d":60,"1e":[54,55,58,89],"1f":[51,53],"1rc0":51,"1ubuntu0":51,"1x1":57,"2":[33,43,45,48,51,52,53,54,55,56,57,58,61,66,68,69,70,71,72,74,76,77,80,82,83,85,86,90],"20":[51,52,53,54,55,57,58,80],"200":[52,54,55,56,58],"2000000000":[51,53],"2002":58,"2009":86,"200w":55,"201":[52,54,55],"2010":[58,86],"2012":77,"2014":86,"2017":[51,53,57],"2018":[52,53,54,55],"2019":[51,52,53,54,56,57],"201988":58,"202":[52,54,55],"2020":[57,58,67,83],"2021":[51,53],"2022":[51,52,53,54,55,56,57,58],"2023":[58,86],"202665":58,"204763":58,"2048":[54,55],"205461":58,"20w":56,"21":[51,52,53,54,55,56,57,58],"211393":58,"211987":58,"213899":58,"214450":58,"215434":51,"215446":51,"215806":51,"216":52,"217":[54,55],"218":51,"22":[51,52,53,54,55,56,57,58,88],"220892":58,"221533":58,"222":54,"223":[54,55],"223519":58,"224":[52,54,55,61,71,72,88],"224037":58,"225":[52,54,55,88],"227":[52,54,55],"227739155292511":52,"229":[52,54,55,88],"23":[48,51,52,54,55,58,60,72,77],"2305":58,"23344755172729492":52,"233809":58,"234":58,"234375":88,"234434":58,"235":51,"237":58,"238":[55,58],"238212":58,"239042":58,"24":[51,54,56,57,58,60],"241022":58,"24112":[52,54,55],"241654":58,"242":51,"243":[54,56],"244":[71,72],"245":57,"2453mib":51,"24576mib":[52,54],"246":52,"2462mib":51,"246kb":52,"247820":58,"248":60,"248445":58,"249":60,"24k":[52,54,55],"25":[51,54,55,58,83],"250366":58,"250959":58,"250w":51,"254":58,"256":[52,54,55,58,88],"257248":58,"257854":58,"258":76,"259968":58,"26":[51,53,54,55,57],"2606":[52,54,55],"260660":58,"265":51,"268160":58,"26w":51,"27":[51,52,53,56,58,83],"272":51,"28":[51,52,55,83,86,91],"280":58,"2802":83,"282":51,"2822":76,"285":58,"287":76,"288":[51,58],"28c":52,"29":[51,52,55,58,83],"291":58,"29c":54,"2_20200626":85,"2c3":77,"2c365_subsampl":[52,54,55],"2c916ef":51,"2f":[52,54,55,56,57,58],"2s":54,"2x":54,"3":[45,48,51,52,53,54,55,56,57,58,60,61,63,68,69,70,71,72,76,77,80,82,83,85,86,89,90,91],"30":[52,54,55,57,58],"300":[56,57,58,89,90],"300x300":57,"302":58,"309":58,"3090":[52,54],"31":[51,54,55,56,57,83],"311":58,"314":58,"315":51,"32":[51,52,53,55,56,57,58,71,82,83,84,86,89,91],"320":86,"3207":58,"320w":56,"321":52,"329273":58,"32bit":89,"32x32":54,"33":[52,54,55,56,57,83],"330212":58,"332529":58,"333365":58,"3393":52,"339547":58,"34":[52,54,55,56,57,58],"340248":58,"342257":58,"342890":58,"345":58,"346":83,"349":51,"35":[52,54,57,83],"350619":58,"350w":[52,54],"351372":58,"352":[52,54,55],"353470":58,"35363":[52,54,55],"353k":[52,54,55],"354121":58,"3550":58,"35k":[52,54,55],"35x":52,"36":[51,52,55,83],"360090":58,"360806":58,"361413":[52,54,55],"362803":58,"3631":58,"363274":58,"366":54,"366kb":54,"3677":60,"37":[51,52,54,55,58,83],"370369":58,"371057":58,"373071":58,"373766":58,"376":52,"3763":58,"379890":58,"38":[51,54,55,57,82],"380538":58,"382532":58,"383128":58,"385":58,"3877":58,"389077":58,"389760":58,"39":[51,52,53,54,55,56,57,58,82],"3909":51,"391815":58,"392399":58,"394":58,"39485082030296326":54,"395":58,"3987298309803009":52,"399809":58,"39c":51,"39mib":51,"3f":58,"3x3":58,"4":[51,52,53,54,55,56,57,58,63,68,69,74,76,77,80,83,85],"40":[52,54,55,56,57,58],"400":[56,58],"400472":58,"402399":58,"402939":58,"406":[52,54,55,88],"408818":58,"409424":58,"4096":58,"40mb":54,"41":[51,54,55,56],"411513":58,"4116":55,"412097":58,"4122":55,"4123":55,"4142":55,"4156":55,"4161":51,"4166":55,"4170":55,"4172":55,"4176":55,"4178":55,"418537":58,"419128":58,"42":[51,55,56,57,58],"421343":58,"421946":58,"429":51,"429382":58,"429688":88,"42c":56,"42w":51,"43":[51,56,57,58],"430156":58,"432259":58,"433079":58,"4352":58,"439":58,"439297":58,"44":[51,57,58],"440027":58,"442":[52,54,55,58],"442149":58,"442826":58,"442k":[52,54,55],"443":[52,54,55],"4465":[58,86],"449377":58,"449968":58,"45":[51,52,57],"452122":58,"452718":[52,54,55],"452754":58,"456":[52,54,55,88],"45675724744796753":55,"4584":52,"459":58,"46":[51,52,57,58],"462532":58,"463295":58,"466963":58,"467725":58,"468750":88,"469692":58,"47":51,"470":[55,58],"4700":[52,54,55],"470336":58,"4726":58,"474":52,"476204":58,"4767":55,"476738":58,"47681mib":55,"478809":58,"479375":58,"48":[51,54,55],"481":54,"4822":[58,86],"484":58,"485":[52,54,55,88],"485666":58,"486219":58,"488416":58,"488986":58,"489":55,"49":[51,53,57],"4914":[58,86],"4935":55,"49785590171813965":54,"49788108468055725":55,"4980":55,"499":58,"4fef":[52,54,55],"4mib":51,"4s":52,"4x":51,"5":[51,52,53,54,55,56,57,58,63,64,69,71,76,77,80,82,83,85,88,89],"50":[51,52,53,55,56,57,58],"500":[56,58],"5002":55,"5005":55,"5014":55,"5016":55,"5018":55,"5020":55,"5024":55,"5026":55,"5027":55,"5033":55,"504":58,"5052":55,"5067":55,"5088":55,"5091":55,"5094":55,"5096":55,"510":[51,52,54,56],"5100":55,"511":58,"5110":55,"5115":55,"5117":58,"5118":55,"512":[51,54,55,58,71,72,89],"512364":58,"513354":58,"514046":58,"514638":58,"515270":58,"5153":55,"515859":58,"516441":58,"517009":58,"5172":58,"517600":58,"518167":58,"518752":58,"519333":58,"5197":55,"519911":58,"51c":55,"52":[52,54,55,58],"5202":55,"520473":58,"5207":55,"521038":58,"5215":55,"521596":58,"522170":58,"522742":58,"5231":55,"523360":58,"523438":88,"523957":58,"5242":55,"524581":58,"525059":58,"525366":58,"525675":58,"525962":58,"526257":58,"526566":58,"526885":58,"527188":58,"527489":58,"527792":58,"528097":58,"528387":58,"528834":58,"529163":58,"53":[51,54,57,77],"5320":58,"532748":58,"533468":58,"5335":58,"534033":58,"534684":58,"535320":58,"535983":58,"536":58,"536569":58,"537248":58,"537833":58,"538480":58,"539":83,"539074":58,"539724":58,"53k":[52,54,55],"540307":58,"540952":58,"541534":58,"542075":58,"542596":58,"543248":58,"543719":58,"544424":58,"544952":58,"545530":58,"546114":58,"546713":58,"547292":58,"547902":58,"548453":58,"549015":58,"549665":58,"55":55,"550436":58,"551":51,"551925":58,"553105":58,"55c":51,"55k":[52,54,55],"56":[51,52,55,56,83],"560":58,"5620":58,"564":58,"5676":58,"568":58,"57":[55,58],"5746":58,"576":[56,83],"58":[54,55,58],"59":[51,54,55,56,57],"594":51,"597":53,"599":53,"5d":58,"5f":58,"6":[51,52,53,54,55,56,58,60,63,68,80,82,83,85],"60":[52,54,55,57],"600":[56,58],"6047":51,"608":55,"608kb":55,"61":[57,58],"613":58,"62":[51,52,58],"622":[58,60],"62w":55,"62x":53,"63":[51,53,55],"630":[52,54,55],"635":58,"636":58,"637":58,"638":58,"639":58,"64":[53,54,55,58,84],"640":58,"641":58,"642":58,"643":58,"644":58,"6442285180091858":55,"6445754766464233":54,"646":58,"649":58,"64bit":89,"65":[51,52,54,55,58],"6539":58,"655":58,"66":52,"664062":88,"668":51,"669":51,"67":[55,58],"6733":58,"677":58,"67mib":51,"68":[54,58],"6812":[52,54,55],"687":58,"688":58,"689":58,"69":[54,55],"690":58,"6f":[51,53],"6s":55,"7":[51,52,53,54,55,56,58,63,64,80,83,85],"70":[52,54,55,57],"700":[56,58],"701":58,"709":51,"7099":58,"71":[52,55,58],"716":58,"72":[52,54],"7203":58,"72048":85,"721":58,"724":58,"728":51,"729":51,"73":[51,52,54,55],"7302":77,"732":58,"735":58,"7376":58,"738":58,"74":[57,58],"742":58,"7454":58,"75":[52,54,55,58],"7537":58,"76":58,"781":58,"79":[54,58],"796":58,"797":58,"7ubuntu0":51,"8":[3,51,52,53,54,55,56,57,58,60,71,76,77,80,83,85,88,89],"80":[51,52,54,55,57,58],"800":[56,58],"8000":88,"8001":88,"8002":88,"801":58,"81":[57,58],"818":58,"818977576572eadaf62c80434a25afe44dbaa32ebda3a0919e389dcbe74f8656":85,"82":58,"8204":58,"821":58,"83":[52,55,58],"834":58,"8351":58,"837":58,"84":[55,56,58,82,83],"847":58,"84e944ff11f8":[52,54,55],"84x":54,"85":[52,55,58],"86":[52,55],"860":58,"86k":[52,55],"87":58,"8732":57,"877":58,"8791":58,"88":[52,55,57],"89":[52,55],"898":58,"89k":[52,55],"8bit":58,"9":[51,52,53,54,55,56,57,58,80,83,88],"90":[52,54,55,57,88],"900":[56,58],"906":58,"90994":[52,55],"916":[51,58],"91a9cc5850784b2065e8a0aa3d526fd9":51,"92":[52,54,55,88],"9205bed204e2ae7aafd2e01cce0f21309e281e18d5bfd7172ef8541771539d41":85,"9223372036854775807":68,"923":[52,54,55],"927":58,"92k":54,"9367":58,"94":[52,54,55],"941":58,"94328":54,"944":58,"948":58,"94k":[52,54,55],"95":52,"951":53,"952":58,"953":[51,58],"955":51,"959":58,"96":[51,58],"9624":58,"9695423245429993":52,"97":[52,58],"98":58,"9899807572364807":54,"9899841547012329":55,"99":[51,52,53,54,55,57,58],"997":58,"999":58,"9999":58,"99th_p":[51,53],"9ab0":[52,54,55],"9x":51,"abstract":[63,66,77],"boolean":[58,71],"break":[58,76],"byte":[51,71,72],"case":[0,1,2,46,48,53,56,57,59,63,66,85,86,87],"catch":[60,83],"char":[3,4,44,83,89],"class":[17,29,30,44,45,46,50,52,53,54,55,56,57,58,63,66,69,76,77,82,83,84,86],"const":[0,1,2,3,4,29,30,31,32,33,35,37,44,45,46,60,66,68,83,86],"default":[0,1,2,3,4,16,29,30,43,45,46,47,48,51,52,54,55,56,57,61,71,72,74,75,76,83,85,86,89,90],"do":[51,52,54,56,57,59,60,61,66,75,77,82,83,84,86,91],"enum":[0,1,2,42,45,46,50,52,69,72,86],"export":[51,58,85],"final":[51,59,62,64,85],"float":[48,51,52,54,56,57,68,71,82,83,84,86,89,90],"function":[0,1,2,3,4,46,47,48,50,51,52,53,54,56,57,58,60,61,63,66,82,83,85,86,88,90,91],"import":[51,52,53,54,55,56,57,58,60,61,74,76,82,83,84,85,87,88,89,90],"int":[0,3,4,35,44,45,48,52,55,58,68,71,72,74,83,89],"long":[48,53,59,76,77,89],"new":[0,1,2,3,4,32,33,46,47,48,52,54,56,57,58,63,64,66,69,72,76,83,88],"null":51,"public":[0,1,2,3,4,44,45,46,47,48,77,86],"return":[0,1,2,3,4,23,24,29,30,31,32,33,34,37,42,43,44,45,46,51,52,53,54,55,56,58,60,62,63,64,66,69,71,72,82,83,84,86,88],"short":[60,76,77],"static":[47,48,59,66,71,72,74,83],"super":[44,56,82],"throw":[60,83,89],"true":[0,1,2,4,46,48,51,52,53,54,55,56,57,58,60,61,66,68,71,72,74,77,83,86,88,90,91],"try":[51,52,53,54,56,64,76,77,83,90],"var":68,"void":[3,4,25,26,27,28,35,36,42,44,45],"while":[58,85,86,88],A:[4,29,30,32,33,47,51,52,53,54,55,56,58,60,61,66,77,85,86,88],AS:[51,52,53,54,55,56,57,58],And:83,As:[55,83],At:75,But:[76,83],By:[29,30,50,56,57,61,74,82],For:[52,54,55,56,57,58,59,61,74,76,77,82,83,85,86,87,88,90],IS:[51,52,53,54,55,56,57,58],If:[27,51,52,53,54,56,57,58,59,60,69,71,74,76,83,85,86,87,88,91],In:[0,1,2,46,51,52,53,54,55,56,57,58,59,62,63,64,66,67,76,77,79,84,85,86,87,88],Is:[24,71],It:[51,52,53,54,55,56,57,60,61,62,64,66,74,76,85,89],Its:[66,76],NOT:53,No:[52,54,55,56],Not:3,OF:[51,52,53,54,55,56,57,58],OR:[51,52,53,54,55,56,57,58],On:[51,52,54,55,56,61],One:[53,55,76,77,83],Or:76,THE:76,TO:[83,85],That:76,Thats:83,The:[1,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,69,71,72,74,77,82,84,85,86,88,89,90],Then:[61,85,86,90],There:[4,53,57,58,59,64,66,77,82,85,86,87,88],These:[52,53,54,59,63,74,76,86,88],To:[1,46,55,56,57,58,61,74,82,83,84,85,88,90],Will:31,With:[52,53,54,55,74,76,83,86,88],_:[51,52,53,54,55,56,57,58,76],___torch_mangle_10:82,___torch_mangle_4847:63,___torch_mangle_5:82,___torch_mangle_9:82,__and__:68,__attribute__:43,__future__:51,__getitem__:68,__gnuc__:43,__init__:[56,70,71,76,82],__is__:68,__isnot__:68,__not__:68,__or__:68,__range_length:68,__round_to_zero_floordiv:68,__torch__:[63,82,83],__torch___pytorch_detection_ssd_src_model_ssd300_trt_engin:63,__torch___torchvision_models_resnet____torch_mangle_4847_resnet_trt_engin:63,__version__:58,__visibility__:43,__xor__:68,_affin:58,_all_:60,_b:51,_c:[72,90],_calibr:58,_convolut:[58,68,83],_input_quant:58,_jit_intern:51,_jit_to_backend:90,_pair:58,_quant:58,_script:72,_shapemod:71,_theme:81,_trace:51,_validate_not_a_forked_repo:[54,55,57,88],_weight_quant:58,a100:[51,52,53,54,56,57],a1b:77,aarch64:64,ab:68,abi:87,abil:55,abl:[52,53,54,55,56,57,59,60,66,67,86,90],about:[52,54,55,57,58,59,63,66,71,74,83,85,88,89],abov:[25,57,58,69,75,76,83,85],absl:51,absolut:[58,89],absolute_import:51,ac:79,acc:58,acceler:[52,53,54,56,57,91],accept:[47,53,58,63,66,71,83,84,89],access:[55,57,60,66,67,74,83,90],accord:[66,72],accordingli:[58,74],account:88,accumsan:79,accumul:[48,72],accuraci:[57,58,86],achiev:[52,54,56,57,58],aco:68,acosh:68,acoust:51,acquir:83,across:[60,74],acthardtanh:66,action:76,activ:[58,72,76,83,86,91],activationtyp:66,actual:[56,58,60,63,66,69,82,83],ad:[25,59,89],adaptive_avg_pool1d:68,adaptive_avg_pool2d:68,adaptive_avg_pool3d:68,adaptive_max_pool1d:68,adaptive_max_pool2d:68,adaptive_max_pool3d:68,adaptiveavgpool2d:[54,55],add:[26,59,60,61,66,68,69,74,76,81,83,84,85],add_:[60,68,83],add_patch:57,addactiv:66,addit:[55,57,58,60,71,83],addlay:83,address:77,addshuffl:83,adipisc:[77,79],adjac:76,adjust:[58,76],adjust_lr:58,adopt:53,advanc:[77,86],advis:76,aenean:79,affin:[54,55],aforement:88,after:[55,57,58,59,60,61,67,82,83,84,87,88,89],again:[44,53,57,63,66,76],against:[83,89],agre:[51,52,53,54,55,56,57,58],agx:45,ahead:[55,83],aim:[53,60],aiohttp:51,aiosign:51,alabast:51,algo_typ:[70,86],algorithm:[3,4,29,30,44,53,70,86],alias:43,align:76,align_corn:68,aliquam:79,aliquet:[77,79],all:[16,42,43,44,45,48,51,52,53,54,55,56,57,58,60,61,63,69,71,76,77,82,83,84,85,86,87,88,89],alloc:66,allow:[47,48,52,54,56,57,59,60,71,74,89],allow_gpu_fallback:[45,46,71,72,86,90,91],allow_tf32:68,almost:83,alpha:[57,68,77],alreadi:[51,52,53,54,55,56,57,58,59,60,83,86,89],also:[30,48,52,53,54,55,56,57,59,66,67,74,76,77,83,84,85,86],alter:55,altern:47,although:76,altogeth:[61,74],alwai:[3,4,27,76,89],amax:58,amax_sequeez:58,amazonaw:[52,54,55],amet:[77,79],amount:[53,58],amp:[52,54,55],amp_backend:51,an:[2,3,4,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,67,70,71,72,74,76,77,82,83,84,85,86,87,88,89],analogu:66,analysi:[57,61],analyt:74,analytics_id:74,ancient:76,ani:[47,51,52,53,54,55,56,57,58,59,66,71,74,76,83,84,85,86,89],ann:76,anneal:58,annot:[57,66,83],anonym:76,anoth:[53,76,77,82,84],ant:79,antlr4:51,anyon:77,anyth:[76,77,87],aot:[55,67,83],apach:[51,52,53,54,55,56,57,58],apex:57,api:[51,55,57,58,61,64,66,71,72,75,83,84,86,87,88,90],appdir:51,appear:76,append:[51,52,53,54,55,56,57,58,68],applehelp:51,appli:[58,86],applic:[1,30,46,51,52,53,54,55,56,57,58,60,64,83,84,87,89,90,91],approach:[52,54,56,57],apr:[51,83],apt:51,ar:[42,46,48,51,52,53,54,55,56,57,58,59,60,61,63,64,66,67,71,72,74,76,77,78,82,83,85,86,87,88,89,90],arab:77,arang:68,architectur:[53,57,58,67,85],archiv:[51,54,57,85],arcu:[77,79],area:78,aren:83,arg:[51,55,59,70,71,80,83],argc:83,argmax:[52,53,54,55],argon2:[51,54,55,56,57],argpars:51,argument:[47,51,52,53,58,60,63,66,71,72,76,77,83,89],argv:83,around:[58,60,63,66,76,79,82],arrai:[3,4,33,51,53,59,72],arrayref:[45,47,48],arti:[52,54,55],arxiv:86,as_numpi:88,asin:68,asinh:68,aspect:89,asr:51,asr_model:51,assembl:[59,83],assign:[3,4,75],associ:[53,59,66,83],associatevalueandivalu:66,associatevalueandtensor:[66,83],assum:[51,58,90],ast:51,asttoken:[51,55,57],async:51,asyncio:[51,54,55,56,57],atan:68,atanh:68,aten:[48,57,58,60,61,65,66,68,72,83],atol:89,attach:57,attent:53,attention_mask:53,attention_masks_tensor:53,attr:[51,54,55,56,57],attrdict:[51,88],attribut:[60,61,63,76,83],auctor:79,audio:51,audioread:51,augment:53,augu:79,auth:51,author:77,auto:[44,61,66,76,77,83,86,91],autodoc:[76,77],automat:[52,54,56,57,76,83],av:[54,55,56],avail:[52,54,55,56,57,66,74,85,89,91],averag:[48,52,54,55,56,57,58,72,89],avg:[52,57,58,89],avg_pool1d:68,avg_pool2d:68,avg_pool3d:68,avgpool:[54,55,57,58],avoid:[52,53,54,55],awai:76,await:[52,54,55],awaken:76,ax:[52,54,55,57],axi:[52,54,55,58,68],b0:54,b:[54,55,57,68,77,88],b_hh:68,b_ih:68,babel:51,back:[60,61,63,64,71,76,82,83],back_insert:44,backbon:[53,57],backcal:[51,54,55,56,57],backend:[51,52,53,54,55,56,57,58,72,75,90],background:[76,82],backlink:76,backport:51,backward:58,bar:[74,76],base:[36,49,52,53,54,56,57,58,63,69,70,71,76,82,85,86],basebal:53,baselin:[55,58],bash:85,basi:[51,52,53,54,55,56,57,58,76],basic:[58,77,88,89],batch:[3,4,44,51,52,53,54,55,56,57,58,86,88,91],batch_norm:[66,68],batch_siz:[44,51,53,57,58,86],batched_attention_mask:53,batched_data_:44,batched_indexed_token:53,batched_segment_id:53,batchnorm2d:[54,55],batchnorm:[57,60],batchsiz:51,batchtyp:44,bathroom:76,bazel:[64,85],bazel_vers:85,bazelbuild:85,bazelisk:85,bazelvers:85,bbox:57,bdist_wheel:85,beat:77,beautifulsoup4:[51,55],becaus:[53,66,82,83,85],becom:[53,66],bee:76,been:[59,66,77,83],befor:[48,55,57,58,60,64,66,67,72,83,85,88],beforehand:83,begin:[44,53,76,85],beginn:82,begun:76,behav:[57,78],behavior:[48,57,71,72],behaviour:[51,52,53,54,55,56,57],behind:76,being:[52,54,56,57,83],belong:76,below:[53,57,66,76,83,85,88],benchmark:[52,53,54,56,68],benefit:[66,83],bertformaskedlm:53,bertforpretrain:53,bertforsequenceclassif:53,berttoken:53,besid:76,best:[52,54,55,56,57,76,85],best_result:57,best_results_per_input:57,best_results_per_input_trt:57,beta:68,better:[52,54,56,57,82,86],between:[57,60,66,76,77,85,86],bfe5ad2:52,bia:[53,54,55,56,58,60,68,83],bibendum:79,bibliograph:77,bibtex:51,bidirect:53,bigger:76,bin:85,binari:[44,86],binary_data:88,bind:[3,4,33,44,51,54,55,56,57,72,76],bird:[52,54,55,58,88],bit:[48,53,66,71,72,83],bitbucket:74,bitbucket_url:74,black:[51,57],blandit:79,blank:76,bleach:[51,54,55,56,57],blob:[65,74,86],block0:60,block1:60,block:[59,60,80,89],blue:76,bmm:68,bn1:[54,55],bn2:[54,55],bn3:[54,55],bodi:[76,77],bold:76,bool:[0,1,2,3,4,24,27,29,31,42,44,45,46,48,60,66,68,69,71,72,74,83,86],border:76,bot:57,both:[52,54,56,57,74,76,82,85,86],boto3:51,botocor:51,bottleneck:[54,55],bottom:74,bound:[57,58],box:[57,76],braceexpand:51,bracket:76,branch:[53,85],bread:76,breed:[52,54,55],brief:61,briefli:82,broadli:53,broken:[51,52,53,54,55,56,57],brontosaurus:76,browser:76,bsd:[42,43,44,45],bu:[51,52,54,55,56],buffer:[3,4],bug:85,bui:77,build:[29,30,34,48,51,52,59,62,64,66,71,75,80,83,86,89],build_fil:85,builderconfig:45,built:[33,63,64,72,85,89],bust:[52,54,55],button:[74,76],c10:[0,1,45,46,47,48,83,86],c96b:55,c:[42,43,44,45,51,52,54,55,56,57,58,64,68,77,87,88,89,91],c_api:65,c_str:[66,83],ca6b:[52,54],cach:[3,4,29,30,44,51,54,55,57,58,70,83,86,89],cache_:44,cache_fil:[44,70,86],cache_file_path:[3,4,29,30,44],cache_file_path_:44,cache_size_:44,cachecalibr:[70,86],cachetool:51,cackl:77,cadenc:55,calcuat:58,calcul:[47,59,61,83],calendar:51,calib:58,calib_output:58,calibr:[3,4,29,30,44,48,58,70,72,83,86,89],calibrate_model:58,calibration_cache_fil:[29,30,86],calibration_dataload:[29,86],calibration_dataset:86,calibrationalgo:[70,86],call:[29,30,32,48,51,52,53,54,56,57,58,60,63,66,72,76,82,83,90],callmethod:82,can:[0,1,4,29,30,37,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,71,72,74,76,82,83,84,85,86,87,88,89,90],canada:77,cannot:[47,56,57,58,60,61,71,72,75,82],canon:74,canonical_url:74,cap:[51,52,54,55,56],capabl:[17,45,48,63,71,72,89,90],capit:[53,76],caption:[76,79],captur:58,car:58,card:[52,53,54],cast:[3,4,60],cat:[58,68,85],caught:60,caus:[52,54,56,57,58,66,74,85],cd:[85,88],cdll:83,ceil:68,ceil_mod:[54,55,68],cell:[53,57,77],center:[52,53,54],centercrop:[52,54,55,88],cerr:83,certain:[51,85],certifi:[51,53],cf0691493d05062fe3239cf76773bae4c5124f4b039050dbdd291c652af3ab2a:85,cffi:[51,54,55,56,57],cfg:61,chain:66,challeng:[58,88],chanc:66,chang:[30,52,53,54,55,56,57,60,64,74,86,88],changelog:80,channel:[2,52,54,55,58,71,75],channel_last:[55,71,72],channels_last:71,charact:76,charset:[51,53],check:[0,1,31,46,55,57,60,66,72,83,85,87,88,89],check_method_op_support:72,check_method_operator_support:[21,41,45,49],checkmethodoperatorsupport:83,checkpoint:[51,53,54,57,58],child:77,chimpansee_amber_r_1920x1080:[52,54,55],chimpanze:[52,54,55],choic:[53,70],choos:[52,54,82],ci:[51,52,54,55,56],cifar10:[58,86],cifar:[58,86],circular:58,ckpt:58,ckpt_path:58,cl:53,clamp:[58,68],clamp_max:68,clamp_min:68,class_count:88,class_pr:58,class_prob:58,classes_to_label:57,classif:[56,57,58,82,83],classifi:[56,58,77],classification_index:88,clean:76,clear:44,cli:89,clib:51,click:[51,53,57],clickabl:76,client:[51,54,55,56,57],clone:68,close:[58,83],closer:60,closet:76,cloud:51,cloudfront:[52,54,55],co:[68,77],coco:57,cocodataset:57,code:[52,53,54,55,56,57,61,64,67,75,77,82,83,86],collapse_navig:74,collat:77,collect:[51,52,54,56,57,58,83],collect_stat:58,colon:76,color:[24,27,69,76],colorama:51,colored_output_on:[27,42,69],column:77,com:[51,52,53,54,55,56,57,65,83,85,86,87,88],come:[52,54,55,56,57,75,85,88],command:[76,77,82,83,85,88,89],comment:[76,85],commodo:79,common:[51,54,57,59,60,76],common_subexpression_elimin:60,commonli:77,commun:83,compani:53,compar:[53,57,58],comparis:[0,2],comparison:[1,46],compat:[0,1,46,52,54,56,57,60,63,72,85],compil:[21,31,37,41,45,48,49,51,52,53,54,55,56,57,58,60,61,63,66,69,71,72,74,82,84,86,87,88,89,90,91],compile_set:[51,86],compile_spec:[58,86,91],compilegraph:[83,86],compilesepc:33,compilespec:[3,4,21,32,37,41,45,49,61,83,86,91],compilespecstruct:49,complet:[51,52,53,54,56,57,61,82,83],complex:[82,85],compli:57,complianc:[51,52,53,54,55,56,57,58,89],compliat:86,complic:85,compon:[53,56,62,64,82,87],compos:[52,54,55,56,57,58,82,86,88],composit:[58,83],comprehens:57,compris:53,comput:[48,51,52,53,54,55,56,57,58,76,85,86],compute_amax:58,conceiv:76,concern:53,conclus:[51,52,53,54],concorr:88,conda:[51,52,53,54,55,56,57,58],condimentum:79,condit:[51,52,53,54,55,56,57,58,76],conduc:55,conduct:53,conf:[74,81],confid:[52,54,55,57],confidence_scor:88,config:[51,52,85,88],configur:[32,37,47,51,55,67,71,72,80,83,85,86,88],confirm:51,conflict:[51,52,53,54,55,56,57],congu:79,connect:[52,54,55,60,72,76,88,91],consectetur:[77,79],consecut:61,consid:[55,83],consider:88,consist:[53,60,76],consol:89,consolid:82,constant:[55,58,59,60,83],constant_pad_nd:68,constexpr:[0,1,2,45,46],construct:[0,1,2,3,4,46,47,48,59,60,62,64,66,70,71,76,77,83,86],constructor:[0,2,46,47,48,63,82],consult:75,consum:[4,59,82],contact:77,contain:[29,31,51,52,53,54,55,56,57,59,60,66,71,76,77,82,83,85,86,87,88],content:[55,80,86,88],context:[52,56,58,59,62,63,64,69],contextnet:51,contigu:[2,47,48,71,72,89],continu:[52,53,54,56,57,76,87],contributor:83,control:[56,57,82],conv1:[54,55,56,82,83],conv2:[54,55,56,82,83],conv2d:[54,55,56,58,82],conv3:[54,55],conv4_x:57,conv5_x:57,conv:[48,58,83,89],conv_asr:51,conval:79,convect:47,conveni:[57,86],convent:[52,53,54,56,57],convers:[52,56,57,58,60,61,63,71,72,83],conversionctx:[66,83],convert:[3,4,31,32,37,51,52,54,55,56,57,58,60,61,62,64,67,71,72,84,87,90],convert_method_to_trt_engin:[21,41,45,49,71,72,90],convertgraphtotrtengin:83,convien:48,convienc:[3,4,48],convnet:57,convolut:[51,52,55,57,58,72,86,91],coordin:64,copi:[44,51,52,53,54,55,56,57,58,66,68,70,77,88],copy_:68,copyright:[42,43,44,45,51,52,53,54,55,56,57,58,77,83],core:[45,51,52,54,55,56,57,60,61,64,71,83,89,91],core_id:71,corpor:[42,43,44,45,51,52,53,54,55,56,57,58],correct:[58,63,74,85],correctli:85,correspond:[57,58,66],cosh:68,count_include_pad:68,counterpart:58,coupl:[52,54,56,57,59,64,87],cout:83,cp38:57,cp:85,cpp:[14,15,42,43,44,45,50,60,64,83,86],cpp_frontend:86,cppdirectori:49,cppdoc:83,cpu:51,cra:79,creat:[29,30,33,51,52,53,54,55,56,57,58,59,63,66,72,76,83,88,89],create_model:52,create_transform:52,creating_torchscript_module_in_python:84,credit:83,crit:58,criteria:[61,62,64],cross:[58,76],crossentropyloss:58,cs:86,csrc:[60,65],cstddef:86,ctc_bpe_model:51,ctx:[66,83],ctype:83,cu102:85,cuda113:85,cuda:[48,51,52,53,54,55,56,57,58,63,71,83,84,85,86,88,90],cuda_runtim:[21,45],cudafloattyp:83,cudasetdevic:35,cudnn8:85,cudnn:[51,52,53,54,55,56,57,58],cudnn_en:68,cumsum:68,curabitur:79,curl:[76,85],current:[23,52,54,63,66,72,74],cursu:79,custom:[52,54,85],cut:76,cxx11:87,cycler:51,cython:51,d17fnq9dkz9hgj:[52,54,55],d:[51,52,53,54,55,56,57,58,76,77,89,91],dapibu:79,data:[0,2,3,4,29,30,44,46,47,48,51,52,53,54,56,57,58,59,61,62,64,66,68,70,71,72,76,80,86,89],data_dir:86,data_item_1:75,data_load:58,data_typ:88,databas:51,dataflow:[66,83],dataload:[4,29,30,44,48,58,70,86],dataloader_:44,dataloadercalibr:[70,86],dataloaderopt:86,dataloaderuniqueptr:[4,44],dataset:[30,57,58,70,86],datatyp:[1,21,38,45,46,47,48,49,52,71,72,84,88],datatypeclass:49,date:77,dateutil:[51,54,55,56,57],david:77,dbg:85,ddof:[51,53],dead_code_elimin:60,deal:66,debian_frontend:51,debug:[16,27,45,48,58,66,69,72,89,90],debugg:[72,89],debugpi:[51,54,55,56,57],decid:[56,71],declar:[58,85],decod:[52,53,54,55],decode_result:57,deconvolut:91,decor:[51,54,55,56,57],dedic:[60,77],deep:[52,53,54,55,56,57,58,66,67,74,86,91],deeplearn:65,deeplearningexampl:57,deer:58,def:[51,52,53,54,55,56,57,58,76,82,88],default_tim:[51,53],defer:55,defin:[0,1,2,3,4,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,43,46,47,48,50,51,53,55,56,58,71,74,82,83,84,86,89],definit:[50,66,76],defusedxml:[51,54,55,56,57],deiti:76,delet:[0,1,2,45,46,60],delimit:60,demo:[52,53,54,57,76,86],demonstr:[51,52,53,54,55,56,57,76,77,78,86,88],demonstrat:[52,54],denorm:57,denot:[53,76],dep:85,depend:[30,34,51,55,57,58,59,61,64,83,87,88],depickl:63,deploi:[52,54,55,56,57,62,64,67,83,86,88],deploy:[52,54,56,57,58,83,84,86,87,88,89,91],deprec:[51,68],depth:74,dequantizelay:58,descclassnam:76,descnam:76,describ:[48,54,56,57,66,82,88,90],descript:[55,61,77],deseri:[71,72,83],design:[52,53,54,56,57,91],desir:[58,77,86],destini:77,destroi:[66,77],destructor:66,detail:[52,54,55,58,82,83,87,88],detect:[47,54,58,63],detections_batch:57,determin:[52,60],determinist:68,develop:[51,52,53,54,56,57,67,76,77,83,85],devhelp:51,deviat:89,devic:[21,33,35,38,45,48,49,52,54,56,57,58,63,68,70,71,72,84,86,89,90,91],device_typ:[45,46,71,86,90,91],deviceclass:49,devicetyp:[21,38,45,46,49,71,86,90,91],devicetypestruct:49,diam:79,dict:[57,71,72],dictionari:[53,71,72,90],dictum:79,dictumst:79,did:76,didn:76,differ:[30,53,55,56,57,58,60,64,67,74,82],differenti:[52,54,56,57],digit:51,dignissim:79,dilat:[54,55,56,57,58,68],dim0:68,dim1:68,dim:[52,54,55,58,68,88],dim_int:68,dim_intlist:68,dimens:[47,55,60],dir:58,direct:[80,87],directli:[66,67,70,85,86],directori:[18,19,20,21,42,43,44,45,49,58,85,86],disabl:[52,54,55,56,57,58,69,74,75,85,89],disable_calib:58,disable_qu:58,disable_tf32:[45,48,72,86],disclos:85,disconnect:76,discret:76,discuss:[55,88],disp:[51,52,54,55,56],displai:[69,74,89],display_github:74,display_gitlab:74,display_vers:74,disregard:52,dist:85,distanc:51,distdir:85,distribut:[51,52,53,54,55,56,57,58,71,83,86,87],div:68,div_:68,divis:51,divisor_overrid:68,django:75,dl:76,dl_open:87,dla:[1,45,46,67,71,72,89],dla_cor:[45,46,71,86,89,90,91],dla_standalon:89,dlacor:89,doc:[58,64,65,74,75,76,81,85],docker:[51,52,53,54,56,57,88],docopt:51,docsrc:64,docstr:[76,77],document:[42,43,44,45,49,52,54,55,64,74,76,77,81,82,83,86,87,88,90],docutil:[51,76,77],doe:[43,44,53,57,60,61,66,76,86],doesn:[58,76,82,83],dog:58,dolor:[77,79],domain:[77,86],don:[56,66,74,76,77,86,88],done:[51,55,57,59,61,64,88],donec:[77,79],dont:42,dothismethod:76,dotpai:75,dotpayprovid:75,doubl:[48,72,76,89],down:[52,54,56,57,74,85],download:[51,52,54,56,57,58,80,85,86,88],downsampl:[54,55],doxygen_should_skip_thi:[44,45],dpython:[71,72],dream:77,driver:[51,52,54,55,56,85],drop:[57,74,85],dt:76,dtype:[45,47,48,51,52,53,54,55,56,57,58,68,71,72,84,89],dual:76,due:[3,4,52,54,56,57,58,75,76,85],dui:[77,79],dummi:53,dump:[36,85,89],dump_build_info:[21,38,45,49,71],durat:76,dure:[48,58,66,70,86,87,89],dynam:[47,48,57,58,71,72],e1109:58,e:[29,30,52,53,54,57,60,66,71,82,83,85,86,89],each:[3,4,48,53,57,58,59,60,61,63,66,74,76,83,85],eager:[52,54,56,57],ear:76,earliest:58,eas:43,easi:[59,60,83,86,89],easier:[53,58,62,64,66,83,86],easiest:85,easili:[3,4],ecc:[51,52,54,55,56],echo:76,ecosystem:[52,54,56,57],edg:76,edgecolor:57,edit:74,editdist:51,edu:86,effect:[51,58,60,74,83,86],effici:66,efficientnet:[54,57],efficientnet_b0:52,efficientnet_b0_model:52,efficientnet_preprocess:52,efficitur:79,effort:55,eg:88,egesta:79,eget:79,either:[47,48,51,52,53,54,55,56,57,58,66,71,72,74,76,82,83,85,89],el:68,eleifend:77,element:[53,63,76,77,80],element_typ:44,elementum:79,elit:[77,79],elk:76,els:[43,44,47,51,58,72,76,77],elu:68,emb:[33,72,77,89],embed:[63,68,72,76,89,91],embed_engine_in_new_modul:[21,41,45,49,72],emit:59,emphasi:76,emploi:53,empti:[48,56,72,77,82],emum:[16,17],en:[51,74],enabl:[3,4,24,48,52,54,55,56,57,58,61,62,64,69,70,72,74,89],enable_calib:58,enable_precis:83,enable_qu:58,enabled_precis:[45,48,51,52,53,54,55,56,57,58,71,72,83,84,86,88,90,91],enalbed_precis:91,enc:53,enc_input:53,encdecctcmodelbp:51,encod:[51,53,63],encoded_input:53,encorag:[52,53,54],encount:85,encourag:[55,88],end:[44,66,68,72,76,83,86,89],end_dim:[68,83],end_tim:[51,52,53,54,55,56,57,58],endif:[43,44,45],energi:76,enforc:83,engin:[0,1,17,32,33,37,45,46,47,48,51,53,55,59,61,62,64,67,71,72,74,83,84,86,87,89,90,91],engine_converted_from_jit:83,enginecap:[21,38,45,48,49,71,72,90],english:53,enhanc:[57,76],enim:79,enjoi:53,enough:58,ensur:[30,58,60,61],enter:[53,59],entir:[58,76],entiti:76,entri:[48,66],entropi:[29,30,58,86],entropy_calibr:70,entropy_calibration_2:[70,86],entrypoint:[51,54,55,56,57],enumer:[0,1,2,16,17,46,53,58,70],environ:[51,52,53,54,55,56,57,88],ep:[54,55,68],epoch:58,eq:[68,76],equat:76,equival:[32,56,57,62,64,66,72,82,83,86],equivil:37,erat:79,erf:68,eric:76,ero:79,error:[16,48,51,52,53,54,56,57,59,60,64,69,72,76,83,85,89],eskimo_dog:52,essenc:76,essenti:55,est:79,et:79,eta:[52,54,56,57],etc:[74,76,91],etiam:79,eu:79,euismod:79,eval:[51,52,54,55,56,57,58,83,84,88],evalu:[57,62,63,64],evaluated_value_map:[59,66],even:83,event:47,everi:[61,83],everyth:16,ex:[0,1,2,33,46,72,77,79],exact:88,exactli:[53,57],examin:53,exampl:[47,52,54,55,56,57,58,61,63,64,66,69,71,72,74,75,77,80,82,83,86,87,88],exceedingli:76,except:[51,52,53,54,55,56,57,58],exception_elimin:60,excerpt:77,excit:51,execpt:60,execut:[33,51,52,54,55,56,57,60,62,63,64,71,72,82,83,86,88,89],execute_engin:[63,83],exert:76,exeuct:63,exhaust:83,exist:[4,31,32,37,51,70,71,72,85,86],exit:88,exp:68,expand:[60,68],expand_a:68,expanded_pad:58,expect:[47,48,52,53,54,55,56,57,60,66,71,83],experi:[52,53,54,56,57],experiment:58,explic:[44,58],explicit:[0,1,2,3,4,45,46,55,60,67,76,86],explicitli:[53,58,61,62,64,86,90],explict:44,explictli:0,expon:68,export_util:51,expos:86,express:[51,52,53,54,55,56,57,58,76],ext:[76,77],extend:[51,62,64,66,68,83],extens:[51,53,55,57],extent:[67,83],extern:[74,76],extra:[48,83],extract:83,extractor:56,extrem:76,ey:76,f16:[83,89,91],f1:[52,54,55],f32:89,f:[51,56,58,76,82,85],facecolor:57,facilisi:79,fact:85,facto:76,factori:[4,29,30,86],fail:[83,91],fake:58,fake_quantize_per_:58,fake_quantize_per_channel_affin:[58,68],fake_quantize_per_tensor_affin:[58,68],fall:71,fallback:[62,64,66,89,91],fals:[0,1,2,3,4,44,45,46,48,51,54,55,57,58,68,71,72,74,75,76,77,83,86,90],fame:79,famili:[52,54,56,57,58],familiar:88,familyhandyman:[52,54,55],fan:[51,52,54,55,56],far:76,fashion:83,faster:58,fastjsonschema:55,fasttext:51,faucibu:79,fbed:[52,54,55],fc1:[56,82,83],fc2:[56,82,83],fc3:[56,82,83],fc:[48,54,55,57,58,60,89],feat:[56,82,83],featur:[51,52,53,54,55,56,57,58,61,83,86,89,90],feb:[52,54,56],fed:[3,4,47],feed:[29,30,58,83],feel:[55,67],feli:79,feugiat:[77,79],few:[52,54,56,57,71],ffedb78:76,ffmpeg:51,field:[3,4,86],fifth:77,fig:[52,54,55,57],figur:[61,77,79],file:[0,1,2,3,4,5,6,7,8,9,10,11,12,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,51,52,53,54,55,56,57,58,61,63,64,70,71,72,74,75,77,81,83,85,86,88,89],file_path:89,filelock:[51,53],filer_publ:[52,54,55],filer_public_thumbnail:[52,54,55],fill:[51,52,53,54,56],filter:[51,57,58],find:[4,53,57,83],fine:[51,58],finetun:58,finibu:79,finish:57,first:[47,51,53,56,57,58,59,60,76,77,83,84,86,88],firstli:88,fit:76,five:57,fix:[48,54,57,76,91],fixed_s:[45,48],flag:[58,61,62,64,70,85,87,89],flatten:[56,68,82,83],flatten_convert:83,flesh:88,flexibl:[52,54,56,57],float16:[51,52,54,56,57,71,89],float32:[47,48,51,52,53,54,55,58,71,72,89],float64:72,float_int:68,floor:68,floor_divid:68,floordiv:68,flow:[56,57,58,66,76,82],flox:76,fluent:53,flush:76,fly:82,fmax:51,fmin:51,focal:51,fold:77,follow:[33,51,52,53,54,55,56,57,58,61,63,72,74,76,77,81,82,83,85,86,87,88,89],fonttool:51,foo:[76,77],footprint:[52,54,56,57],forc:[72,74,89],forced_fallback_op:61,form:[51,53,59,71,76,88],format:[33,45,47,48,51,52,53,54,55,56,57,58,68,71,72,76,77,84,88,89],forth:77,forum:85,forward:[29,30,32,33,56,58,61,63,66,71,72,82,83,86,90],found:[42,43,44,45,51,52,54,55,56,57,76,83,85,86,87],four:[76,77],fp16:[0,47,48,53,55,56,57,58,67,83,84,89,91],fp32:[0,47,48,53,55,56,57,58,67,72,86,88,89],frac:76,framework:[52,54,56,57],franc:53,freed:66,freeli:55,freeze_modul:60,fri:52,friend:45,fringilla:79,frog:58,from:[0,1,2,3,4,29,30,44,46,47,48,51,52,53,54,56,57,58,59,60,61,62,63,64,66,67,72,74,75,76,77,82,83,86,88,89],from_pretrain:[51,53],frozen:58,frozendict:51,frozenlist:51,fssl:85,fsspec:51,fstream:[20,44],full:[48,58,66,69,83,86,87,88,89,91],fulli:[31,60,72,83,86,89,91],fusc:79,fuse:[52,54,56,57],fuse_addmm_branch:60,fuse_flatten_linear:60,fuse_linear:60,fusion:66,futur:[51,52,53,54,56,58],futurewarn:51,g2p:51,g:[29,30,51,53,60,71,76,85,86,89],g_:76,gain:57,game:53,gamma:68,gatewai:75,gaurd:43,gcc:[64,83],gdown:51,ge:68,gear:86,geforc:[52,54,56],gener:[3,4,30,51,52,53,54,55,56,57,58,60,63,64,66,74,76,77,80,82,83,85,86,89],genutil:[51,54,55,56,57],geometr:53,get:[0,1,2,3,4,23,34,44,46,57,58,60,61,66,69,71,85,86,88],get_batch:70,get_batch_impl:44,get_batch_s:70,get_build_info:[21,38,45,49,71],get_cache_mode_batch:70,get_coco_object_dictionari:57,get_is_colored_output_on:[18,39,42,49,69],get_logging_prefix:[18,39,42,49,69],get_model_size_mb:51,get_reportable_log_level:[18,39,42,49,69],getattr:[51,60,63,82,83],getbatch:[3,4,44],getbatchs:[3,4,44],getdimens:[66,83],getoutput:[66,83],gi:[51,52,54,55,56],git:80,gitdb:51,github:[51,52,53,54,56,57,65,74,83,85,86,87,88],github_url:74,gitlab:74,gitlab_url:74,gitpython:51,give:[56,74,76],given:[47,48,53,57,60,70,71,72,82,83,89,90],global:[26,58,83],gnu:85,go:[44,52,54,55,56,57,58,60,61,67,82,83,88],goal:66,goe:[58,76],good:[44,66,76],goodger:77,googl:[51,53,74],got:[76,83],govern:[51,52,53,54,55,56,57,58],gpu:[1,32,35,37,45,46,51,52,53,54,55,56,57,58,71,72,83,86,88,89,90,91],gpu_id:[35,45,46,71,86,89,90,91],granular:56,graph:[16,31,32,37,45,51,52,54,55,56,57,58,59,61,62,64,66,67,69,72,82,83,89],graphic:55,graphnam:[51,53],gravida:79,great:[52,54,56,57,76,83],greater:69,green_mamba:[54,55],group:[58,68,76,77],grpc:88,grpcio:51,gru_cel:68,gt:[51,52,53,54,55,56,57,68],gtc:67,guangzhou:77,guard:60,guard_elimin:60,guess:53,gui:76,guid:75,gulf:[52,54,55,88],gz:[76,77,85,86],h5py:51,h:[0,1,2,3,4,5,6,7,8,9,10,11,12,15,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,49,50,52,54,57,60,83,86,89],ha:[51,52,53,54,55,56,57,58,59,60,61,62,64,66,76,77,82,83,86],habit:79,habitass:79,hac:79,hack:44,hakaimagazin:[52,54,55,88],half:[53,55,56,57,58,71,76,83,84,86,88,89,90,91],hand:88,handl:[57,60,63],happen:[56,58,82],hardtanh:[66,68],hardtanh_:68,hardwar:[52,54,56,57,91],hasattr:51,hash:85,have:[30,33,44,51,52,53,54,55,56,57,59,60,66,67,71,72,76,82,83,85,86,88,89],haven:83,head:57,header:[52,54,55,74,76,77,83,88],heart:77,heaven:76,heck:76,heh:77,hehe:77,height:76,help:[27,51,52,53,54,56,58,59,66,83,87,89],helper:[51,56,57,58,66],henc:53,hendrerit:79,here:[44,51,52,53,54,55,56,57,59,61,63,74,76,77,82,83,85,86,87,88],hermet:85,hexagram:76,hfile:49,hi:[68,76,77],hidden:[43,53,74],hierarchi:58,high:[52,54,57,60,61,74],higher:[53,60,74,76,82],highfreq:51,highli:[55,88],highlight:76,hinton:86,hist_percentil:58,histogram:58,historgram:58,hit:51,hold:[46,47,59,66,86],holder:[63,78],holi:76,home:85,hood:[64,84],hope:77,hors:58,host:[54,55,56,57,58,85,88],how:[3,4,52,53,54,55,57,58,76,78,80,82,87,88,90],howev:[30,52,54,56,57,74,75,85,88],html:[58,65,76,82,85,86],html_theme:81,html_theme_opt:74,html_theme_path:81,htmlhelp:51,http:[51,52,53,54,55,56,57,58,65,74,76,82,83,85,86,87,88],http_archiv:85,httpclient:88,hub:[51,53,54,57,88],huge:53,huggingfac:[51,53],human:76,humankind:77,huski:[52,54,55],hx:68,hybrid:72,hydra:51,hyperlink:76,hyphen:76,i8:89,i:[51,52,53,54,55,56,57,58,60,66,76,77,82,83,86,89],iaculi:79,icon:[74,76],id:[35,45,51,52,54,55,56,57,71,74,75,79,89,91],idea:[60,76],ident:[53,89],idna:[51,53],idx:[57,68],ifndef:[44,45],ifstream:44,ignor:71,iii:77,iint8calibr:[3,4,29,30,44,45,48,72,86],iint8entropycalibrator2:[3,4,29,30,44,86],iint8minmaxcalibr:[29,30,86],ilay:66,illustr:58,imag:[52,54,55,57,58,86,88],image_classif:57,image_idx:57,imageio:57,imagenet:[52,54,55,58],imagenet_cla:[52,54,55],imagenet_class_index:[52,54,55],images:51,images_:86,img0:[52,54,55],img1:[52,54,55,88],img2:[52,54,55],img3:[52,54,55],img:[52,54,55,88],img_path:[52,54,55,88],impact:[52,53,54,56,57],imperdiet:79,implement:[3,4,52,53,54,55,56,57,60,61,63,75,83,86,87],impli:[51,52,53,54,55,56,57,58],implic:60,implicit:[68,76],implicitli:71,implictli:71,importlib:[51,54,55,56,57],improv:[58,77],imshow:[52,54,55,57],in_featur:[54,55,56],in_shap:83,in_tensor:82,incas:44,includ:[13,15,16,34,36,42,43,44,45,50,52,54,56,57,61,62,63,64,74,76,82,83,85,86,89],includedirectori:49,includehidden:74,incompat:85,incorpor:77,incorrect:58,ind:[52,54,55],inde:[52,54,56,57],indent:76,independ:57,index:[33,51,52,53,54,55,56,57,58,65,67,68,72,74,80,86],indic:[51,53,68,74,76],indigo_bunt:52,indirect:76,inetworkdefinit:59,infer:[51,52,53,54,56,58,60,71,72,83,86],inference_output:88,inferenceservercli:88,inferinput:88,inferrequestedoutput:88,inflect:51,info:[16,32,37,45,48,66,69,71,83,89],inform:[25,33,34,36,47,51,55,57,58,59,61,63,67,69,71,76,82,83,85,86,89,90],infrastructur:[86,88],ingest:64,inherit:[49,86],iniconfig:51,init_weight:58,initi:[51,53,58,76],injuri:76,inlin:[0,1,2,3,4,29,30,44,46,48,51,54,55,56,57,60,77,80,83],inner:[48,77],innings:53,inplac:[54,55],input0:83,input1:83,input2:83,input:[3,4,21,30,33,38,44,45,48,49,51,52,53,54,55,56,57,58,59,60,61,63,66,68,69,71,72,77,82,83,84,86,88,89,90,91],input_0:[63,83],input__0:88,input_batch:[52,54,55],input_data:[52,54,55,56,57,58,82,84],input_file_path:[89,91],input_id:53,input_is_dynam:45,input_s:[61,83],input_scal:68,input_shap:[51,52,54,55,56,57,58,86,91],input_spec:89,input_tensor1:53,input_tensor2:53,input_tensor3:53,input_tensor:[51,52,54,55],inputclass:49,inputrang:[61,83],inreleas:51,insert:[58,83,86],insid:[76,88],inspect:[52,54,56,57,66,82,83],instal:[51,52,53,54,55,56,57,58,67,80,83,87,88],instanc:[53,56,60,70,82,83],instance_norm:68,instanti:[51,62,63,64,66,83],instatin:[0,1,2,46],instead:[48,51,52,53,54,55,56,57,58,59,60,83,87,89],instnanti:63,instruct:[61,62,64,83,85,88],insur:85,int32:[53,55,71,72],int64:72,int64_t:[45,46,47,48,86,91],int8:[0,44,47,48,55,67,71,72,86,89,91],int8_t:[17,45],int8cachecalibr:[20,30,40,44,49],int8cachecalibratortempl:49,int8calibr:[3,20,29,40,44,49],int8calibratornamespac:49,int_float:68,integ:[58,71,79],integr:[52,53,54,55,56,57,67],intend:[51,85],intent:[60,76],interact:76,intercompat:57,interdum:79,interest:[60,76],interfac:[0,1,2,46,63,64,66,86],interfer:76,intermedi:[16,52,54,56,57,69,82],intern:[1,16,46,52,54,56,57,58,66,69,76,83],internal_error:69,internalerror:69,interpol:[52,76],interpolationmod:52,interpret:[52,54,56,57,63,76],intro_to_torchscript_tutori:82,introduc:[52,54,56,57,58],introduct:53,invalid:58,invok:[82,83],involv:[51,52,53,54,56],io:[44,51,52,53,54,55,56,57,88],iostream:[20,21,44,45,83],ipad:51,ipso:76,ipsum:[77,79],ipykernel:[51,54,55,56,57],ipython:[51,54,55,56,57],ipywidget:[51,54,55,56,57,58],ir:[52,54,56,57,62,64,66,71,82],is_avail:[52,54,55],is_floating_point:68,is_tar:51,is_train:86,iscustomclass:66,isinst:58,isn:[74,76],isort:51,issu:[3,4,51,52,53,54,56,83,85],istensor:66,istream_iter:44,it_:44,ital:76,item:[51,52,53,54,55,58,75,77],itensor:[59,66,83],iter:[20,44,48,51,52,53,54,55,56,57,58,59,70,72,89],its:[30,52,54,56,57,59,63,66,76],itself:[0,1,2,46,60,85,88,89,90],iv:77,ivalu:[59,63,66,83],ja:51,jan:77,jarowinkl:51,jedi:[51,54,55,56,57],jetpack:85,jetpack_4:85,jetson:[52,54,56,57,71],jieba:51,jinja2:[51,54,55,56,57],jit:[31,32,33,37,45,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,71,72,82,83,84,88,89,90],jit_model:58,jmespath:51,joblib:[51,53],join:58,jpeg:[52,54,55],jpg:[52,54,55,57,88],jpg__1920x1080_q85_subject_loc:[52,54,55],jsmath:51,json:[52,54,55],json_fil:[52,54,55],jsonschema:[51,54,55,56,57],jump:88,jupyt:[51,54,55,56,57],jupyterlab:[51,54,55,56,57],jupyterlab_widget:[54,56,57],just:[44,45,52,53,54,55,57,60,67,69,76,78,82,83,84,87,90],justo:[77,79],k:[53,68,86],kaldi:51,kaldiio:51,kb:[52,54,55,56,57],kbool:[0,45],kchannelslast:[2,45],kchar:[0,45],kclip:66,kcontigu:[2,45,47],kcpu:[1,46],kcuda:[1,46,61,83],kdebug:[16,42,44],kdla:[1,45,46,91],kdla_standalon:[17,45],keepdim:68,kei:[53,58,76,82,88],kept:[58,77],kernel:[47,48,52,54,56,57,66,71,72,89],kernel_s:[54,55,56,68],kerror:[16,42],keyboard:76,keyword:[51,71,72],kf16:[86,91],kfloat:[0,45,48],kgpu:[1,45,46],kgraph:[16,42,60],khalf:[0,45,83],ki8:86,kind:[51,52,53,54,55,56,57,58,59,71],kinfo:[16,42,44],kint:[0,45],kinternal_error:[16,42],kiwisolv:51,know:[42,66,74,76],knowledg:76,kriz:86,krizhevski:86,ksafeti:[17,45],kstandard:[17,45,48],ktest:86,ktrain:86,kunknown:[0,2,45],kwarg:[55,58,70,71],kwarn:[16,42],l:68,label:[52,54,55,57,58,76,86,88],lacinia:79,lack:[61,62,64],lacu:79,laid:83,lambda:[54,55,57,66,76,83,88],lang:75,languag:[51,52,54,55,56,57,58,75,76,77,82,88],laoreet:79,larg:[52,53,54,56,57,58,62,64,74,76,83,86],larger:[74,86],largest:68,last:[2,51,57,60,71],lastli:88,latenc:[51,53],later:[30,53,83],latest:[52,53,54,74,85],latexcodec:51,launch:88,law:[51,52,53,54,55,56,57,58],layer1:[54,55],layer2:[54,55],layer3:[54,55],layer4:[54,55],layer:[46,48,52,54,56,57,58,59,60,66,72,83,86,88,89,91],layer_norm:68,layout:[2,47,68,71,72],ld_library_path:85,ld_preload:87,ldd:85,le:68,lead:76,leader:76,leaky_relu:68,leaky_relu_:68,learn:[55,58,67,83,85,86,88,91],leas:77,least:[52,53,54,76,77],leav:[56,58,60],lectu:[77,79],left:[57,74,76],legacy_calibr:70,legend:76,len:[51,53,57,58,68],lenet:[82,83],lenet_script:[82,83],lenetclassifi:[56,82],lenetfeatextractor:[56,82],length:[3,4,44,52,53,54,55,68,77],leo:79,let:[46,51,52,54,55,56,57,60,66,71,72,74,76,88,89],letter:[51,77],level:[18,23,25,26,39,42,44,49,52,53,54,56,57,58,60,61,64,69,80,82,88],levelnamespac:49,leverag:[52,54,55,56,57,86],lib:[51,52,53,54,55,56,57,58,60,83,85],libero:[77,79],librari:[34,42,43,44,45,52,54,55,56,57,58,62,63,64,66,83],librosa:51,libsndfile1:51,libtorch:[4,36,52,54,56,57,66,83,85,86],libtorch_pre_cxx11_abi:85,libtorchtrt:[83,85,89],libtorchtrt_plugin:87,libtorchtrt_runtim:87,licens:[42,43,44,45,51,52,53,54,55,56,57,58,83],light:76,lightn:51,lightningdeprecationwarn:51,lightningmodul:51,ligula:79,like:[52,54,56,57,59,60,63,66,75,76,82,83,84,85,86,87,88,89],limit:[51,52,53,54,55,56,57,58,60,69,75,86],line:[77,83,89],linear:[2,54,55,56,58,68,71,82],linewidth:57,link:[59,67,74,75,80,83,87,89],linux:[64,83,85],list:[18,19,20,21,31,48,50,51,53,57,58,59,61,63,66,68,71,72,80,83,84,85,88],listconstruct:[59,63,83],listunpack:[63,83],liter:77,literal:77,literal_block:76,live:[66,76],ll:53,llvmlite:51,lo:68,load:[51,52,54,55,57,58,61,63,70,72,83,84,86,87,88,89,90],load_calib_amax:58,load_librari:87,load_state_dict:58,loader:[51,52,54,56,57],loading_data_recip:86,loborti:[77,79],local:[57,58,60,74,83],localhost:88,locat:[57,85,86],lock:75,log:[15,16,19,20,38,44,49,50,53,58,60,66,67,68,71],log_debug:66,logger:69,loggingenum:49,login:88,loglevel:69,logo_onli:74,lone:77,longer:[52,54,56,57,74,87],look:[51,52,53,54,55,56,57,58,59,60,82,86,88,90],loop_unrol:60,lorem:[77,79],lorikeet:[54,55],lose:74,loss:[58,86],lot:66,lower:[16,55,69,71,77],lower_graph:60,lower_tupl:60,loweralltupl:60,lowersimpletupl:60,lowfreq:51,lr:58,lstm_cell:68,lt:[51,53,54,55,56,57,58,68],ltorchtrt:87,luctu:79,lvl:[25,26,42],m:[51,52,54,55,56,77],machin:[52,54,56,57,63,85,86,88],macro:[5,6,7,8,9,10,11,12,15,18,21,42,45,49,50],mad:76,made:[57,60,62,64,76],maecena:79,magna:79,mai:[51,52,53,54,55,56,57,58,59,63,64,76,77,82,83,85,86,88],main:[57,60,61,62,63,64,66,74,76,78,83],maintain:[53,61,63,66],major:[52,54,56,57,64],make:[52,53,54,55,56,57,59,76,78,83,84,85,86,88,91],make_data_load:[4,86],make_int8_cache_calibr:[20,40,44,49,86],make_int8_calibr:[20,30,40,44,49,86],malesuada:79,man:[76,77],manag:[51,52,53,54,55,56,57,59,62,64,66,69,71,83],mangag:60,mani:[74,76,77],manifest_filepath:51,mantissa:[48,72],manual:[75,76,85],manual_se:51,manylinux2014_x86_64:57,manylinux_2_17_x86_64:57,map:[1,46,59,60,62,64,66,83,86,88,90],mark:[52,60,74],markdown:51,marknodesforfallback:60,markup:[77,80],markup_process:76,markupsaf:[51,54,55,56,57],marshmallow:51,mask:[51,68],masked_fil:68,masked_sent:53,massa:79,master:[65,76,85,86,87],mat2:68,match:[48,60,85],math:80,mathemat:53,matmul:[60,68,83],matplotlib:[51,52,54,55,56,57],matric:53,matrix:65,matti:77,matur:64,mauri:[77,79],max:[47,48,54,55,56,57,58,66,68,71,74,89],max_batch_s:88,max_bound:58,max_c:89,max_dur:51,max_h:89,max_length:53,max_n:89,max_pool1d:68,max_pool2d:[56,68,82,83],max_pool3d:68,max_shap:[45,47,55,56,71,72,84],max_val:[66,68],max_valu:58,max_w:89,maxcalibr:58,maxim:55,maximu:79,maximum:[47,48,52,53,54,55,58,72,88,89],maxpool2d:[54,55],maxpool:[54,55],mayb:[55,76],mb:[52,54,55,56,57,89],md:65,me:[76,77],mean:[51,52,53,54,55,56,57,58,61,66,67,68,88],mecab:51,mechan:[51,53,66],media:[52,54,55],median:[51,53],medium:76,meet:71,mel:51,member:[46,47,48,71],memeori:2,memori:[20,21,44,45,48,51,52,54,55,56,57,60,66,71,72,83,84],memory_format:[68,71],memoryformat:[2,45],men:76,mental:76,menu:[74,76,89],menuselect:76,messag:[16,25,26,69,89],meta:80,metadata:[51,63,66,74],meth:76,method:[31,32,33,37,47,51,52,54,55,56,57,58,60,66,71,72,76,82,83,85,89,90],method_nam:[31,37,45,71,72,83,89],metric:51,metu:79,mi:79,middl:76,mig:[51,52,54,55,56],might:[53,58,60,74,85],min:[47,48,66,68,71,89],min_block_s:[45,48,61,72],min_bound:58,min_c:89,min_h:89,min_n:89,min_shap:[45,47,55,56,71,72,84],min_val:[66,68],min_valu:58,min_w:89,mind:76,mine:76,mini:[52,54,55],minim:[48,72,86,89],minimum:[47,48,55,61,69,72,89],minmax:[29,30,86],minmax_calibr:70,misbuild:74,miss:[76,83],mistun:[51,54,55,56,57],mix:57,mixin:51,mkdir:[52,54,55,85],mlm_model_t:53,mm:[51,88],mmb:76,mobilenet_v2:90,mod:[51,61,80,83,86,89],mode:[58,84,86],mode_:86,model:[51,61,63,67,69,82,83,84,86,89,90],model_math:57,model_nam:[51,58,88],model_repositori:88,model_s:51,model_state_dict:58,model_torchtrt:69,model_trt:69,modelpt:51,modern:57,modifi:[77,85],modified_state_dict:58,modul:[31,32,33,37,45,48,51,52,53,54,55,56,57,58,61,62,63,64,66,67,71,72,75,76,77,84,86,89,90,91],modular:83,module_fallback:60,module_nam:89,molesti:79,momentum:[54,55,58,68],mon:55,month:51,monthli:[51,55],morbi:79,more:[52,54,55,56,57,58,59,67,71,74,77,82,83,85,86,87,88,90],most:[53,64,85,87,88],most_likely_token_id:53,most_likely_token_ids_trt:53,mother:76,motion:76,mous:76,move:[29,44,45,52,54,55,56,57,60,63,72,83,86],mpmath:51,ms:[52,54,55,56,57,58],mse:58,msg:[26,42,51,53,69],mu:76,much:[66,74,76,86],mul:[58,68],mul_:68,multi:89,multidict:51,multipl:[63,76,77,86,88],multipli:[48,72],must:[33,47,48,53,57,60,61,66,71,72,76,77,83,85,87,89],mutil:77,my:76,myclass:76,mymodel:[61,84],mypi:57,myself:77,n01537544:52,n01739381:52,n01749939:[54,55],n01820546:[54,55],n02109961:52,n02110185:[54,55],n02481823:[52,54,55],n:[51,52,53,54,56,66,83,86,89],n_fft:51,n_mel:51,nabla:76,nam:[77,79],name:[3,4,31,33,37,44,51,52,54,55,56,57,58,61,63,66,70,72,76,77,82,83,85,88,90],named_modul:58,namespac:[42,43,44,45,50,60,67,86],narrow:[58,68],nativ:[58,64,65,83],native_funct:65,natur:[53,76],nav:[74,80],navig:74,navigation_depth:74,nbbind:[3,4,44],nbclient:[51,54,55,56,57],nbconvert:[51,54,55,56,57],nbformat:[51,54,55,56,57],nchw:[2,71,72],ncol:[52,54,55],ne:[60,68],nec:79,necessari:[42,87],need:[0,1,2,25,30,43,46,52,54,55,57,59,60,66,76,83,84,85,86,87,88],neg:68,negative_slop:68,nemo:51,nemo_1:51,nemo_asr:51,nemo_log:51,nemo_toolkit:51,nequ:[77,79],nest:[49,51,54,55,56,57,76,77],net:[52,54,55,66,76,77,83],netu:79,network:[29,30,52,54,56,57,58,66,83,86,88,91],networkx:57,neural:[52,54,57,91],new_lay:66,new_level:53,new_local_repositori:85,new_lr:58,new_siz:86,newer:[52,54,56,57],newest:51,newli:51,next:[3,4,57,58,59,63,74,76,77,86,88],nfilt:51,ngc:[51,52,53,54,55,56,57,85,88],nhwc:[2,71,89],nibh:[77,79],nice:85,nickel:76,night:77,nine:53,ninja:85,nisi:79,nisl:79,nl:[52,54,55],nlp:[29,30,53,86],nltk:51,nn:[51,52,54,55,56,58,60,65,71,72,82,83,84],no_grad:[51,52,53,54,55,56,57,58],node:[58,60,61,62,64,66,83],node_info:[66,83],noexcept:[3,4,44,86],non:[77,79],non_block:[58,68],none:[52,54,56,57,58,66,68,71,72,74,76],nonetheless:76,nonexist:76,noninteract:51,norm:68,normal:[0,1,2,46,51,52,53,54,55,56,57,58,76,82,83,86,88,91],normalized_shap:68,noskipw:44,notatemoduleforfallback:60,note:[1,46,47,53,66,71,74,76,83,85,91],notebook:[51,52,53,54,55,56,57,58,64],notic:[56,57],now:[51,52,53,54,56,57,60,64,66,76,83,85,90],np:[51,52,53,54,55,56,57,58,88],nrow:[52,54,55],nrun:[52,54,55,56,57,58],nu:76,nulla:79,nullptr:[44,45,48],num:[51,53,89],num_avg_timing_it:[45,48,72,90],num_batch:58,num_bit:58,num_calib_batch:58,num_class:58,num_epoch:58,num_it:89,num_loop:[51,53],num_min_timing_it:[45,48,72,90],num_op:89,num_work:[58,86],numba:51,number:[3,4,48,51,52,53,54,58,60,61,66,71,72,74,83,89],numel:68,numer:[51,77,89],numpi:[51,52,53,54,55,56,57,58,88],nunc:79,nvcr:[51,88],nvidia:[32,37,42,43,44,45,51,52,53,54,55,56,57,58,65,71,72,83,85,88,89,91],nvidia_convnets_processing_util:57,nvidia_deeplearningexamples_torchhub:57,nvidia_efficientnet:57,nvidia_efficientnet_b0:57,nvidia_efficientnet_b4:57,nvidia_efficientnet_widese_b0:57,nvidia_efficientnet_widese_b4:57,nvidia_resnet50:57,nvidia_resnext101_32x4d:57,nvidia_resnext:57,nvidia_se_resnext101_32x4d:57,nvidia_ssd:57,nvidia_ssd_processing_util:57,nvidia_ssdpyt_amp_200703:57,nvidia_tacotron2:57,nvidia_tts_util:57,nvidia_waveglow:57,nvinfer1:[3,4,29,30,44,45,48,66,86],nvinfer:[20,44],nwarmup:[52,54,55,56,57,58],o:[52,54,55,76,85,88],oauthlib:51,obj:68,object:[0,1,2,3,4,46,47,48,63,66,69,70,72,86,90],observ:[51,52,53,54,58],obsolet:57,obtain:[51,52,53,54,55,56,57,58,84],obvious:82,octet:[52,54,55],odio:[77,79],off:[51,52,54,55,56,57,61,63],offici:85,ofstream:[44,83],often:76,oh:77,ok:[52,54,55,76,83],okai:48,older:64,omegaconf:51,onc:[42,43,44,45,59,60,63,86,87,88],one:[53,57,58,60,66,69,71,76,82,83,88],ones:[42,52,54,56,57,61,62,64,76,83,85],onli:[1,3,4,16,30,44,46,47,56,57,60,61,64,66,69,71,76,85,86,87,89,91],onnx:[51,60],onto:[63,89],onward:[52,54,55],op:[52,53,54,55,57,58,59,60,62,64,66,71,83,87,89],op_nam:89,op_precis:[52,54,55,57],open:[52,54,55,56,57,88],opencc:51,oper:[0,1,2,3,4,31,44,45,46,48,52,54,55,56,57,58,59,60,61,62,63,64,66,67,71,72,84,86,89,91],oppos:72,opset:[62,64],opt:[47,48,51,52,53,54,55,56,57,58,71,85],opt_c:89,opt_h:89,opt_n:89,opt_shap:[45,47,55,56,71,72,84],opt_state_dict:58,opt_w:89,optim:[47,51,52,53,54,55,56,57,58,60,67,82,83,84,89],optimin:47,optimiz:[52,54,56,57,82],optimized_execut:51,optimz:88,option:[44,47,61,62,64,71,76,80,85,86,87,89,91],orchestra:76,orci:79,order:[48,57,61,66,72,83,84],org:[51,52,53,54,55,56,57,58,65,74,76,82,83,85,86],organ:77,origin:[51,53,57,58],original_nam:56,ornar:[77,79],os:[45,58],ostream:45,other:[0,1,2,45,46,52,54,55,56,57,58,59,60,63,67,68,75,76,83,84,85,87,89],otherwis:[52,53,54,85,87],our:[52,53,54,55,56,57,61,64,82,83,88],out:[31,44,51,52,53,54,55,56,58,59,60,61,62,64,66,69,72,76,83,85,88],out_dir:58,out_featur:[54,55,56],out_shap:83,out_tensor:[66,83],output0:60,output:[24,27,33,48,52,53,54,55,56,57,58,59,60,61,63,66,69,72,74,76,77,83,85,88,89],output__0:88,output_file_path:[89,91],output_pad:68,output_s:[54,55,68],output_trt:53,outself:83,outsid:76,over:[52,54,55,56,62,64,76,88],overkil:56,overrid:[3,4,29,30,44,71,86],overview:[53,65,67],own:[51,52,53,54,56,66,76,83,88],p0:55,p2:51,p8:[51,52,54,56],p:[52,54,55,68,83,88,89,91],packag:[51,52,53,54,55,56,57,58,60,83,89],pad:[51,53,54,55,58,68],padding_idx:68,padding_mod:58,page:[55,67,78,80,88],pair:[51,60,66,76,85,86],panda:51,pandocfilt:[51,54,55,56,57],pane:76,pangu:51,paper:[52,54,57],paragraph:[77,80],parallel:53,param:[70,75],param_group:58,paramet:[0,1,2,3,4,25,26,27,29,30,31,32,33,35,37,46,47,48,58,59,60,66,69,71,72,80,82,83],parameter:51,parent:[14,15,18,19,20,21],pari:53,pars:[58,76,83],parser:76,parso:[51,54,55,56,57],part:[51,61,64,74,75,76,89],parti:55,partial:[52,54,56,57,76,89],particular:56,particularli:53,partit:60,partitioninfo:61,pass:[51,53,58,59,61,62,63,64,66,69,70,82,83,86],past:76,patch:57,path:[4,13,14,15,29,30,56,57,58,70,71,82,83,85,86,88,89],path_to_torchtrt_root:85,pathspec:[51,57],pathtool:51,pathwai:82,pattern:[66,71,83],payment:75,pbtxt:88,peephole_optimz:60,pellentesqu:79,peopl:76,pep:76,per:[55,57,58],percentil:[51,53,58],perf:[51,52,54,55,56],perfom:58,perform:[29,30,52,53,54,55,56,57,86,88],performac:86,permiss:[51,52,53,54,55,56,57,58],permit:76,permut:68,persist:[51,52,54,55,56,76],pesq:51,pexpect:[51,54,55,56,57],pharetra:79,phase:[16,58,66,83],phasellu:79,phi:76,philosoph:76,phrase:76,pi:76,pick:[56,82],pick_best:57,pickler:63,pickleshar:[51,54,55,56,57],pid:[51,52,54,55,56],piec:51,pil:[52,54,55,88],pillow:[51,52,57],pin:75,pin_memori:68,pip3:85,pip:[51,52,53,54,55,56,57,58,85,88],pipelin:[89,91],piplein:83,pipreq:51,pixel_shuffl:68,pl:75,place:[47,60,76,77,78,85,86],placerat:79,plan:[64,89],plane:58,platea:79,platform:[45,52,54,56,57,64,85,88,89,91],platformdir:57,pleas:[51,52,58,76,83,85,88],plot:57,plot_result:57,plt:[52,54,55,57],pluggi:51,plugin:51,po:53,point:[71,74,75,76,83,88],pointer:[3,4,86],polish:75,pooch:51,pool:[54,55,56,57,58,91],pop:63,popular:[53,75,85],portabl:[52,54,56,57,63,72],portalock:51,portion:76,porttitor:[77,79],pos_mask:53,posit:[51,53,71,74,89],possibl:[52,53,54,56,57,76,88],post1:51,post:[29,30,48,67,83,89],posuer:[77,79],potenti:[48,79],pow:68,power:[52,54,56,57,76,83],pr:83,practic:[52,54,56,57],praesent:79,pragma:[42,43,44,45,86],pre:[33,51,52,53,54,58,60,70,72,86,87],pre_cxx11_abi:85,preced:76,precis:[48,53,55,56,57,67,71,83,84,86,89,91],precisions_str:51,pred:[52,54,55,58],pred_label:57,pred_loc:57,predict:[52,53,54,55,57],prefer:83,prefix:[27,28,42,69,76],preinstal:85,prelu:68,prepar:[51,52,53,54,56,57,88],prepare_input:57,prepare_tensor:57,preprint:86,preproc:70,preprocess:[51,52,54,55,58,86,88],preserv:[58,76,82,86],prespect:82,press:76,pretium:79,pretrain:[51,52,53,54,55,57,88,90],pretti:83,prev_next_buttons_loc:74,prevent:[48,89],previou:[53,74],previous:[30,33,83],prim:[59,60,63,68,82,83],prim_devic:68,primal:76,primari:53,primarili:[64,83],print:[16,31,44,51,52,53,54,55,56,57,58,69,71,72,76,83,88,90],print_funct:51,printout:53,printstat:[51,53],priorit:85,privat:[3,4,44,45,86],prob:[52,54,55],probabl:[52,53,54,55,57],probablil:[52,54,55],problem:[53,76],problemat:76,proce:[52,54,55,88],proceed:88,process:[51,52,53,54,55,56,57,58,61,75,76,82,86,88,89,90],prod:68,produc:[47,59,63,66,76,83],product:[48,52,54,56,57],profil:[47,56],program:[18,19,20,21,30,50,55,56,57,62,63,64,67,82,89],programm:76,progress:77,proin:79,project:[75,80],prometheu:[51,54,55,56,57],promis:51,prompt:[51,54,55,56,57],properli:85,properti:[51,53,74],propog:60,prose:76,protobuf:51,provid:[3,4,48,51,52,53,54,55,61,63,66,71,72,76,83,84,85,86,87,88,89,90],providi:[62,64],provok:76,psutil:[51,55],pt:[53,57,58,83,88,89],pth:[54,57,58],ptq:[3,4,15,18,38,49,50,67,71,72,89],ptq_calibr:[3,4,45,48,86],ptqtemplat:49,ptyprocess:[51,54,55,56,57],publish:88,pull:[85,88],purchas:75,pure:[31,51,55,57],purpos:[55,57,85,88],puru:79,push:63,push_back:[44,61],put:76,pwd:88,pwr:[51,52,54,55,56],py2:[54,56,57],py3:[51,52,53,54,56,57,88],py:[51,52,57,58,60,64,74,76,81,82,83,85,86],pyannot:51,pyasn1:51,pybind11:51,pybtex:51,pycpars:[51,54,55,56,57],pycr:51,pydeprec:51,pydub:51,pygment:[51,54,55,56,57],pyindex:88,pypa:[51,52,53,54,55,56,57],pypars:[51,53,54,55,56,57],pypi:[51,52,53,54,55,56,57,58,85],pypinyin:51,pyplot:[52,54,55,57],pyrsist:[51,54,55,56,57],pysock:51,pystoi:51,pytest:51,python3:[51,52,53,54,55,56,57,58,60,83,85],python:[51,52,53,54,55,56,57,58,61,64,71,72,76,77,83,87,88,89,90,91],python_api:65,pythonhost:[54,55,56,57,58],pytorch:[47,48,51,52,53,54,55,57,58,60,61,62,63,64,66,70,71,72,82,83,84,85,86,87,88,89],pytorch_libtorch:88,pytorch_lightn:51,pytorch_quant:[57,58],pytorch_sphinx_them:[74,81],pytorch_vision_v0:55,pytz:51,pywavelet:57,pyyaml:[51,53],pyzmq:[51,54,55,56,57],qat:58,qat_model:58,qthelp:51,qualiti:[52,54,57],quant:58,quant_dim:58,quant_input:58,quant_max:68,quant_min:68,quant_modul:58,quant_nn:58,quant_weight:58,quantconv2d:58,quantdescriptor:58,quantiz:[29,30,57,67,83,89],quantizatiom:48,quantizelay:58,quantlinear:58,quantoz:58,quantpool:58,quartznet:51,question:83,qui:[77,79],quick:58,quickli:[52,54,83,86,89],quisqu:79,quit:[55,66,83],quot:77,r:[57,76],rais:60,raiseexcept:60,rand:83,randn:[51,52,54,55,56,57,58,61,71,72,83,90],random:51,randomcrop:58,randomhorizontalflip:58,rang:[47,48,51,52,53,54,55,56,57,58,71,89],rank:74,rapidfuzz:51,rate:58,rather:60,raw:[57,74],re:[51,76],read:[3,4,29,30,44,51,55,74,76,86],read_calibration_cach:70,readcalibrationcach:[3,4,44],reader:76,readi:[51,55],readm:[51,52,53,54,56,57],realiz:63,realli:66,reason:[0,57,82],reattribut:77,recalibr:30,recip:86,recipi:57,reciproc:68,recognit:[51,54,58,86],recomend:[29,30],recommend:[29,30,51,52,53,54,55,56,57,58,76,83,85,88],recompil:57,record:[56,58,59,82],rect:57,rectangl:57,recurs:59,recursivescriptmodul:56,redistribut:77,reduc:[52,54,56,57,58,60,62,64,86],ref:76,refer:[47,58,62,64,75,80,83,84,86,88],referenc:[57,85],refit:[45,48,72,90],reflect:45,reflection_pad1d:68,reflection_pad2d:68,regard:[76,85],regardless:77,regex:[51,53],regist:[33,63,66,72],registernodeconversionpattern:[66,83],registri:[59,83],regular:58,reinterpret_cast:44,rel:89,relat:[46,76],relationship:49,releas:[51,53,76],relu:[54,55,56,61,68,82,83],relu_:68,remain:[52,53,54,56,57,60,86],remov:[51,52,54,56,57,58,74],remove_contigu:60,remove_dropout:60,remove_to:60,render:74,rent:77,repack:63,repeat:[68,89],replac:[53,57,60],replication_pad1d:68,replication_pad2d:68,replication_pad3d:68,report:[23,44],reportable_log_level:69,repositori:[52,54,57,64,74,81,88],repres:[47,48,58,66,69,76],represent:[52,53,54,56,57,60,66,82],request:[51,52,53,54,55,71,83,88],requir:[30,48,51,52,53,54,55,56,57,58,59,60,69,71,72,74,83,86,87,88,89],require_full_compil:[45,48,52,54,56,57,72],requires_grad:68,resampi:51,research:[52,54,56,57],reserv:[42,43,44,45,51,52,53,54,55,56,57,58],reset:44,reshap:[68,88],residu:54,resiz:[52,54,55,88],resnet50:[54,55,57,88],resnet50_model:[54,55],resnet:[55,57,63,88],resnet_trt:63,resolv:[52,54,55,59,60,62,64],resolve_data_config:52,resourc:[51,54,55,56,57,59,86],respons:[30,52,54,55,58,63,76],respositori:53,rest:[76,77],restor:51,restrict:[48,72],restructuredtext:[76,77],result:[51,52,53,54,55,56,58,59,60,69,72,74,82,84,88],results_per_input:57,ret:60,rethink:52,return_tensor:53,reus:[60,86],revert:74,revis:[76,77],revisit:76,rfc:76,rgb:[52,54],rho_:76,rhoncu:79,right:[42,43,44,45,51,52,53,54,55,56,57,58,60,64,66,76],risu:79,rm:88,rn50_preprocess:[54,55,88],role:76,roll:68,roman:77,room:76,root:[42,43,44,45,51,52,53,54,55,56,57,58,74,85,86],roughli:61,round:[48,58,72],round_:58,rounding_mod:68,row:77,rsa:51,rst:[74,76],rsub:68,rtol:89,ruamel:51,rule:[72,85],ruler:76,run:[1,37,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,67,71,72,76,82,83,84,85,86,87,88,89,90,91],runner:51,running_loss:58,running_mean:68,running_var:68,runtim:[51,52,54,55,56,57,67,83],rutrum:[77,79],s3:[52,54,55],s3transfer:51,s:[47,48,57,58,61,63,66,67,71,74,76,77,82,83,84,86,88],sacrebleu:51,sacremos:[51,53],safe:[66,72],safe_dla:71,safe_gpu:71,safeti:[48,71,89],sage:76,sagitti:[77,79],sai:[55,77],said:76,same:[52,54,55,57,63,74,76,82,83,85,88,90],sampl:[51,52,54,76,86,88],sample_r:51,sapien:79,satisfi:[51,52,53,54,55,56,57,61],save:[30,44,51,52,54,55,56,57,58,63,71,72,83,84,87,88,89],save_checkpoint:58,save_restore_connector:51,saw:83,scalar:[66,68],scalaropt_dim:68,scalartyp:[0,45,68],scale:[52,58,68,86],scale_factor:68,scale_grad_by_freq:68,scales_d:68,scales_h:68,scales_w:68,scelerisqu:79,schedul:[58,71,88],schema:[66,83],scientist:76,scikit:[51,57],scikit_imag:57,scipi:[51,57],scope:60,score:[52,54,55,57],scratch:30,scratch_spac:88,screen:74,script:[31,53,57,58,60,61,71,72,82,83,84,90],script_model:[56,82,90],scriptclass:72,scripted_model:91,scriptmodul:[71,72,83],scroll:[74,78],sdk:[51,52,54,56,57,65],se:51,seamlessli:[55,67],search:[53,67,74],second:[52,53,55,60,76],secondli:88,section:[55,58,74,76,77,78,80,83,86,88],secur:[51,85],sed:[77,79],see:[31,51,52,53,54,55,56,57,58,60,63,71,72,76,82,83,85],seen:[76,77],segment:[51,61],segments_tensor:53,select:[17,29,30,37,48,52,54,56,57,63,68,71,72,75,78,85,86,89],self:[51,53,56,58,60,63,66,68,70,82,83,91],self_1:[63,83],self_int:68,sell:77,seller:75,seller_id:75,sem:79,semant:76,semper:79,send2trash:[51,54,55,56,57],send:88,senectu:79,sens:[76,83],sent:[52,54,55],sentenc:[53,76],sentencepiec:51,sentencepiecetoken:51,sentinel:[0,2],sentri:51,separ:[52,54,56,57,61,62,64],seq_relationship:53,sequenc:[51,53,76],sequenti:[54,55],serial:[33,37,62,64,71,72,83,89],seriali:72,serializ:[63,82],serialized_engin:72,serializinghtml:51,seril:63,serv:[63,67,89],server:51,servic:76,session:76,session_nam:76,set:[3,4,16,21,25,27,30,32,35,37,45,46,47,48,52,54,56,57,58,59,60,61,62,63,64,67,69,71,72,74,78,81,82,83,84,85,86,91],set_data_from_numpi:88,set_devic:[21,38,45,49,71],set_is_colored_output_on:[18,39,42,49,69],set_logging_prefix:[18,39,42,49,69],set_reportable_log_level:[18,39,42,49,53,58,69],set_typecheck_en:51,setalpha:66,setbeta:66,setnam:[66,83],setproctitl:51,setreshapedimens:83,setup:[43,51,58,86,88],setup_multiple_test_data:51,setup_multiple_validation_data:51,setup_test_data:51,setup_training_data:51,setup_validation_data:51,setuptool:[51,54,55,56,57],sever:[16,26,53,69],sgd:58,sh:85,sha256:85,shape:[45,47,48,51,52,53,54,56,57,58,61,66,68,71,72,84,88,89,91],shape_mod:71,share:85,shell_command:76,shellingham:51,shift:[68,76,85],ship:[58,83,87],shorthand:76,shortuuid:51,should:[0,3,4,30,45,48,52,55,58,59,60,61,62,64,66,67,69,71,74,76,79,86,88,89],show:[57,74,76],showcas:[52,54,55],shown:[53,74,76,83],shuffl:[51,58,83,86],shutterstock_780480850:[52,54,55],siberian:[52,54,55],siberian_huski:[54,55],side:[60,74,83],sidebar:[74,80],sigmoid:68,sigmoid_:68,sign:88,signatur:72,signifi:[47,60],signific:[57,58,76],significantli:[60,74],similar:[57,66,83,87,90],simonyan:86,simpil:86,simpl:[51,52,53,54,56,57,58,76,77,82,88],simplejson:51,simplest:[53,88],simpli:[55,56,60],simplic:[52,54,57],simplifi:59,simul:58,sin:[68,76],sinc:[53,56,60,76,82,83,86],sing:76,singl:[47,48,53,56,60,71,76,82,83,86,89],singular:66,sinh:68,sink:76,sit:[77,79],site:[51,52,53,54,55,56,57,58,60,76,83,85],six:[51,53,54,55,56,57,76],sixth:77,size:[3,4,44,47,48,51,52,53,54,55,56,57,58,60,61,68,71,72,74,83,86,89,91],size_t:[3,4,44,86],skip:89,slash:74,slice:68,slither:[52,54,55],sm:63,sm_output:[52,54,55],small:[58,60,88],smaller:51,smallest:53,smi:[51,52,54,55,56],smmap:51,snake:[52,54,55],snowballstemm:51,so:[0,44,52,54,55,56,58,59,60,63,64,66,67,75,76,77,83,85,86,89],sodal:79,softmax:[52,54,55,57,58,60,68],softwar:[51,52,53,54,55,56,57,58,76],sole:86,sollicitudin:79,solv:88,some:[52,53,54,59,60,62,63,64,66,75,76,83,86],some_funct:76,someth:[43,60,76,88],someurl:76,sort:[66,68,90],sortedcontain:51,soundfil:51,soupsiev:[51,55],sourc:[42,43,44,45,52,54,57,64,69,70,71,72],sourceforg:[76,77],sox:51,space:[76,77,86],spaces_and_linebreak:76,span:77,spars:[68,89],sparse_weight:[45,48,72],sparsiti:[48,72,89],speak:53,speaker:53,spec:[47,48,52,54,56,57,69,71,72,89,90],specif:[32,48,51,52,53,54,55,56,57,58,60,62,64,71,72,76],specifi:[3,4,48,52,53,54,55,56,57,58,66,67,69,71,72,74,76,84,88,89,90],specifii:71,speech:51,speed:[51,52,53,54,55,57],speed_m:[51,53],speed_mean:[51,53],speedup:[51,52,53,54],sphinx:[51,74,75,76,77,81],sphinx_rtd_them:[76,77],sphinxcontrib:51,spin:88,spirit:76,split:[53,68],split_siz:68,split_with_s:68,sqrt:68,squeez:[51,68],sr:51,src:[63,65,68],ss:44,ssd300:57,ssd300_trt:63,ssd:63,ssd_300_trace:57,ssd_pyt_ckpt_amp:57,ssd_trace:89,ssd_trt:89,sstream:[20,44],stabl:[58,65,74],stack:[51,55,57,58,63,68,86],stage:59,stand:[63,76],standalon:76,standard:[52,53,54,55,56,57,63,67,76,87,89,90],stapl:77,start:[53,55,57,58,59,61,68,77,85,90],start_dim:[68,83],start_step:68,start_tim:[51,52,53,54,55,56,57,58],startswith:58,stat:58,state:[51,52,53,54,58,59,66,83],state_dict:58,statement:[60,76],static_cast:44,statist:[53,58],statu:[44,77],std:[3,4,22,26,28,29,30,31,33,34,37,42,44,45,47,48,51,52,53,54,55,61,83,86,88,91],std_dev:[51,53],stderr:58,stdout:[36,69,71],steamlin:86,step:[51,52,53,54,55,56,57,58,67,68,86],stft:51,stick:74,sticki:[74,80],sticky_navig:[74,78],still:[44,57,61,86],stitch:[56,61,83],stop:83,storag:86,store:[2,4,59,63,66,82,83],str:[19,43,44,49,52,54,55,68,69,71,72],straight:66,strang:76,strategi:[53,71],stream:[52,54,55],street:77,strict:87,stride:[54,55,56,57,58,68],string:[3,4,18,20,21,22,26,28,29,30,31,33,34,37,42,44,45,48,61,63,66,71,74,83,86],stringstream:44,strip_prefix:85,strong:[52,54,56,57,76],strongli:76,struct:[1,21,38,41,45,86],structur:[30,46,48,52,54,56,57,61,64,66,74,76,80,82,88],structuredtext:76,stt_en_citrinet_256:51,stt_en_citrinet_256_bs128_torch:51,stt_en_citrinet_256_bs1_torch:51,stt_en_citrinet_256_bs32_torch:51,stt_en_citrinet_256_bs8_torch:51,stub:77,stuff:76,style:[42,43,44,45,74,76,77],style_external_link:74,sub:[68,76,82],sub_:68,subdirectori:50,subexpress:60,subgraph:[48,59,60,66,83,89],subject:64,submenu:80,submodul:[56,82],subplot:[52,54,55,57],subscript:76,subsect:76,subset:[58,86],substitut:76,subtitl:76,subtre:81,subword:51,successfulli:[51,52,54,56,57],sudo:85,suffic:60,suggest:88,suit:[55,67],sum:[48,58,68,72],summari:53,summarywrit:58,superscript:76,suppli:76,support:[0,1,2,27,31,46,47,48,52,54,55,56,57,58,61,65,67,71,72,74,75,82,83,85,88,89,91],sure:[83,84,85,88,91],suscipit:[77,79],suspendiss:79,swap:51,sy:58,symbol:[33,72,76,85,87],symlink:81,sympi:51,synchron:[51,52,53,54,55,56,57,58],system:[51,52,53,54,55,56,57,59,66,67,72,85],t1:68,t2:68,t:[0,1,2,45,46,55,56,58,60,66,68,74,76,77,82,83,85,86,88],t_:76,tabl:[80,85],tabul:51,tag:[76,88],take:[31,32,33,37,51,52,54,56,57,59,62,63,64,66,71,72,74,76,83,86,90],taken:[52,54,57,76],talk:67,tan:68,tanh:68,tanh_:68,tar:[76,85,86],tarbal:[83,86],target:[1,33,45,46,47,48,52,54,55,56,57,63,64,67,71,72,84,86,89,90,91],targets_:86,tarred_audio_filepath:51,task:[29,30,51,53,86],techinqu:83,techniqu:[58,86],tell:[60,61,62,63,64,66,76],tellu:79,tem:89,temp:[51,52,54,55,56],templat:[20,40,44,45,49,74,83],tempu:79,tensor:[2,33,44,45,47,48,51,52,53,54,55,56,57,58,59,60,61,63,66,68,71,72,82,83,86],tensor_mod:68,tensor_qu:58,tensor_quant:58,tensor_scalar:68,tensor_tensor:68,tensorboard:[51,58],tensorcontain:66,tensorformat:[21,38,45,47,49,71],tensorformatenum:49,tensorlist:[61,66],tensorquant:58,tensorrt:[0,1,3,4,29,30,31,32,33,36,37,44,45,46,47,48,53,59,60,61,62,64,66,70,71,72,82,86,89],tensorrtcompilespec:[72,90],teo:89,term:[55,71,76,77,86],termin:[27,83,89],terminado:[51,54,55,56,57],test:[51,52,53,54,55,56,57,58,64,76,77,86,88,89],test_acc:58,test_loss:58,test_pr:58,test_prob:58,test_ptq_dataloader_calibr:86,test_ptq_trt_calibr:86,test_py_modul:[76,80],testing_dataload:[58,86],testing_dataset:[58,86],testpath:[51,54,56,57],text:[51,53,57,69,77,79],tf32:[48,89],tgz:85,than:[51,53,55,60,67,75,76,87],thats:[59,86],the_model_repositori:88,thei:[46,53,57,58,59,60,63,66,71,74,76,85,89],them:[51,52,53,54,56,57,60,61,63,74,83,85],theori:[59,76],therebi:63,therefor:[30,51,52,54,56,57,63,76,83],theres:87,therfor:87,theta:76,thi:[0,1,2,29,30,42,43,44,45,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,71,72,74,75,76,78,79,82,83,85,86,87,88,89,90],thicker:76,thin:76,thing1:76,thing2:76,thing3:76,thing:[56,76,85],think:[66,76],third:[55,77],third_parti:[64,85],those:[53,59,76],though:[57,64,66,82,83,89],thought:76,threadpoolctl:51,three:[47,55,62,64,71,76,77,88],threshold:89,through:[47,51,52,53,54,55,56,57,59,60,61,63,67,69,70,76,83],throughout:[52,54],throughput:52,thrown:[48,72],thu:[51,56,76],tifffil:57,time:[48,51,52,53,54,55,56,57,58,59,60,62,63,64,66,72,74,76,83,86,89],time_99th:[51,53],time_m:[51,53],time_mean:[51,53],time_std:[51,53],timegraph:[51,53],timeit:[51,53],timeout:51,timm:[52,54],tincidunt:79,tini:86,tinycss2:55,titan:[51,52,54,56,57],titl:[52,54,55],titles_onli:74,tmp:83,toctre:74,tocustomclass:66,todim:83,todo:74,togeth:[56,59,66,83],toilet:[52,54,55],token:[51,53],token_type_id:53,tokens_tensor:53,toler:89,toml:51,tomli:57,too:[74,76,77,85],took:53,tool:[52,53,54,56,57,66,83],toolchain:[64,85],toolkit:[51,54,55,56,57,58],top:[57,64,74,78],topk:68,topolog:53,torch:[0,1,2,4,20,29,30,31,32,33,36,37,44,45,46,47,48,53,59,60,61,62,63,64,66,71,72,82,85,86,89,91],torch_executed_modul:[45,48,61,72],torch_executed_op:[45,48,61,72],torch_scirpt_modul:82,torch_script_modul:83,torch_tensorrt:[0,1,2,3,4,14,16,17,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,61,67,83,84,86,87,88,89,90,91],torch_tensorrt_major_vers:[19,43,49],torch_tensorrt_minor_vers:[19,43,49],torch_tensorrt_patch_vers:[19,43,49],torch_tensorrt_vers:[19,43,49],torch_tensorrtfil:49,torch_tensorrtnamespac:49,torchbind:63,torchhub:[57,88],torchmetr:51,torchscript:[19,21,38,43,45,48,49,51,52,53,54,55,57,58,62,63,64,71,72,84,89,90,91],torchscriptstruct:49,torchtrt:[43,51,61],torchtrt_api:[19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,42,43,44,45,49],torchtrt_check:66,torchtrt_hidden:[19,43,49],torchtrt_runtime_exampl:87,torchtrt_unus:66,torchtrtc:[67,91],torchvis:[51,52,54,55,58,63,86,88,90],tornado:[51,54,55,56,57],toronto:86,tortor:79,total:58,totensor:[52,54,55,58,86,88],tovec:83,toward:86,tqdm:[51,53,58],trace:[51,53,57,58,61,72,82,83,84],traced_mlm_model:53,traced_model:[56,57,82],tracerwarn:58,track:[66,86],track_running_stat:[54,55],trade:57,tradit:[47,72,86],traget:32,trail:74,train:[29,30,48,51,52,53,54,57,67,68,83,84,89],trainabl:60,trained_vgg16_qat:58,trainer:51,training_dataload:58,training_dataset:58,traitlet:[51,54,55,56,57],transcrib:51,transfer:75,transform:[51,52,54,55,56,57,58,83,86,88],transformed_img:88,transforms_factori:52,translat:[57,83],transmit:76,transpos:68,trash:76,travers:[62,64],treat:[58,89],tree:[42,43,44,45,51,74,86,87],trigger:[56,83],trim:86,trim_sil:51,tristiqu:79,triton:67,triton_to_np_dtyp:88,tritoncli:88,tritonserv:88,trt:[0,1,3,4,46,47,51,59,60,63,66,68,83],trt_lenet_script:83,trt_mod:[58,61,83,86,91],trt_model:[53,57,61,88,90],trt_model_fp16:[52,53,54],trt_model_fp32:[52,54],trt_model_with_d:55,trt_model_without_d:55,trt_script_modul:56,trt_ts_modul:[51,56,61,84],trtorch:51,truck:58,truncat:[48,72,89],truncate_long_and_doubl:[45,48,51,53,72],trust:[54,55,56,57,58],ts:[43,51,56,61,67,71,82,83,84,89,90],ts_model:[61,83],tt:76,tue:[54,77],tune:[51,52,54,56,57,58],tupl:[63,71,72],tupleconstruct:[60,63],tupleunpack:60,turn:51,turpi:79,tutori:[52,54,55,82,86],two:[51,56,57,60,66,76,77,81,82,85,86,88,89],type:[0,1,2,29,47,48,49,51,52,53,54,55,56,57,58,59,63,66,69,71,72,76,83,86,89],type_fp32:88,typecheck:51,typenam:[3,4,29,30,44],typer:51,typic:[59,66,88],typing_extens:52,ubuntu:[51,85],ugli:76,ui:75,uint64_t:[45,48],ultric:79,un:[52,54,86],unabl:[66,83],unbind:68,unbroken:76,uncas:53,unchang:53,uncom:85,uncorr:[51,52,54,55,56],undefin:57,under:[42,43,44,45,51,52,53,54,55,56,57,58,64,76,84],underli:[0,1,2,46,66],understand:[52,54],unidecod:51,union:[66,71,72,83],uniqu:4,unique_ptr:[4,29],unit:[53,56],univers:76,unknown:71,unless:[51,52,53,54,55,56,57,58],unlik:[55,67,85,90],unlimit:74,unmask:53,unmasked_sent:53,unmasked_sentences_trt:53,unmasked_token:53,unmasked_tokens_trt:53,unpack_addmm:60,unpack_log_softmax:60,unqiue_ptr:4,unreferenc:76,unrestrict:76,unsign:58,unsqueez:[52,54,55,68],unstabl:64,unsupport:[31,48],unsur:66,untest:64,until:[55,59,64,66,85],unwrap:66,unwraptodoubl:66,unwraptoint:83,unzip:85,up:[51,52,53,54,56,57,58,59,60,62,63,64,76,82],updat:[51,55,58],upgrad:51,upload:[52,54,55,88],upon:74,upper:[58,77],upsample_bilinear2d:68,upsample_linear1d:68,upsample_nearest1d:68,upsample_nearest2d:68,upsample_nearest3d:68,upsample_trilinear3d:68,upscale_factor:68,upstream:83,uri:[57,76],url:[74,85,88],urllib3:[51,53],urna:79,us:[0,1,2,3,4,29,30,32,35,37,43,44,45,46,47,48,51,52,53,54,56,57,59,61,63,64,66,67,69,70,71,72,74,75,76,77,82,86,87,88,89,91],usag:[51,52,54,55,56,70,76,83],use_amp:51,use_cach:[3,4,29,44,70,86],use_cache_:44,use_fb_fake_qu:58,use_input_stat:68,use_start_end_token:51,use_subset:86,usecas:85,user:[42,47,48,51,52,53,54,55,56,57,61,62,63,64,76,77,83,85,86,88],userguid:58,userwarn:[51,52,57],using_int:[68,83],usr:85,usual:[57,58,74],ut:79,utf:[76,77],util:[52,54,56,58,66,72,83,86,88],v0:[54,55,73,88],v1:51,v2:[29,30,57],v8:85,v:[51,52,53,54,56,57,77,88,89],val2017:57,val:[57,58],valid:[1,46,51,56,57,58,66],valu:[0,1,2,16,17,45,46,47,53,56,58,59,63,66,68,69,70,71,74,83],value_tensor_map:[59,66],vari:[52,53,54,55],variabl:[47,71],variant:[51,87],varient:60,varieti:88,variou:[51,91],variu:79,vcs_pageview_mod:74,vec:68,vector:[20,21,44,45,47,48,61,63,83,86,91],vehicula:79,vel:79,velit:79,venenati:79,venv:[51,52,53,54,55,56,57],verbios:89,verbos:[77,89],veri:[58,77,78,86,88,90],verifi:[53,58,61],version:[34,36,51,52,53,54,55,56,57,58,64,74,77,85,88],vertic:[74,76],vestibulum:[77,79],vgg16:[58,86],vgg16_base_ckpt:58,vgg16_qat_ckpt:58,vgg:[57,58,86],vi:76,via:[51,55,57,67,71,72,74,80,84,86,87],view:[68,74],vine_snak:52,virtual:[51,52,53,54,55,56,57,86],vision:[52,53,54,55,88],visit:[52,54,55,57],visitor:74,visual:55,vita:[77,79],vivamu:79,viverra:79,vm:77,volatil:[51,52,54,55,56],volta:[52,54,56,57],volutpat:79,vs:[0,1,2,46,60,72,90],vulput:79,w1109:58,w:[51,52,54,57,89],w_hh:68,w_ih:68,wa:[51,52,53,54,56,57,60,63,76,83],wai:[52,54,58,82,83,85,86,89],walk:[51,52,53,54,56,57],walkthrough:55,wandb:51,want:[42,52,54,56,57,61,82,83,86,88,90],warm:[51,52,53,54,55,56,57,58],warn:[16,44,51,52,53,54,55,56,57,58,66,69,89],warranti:[51,52,53,54,55,56,57,58],wash:76,wcwidth:[51,54,55,56,57],we:[42,44,51,52,53,54,55,56,57,58,59,60,62,63,64,66,74,76,82,83,86,88],weak:76,web:76,webdataset:51,webencod:[51,54,55,56,57],websit:85,weight:[47,48,53,58,59,68,72,76,83,89],weight_decai:58,welcom:83,welecom:[52,54],well:[48,52,53,54,56,57,69,76,83,85,86],were:[53,57,83],werkzeug:51,wget:[51,52,54,55,88],what:[4,57,60,76,82,83],whatev:63,wheel:[51,85],when:[27,44,45,46,52,53,54,56,57,58,59,60,62,63,64,66,69,71,72,74,76,78,82,83,85,86,89],where:[51,52,54,56,59,60,66,72,77,83,86],whether:[4,71,75,86,89],which:[1,2,30,32,37,46,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,70,72,74,76,77,82,83,84,85,86,87,88,90],white:[57,76],whitespac:76,whl:[52,54,56,57,85],who:76,whole:[52,54,56,57],whose:60,why:76,wide:[55,80],widespread:53,widget:[51,54,55,56,57],widgetsnbextens:[51,54,55,56,57],width:[52,54,55,76],window:76,window_nam:76,wish:77,wit:51,within:[51,52,53,54,55,56,57,62,64,72,74,76],without:[51,52,53,54,56,57,58,66,74,76,83,86],wl:87,won:55,wooden:76,word:[51,53,76],wordninja:51,work:[44,56,60,64,66,76,77,86],worker:86,workflow:[58,90],workspac:[48,72,85,86,89,91],workspace_s:[45,48,51,52,53,54,55,57,72,86,89,91],world:[52,54,56,57,76],would:[66,83,85,87,88,89,90],wp:[52,54,55,88],wrap:[58,62,63,64,76,79,83,90],wrapper:66,wrapt:51,write:[3,4,29,30,44,51,52,53,54,55,56,57,58,59,67,76,83,86,88],write_calibration_cach:70,writecalibrationcach:[3,4,44],writer:58,written:[52,54],wrote:76,www:[51,52,53,54,55,56,57,58,74,76,83,85,86,88],x64:85,x86:87,x86_64:[64,85],x9:60,x:[5,10,33,43,52,54,56,57,58,60,72,77,82,83,85],x_0:76,x_1:76,x_2:76,x_3:76,x_4:76,x_:76,xavier:[45,52,54,56,57,91],xstr:[19,43,49],xx:88,y:[33,51,57,72,77],yahoo:77,yaml:[51,65],yarg:51,yarl:51,year:51,yield:53,you:[0,1,2,29,30,46,47,48,51,52,53,54,55,56,57,58,59,60,61,63,64,66,67,71,72,74,76,77,78,82,83,84,85,86,87,88,89,90],your:[51,52,53,54,55,56,57,58,66,67,74,76,77,81,82,83,84,85,87,90],yourself:[52,53,54,83],youtokentom:51,yy:[51,88],z:77,zero_grad:58,zero_point:68,zeroth:55,zip:[54,57,63,85],zipp:[51,54,55,56,57],zisserman:86},titles:["Class DataType","Class Device::DeviceType","Class TensorFormat","Template Class Int8CacheCalibrator","Template Class Int8Calibrator","Define STR","Define TORCH_TENSORRT_PATCH_VERSION","Define TORCH_TENSORRT_MAJOR_VERSION","Define TORCH_TENSORRT_MINOR_VERSION","Define TORCHTRT_API","Define XSTR","Define TORCHTRT_HIDDEN","Define TORCH_TENSORRT_VERSION","Directory cpp","Directory include","Directory torch_tensorrt","Enum Level","Enum EngineCapability","File logging.h","File macros.h","File ptq.h","File torch_tensorrt.h","Function torch_tensorrt::logging::get_logging_prefix","Function torch_tensorrt::logging::get_reportable_log_level","Function torch_tensorrt::logging::get_is_colored_output_on","Function torch_tensorrt::logging::set_reportable_log_level","Function torch_tensorrt::logging::log","Function torch_tensorrt::logging::set_is_colored_output_on","Function torch_tensorrt::logging::set_logging_prefix","Template Function torch_tensorrt::ptq::make_int8_calibrator","Template Function torch_tensorrt::ptq::make_int8_cache_calibrator","Function torch_tensorrt::torchscript::check_method_operator_support","Function torch_tensorrt::torchscript::compile","Function torch_tensorrt::torchscript::embed_engine_in_new_module","Function torch_tensorrt::get_build_info","Function torch_tensorrt::set_device","Function torch_tensorrt::dump_build_info","Function torch_tensorrt::torchscript::convert_method_to_trt_engine","Namespace torch_tensorrt","Namespace torch_tensorrt::logging","Namespace torch_tensorrt::ptq","Namespace torch_tensorrt::torchscript","Program Listing for File logging.h","Program Listing for File macros.h","Program Listing for File ptq.h","Program Listing for File torch_tensorrt.h","Struct Device","Struct Input","Struct CompileSpec","Torch-TensorRT C++ API","Full API","Torch-TensorRT Getting Started - CitriNet","Torch-TensorRT Getting Started - EfficientNet-B0","Masked Language Modeling (MLM) with Hugging Face BERT Transformer","Torch-TensorRT Getting Started - ResNet 50","Torch-TensorRT - Using Dynamic Shapes","Torch-TensorRT Getting Started - LeNet","Object Detection with Torch-TensorRT (SSD)","Deploying Quantization Aware Trained models in INT8 using Torch-TensorRT","Conversion Phase","Lowering Phase","Partitioning Phase","Compiler Phases","Runtime Phase","System Overview","Useful Links for Torch-TensorRT Development","Writing Converters","Torch-TensorRT","Operators Supported","torch_tensorrt.logging","torch_tensorrt.ptq","torch_tensorrt","torch_tensorrt.ts","Changelog","Configuration","5. :mod:`test_py_module`","3. Paragraph Level Markup","4. Lists & Tables","1. Long Sticky Nav","1. Structural Elements","<no title>","Installation","Creating a TorchScript Module","Getting Started with C++","Using Torch-TensorRT in Python","Installation","Post Training Quantization (PTQ)","Deploying Torch-TensorRT Programs","Serving a Torch-TensorRT model with Triton","torchtrtc","Using Torch-TensorRT Directly From PyTorch","DLA"],titleterms:{"1":[78,88],"10":78,"11":78,"12":78,"13":78,"14":78,"15":78,"16":78,"17":78,"18":78,"19":78,"2":[78,79,88],"20":78,"3":[78,88],"4":78,"5":78,"50":54,"6":[57,78],"7":[57,78],"8":78,"9":78,"class":[0,1,2,3,4,20,21,38,40,41,49,70,71],"enum":[16,17,18,21,38,39,49,70,71],"function":[18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,49,55,65,71,72],"long":[78,80],A:76,And:76,But:77,By:[18,19],Or:60,The:[76,83],To:60,aarch64:85,abi:[63,85],addmm:60,admonit:76,advic:66,ahead:67,an:80,api:[49,50,65,67,85],applic:86,arg:[66,75],automat:61,avail:65,awar:58,b0:52,background:[63,66],base:[3,4,74],benchmark:[51,55,57,58],bert:53,binari:85,block:76,branch:60,build:[55,74,85,88],bullet:77,c:[49,65,67,83,85,86],can:77,caption:[77,80],center:76,ch:76,changelog:73,check_method_operator_support:31,choos:85,citat:[76,86],citrinet:51,cli:85,client:88,code:[60,76],compil:[32,62,64,67,83,85],compilespec:48,compound:76,conclus:[56,57],configur:74,construct:63,content:[18,19,20,21,38,39,40,41,51,52,53,54,56,57,74,75,76,77,78,79],context:[66,74],contigu:60,contract:66,contributor:67,convers:[59,62,64,66],convert:[59,66,68,83],convert_method_to_trt_engin:37,cpp:[13,18,19,20,21,61],creat:[82,86],creativ:76,cudnn:85,current:68,custom:83,cxx11:85,data:[55,75],datatyp:0,dead:60,debug:85,deeper:77,defin:[5,6,7,8,9,10,11,12,19,49],definit:[18,19,20,21,77],demo:80,depend:85,deploi:[58,87],descript:[52,54,57],deseri:63,detail:57,detect:57,detector:57,develop:65,devic:[1,46],devicetyp:1,dimens:65,direct:76,directli:90,directori:[13,14,15,50],disk:82,distribut:85,dla:91,doctest:76,documen:67,document:[0,1,2,3,4,5,6,7,8,9,10,11,12,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,65,67,79,80],down:77,download:[55,76,81],dr:55,dropout:60,dump_build_info:36,dynam:55,easier:65,efficientnet:52,element:79,elimin:60,eliminatecommonsubexpress:60,embed_engine_in_new_modul:33,emphas:76,engin:63,enginecap:17,enumer:77,envior:85,evalu:[59,68],exampl:[76,78],execept:60,executor:63,expect:65,explan:55,face:53,fallback:[60,61],field:77,figur:76,file:[15,18,19,20,21,42,43,44,45,49,50],flatten:60,footnot:76,format:63,fp16:[51,52,54],fp32:[51,52,54],freez:60,from:[55,85,90],full:[49,50],fuse:60,gaurd:60,gener:75,get:[51,52,54,55,56,67,83],get_build_info:34,get_is_colored_output_on:24,get_logging_prefix:22,get_reportable_log_level:23,giant:77,git:81,glossari:76,gpu:67,graph:[60,63],grid:77,guarante:66,h:[18,19,20,21,42,43,44,45,61],half:[51,52,54],have:77,hierarchi:49,hlist:77,hole:77,hood:83,how:[74,86],html:74,hub:55,hug:53,ien:76,imag:[76,77],includ:[14,18,19,20,21],incred:80,index:75,indic:67,infer:[57,88],inherit:[3,4],inlin:76,input:47,instal:[81,85],int8:58,int8cachecalibr:3,int8calibr:4,ir:65,jetson:85,jit:67,languag:53,layer:65,learn:[51,52,53,54,56,57],lenet:56,level:[16,74,76,77],librari:[85,87],libtorchtrt:87,like:77,line:76,linear:60,link:[65,76],list:[42,43,44,45,77],liter:76,local:85,log:[18,22,23,24,25,26,27,28,39,42,69],logsoftmax:60,loop:60,lower:[60,62,64],macro:[19,43],make_int8_cache_calibr:30,make_int8_calibr:29,markup:76,mask:53,math:76,measur:57,menu:[78,80],meta:76,mlm:53,mod:75,model:[52,53,54,55,56,57,58,88],modul:[60,82,83],multibox:57,namespac:[18,19,20,21,38,39,40,41,49],nativ:85,native_op:65,nav:78,nest:[1,46],next:[51,52,53,54,55,56],node:59,number:[76,77],nvidia:67,object:[51,52,53,54,56,57],one:77,op:63,oper:[68,83],optim:88,optimz:60,option:[74,75,77],other:66,overview:[51,52,54,56,57,58,64],own:86,packag:[85,87],page:74,paragraph:[76,79],paramet:75,partit:[61,62,64],partitoninfo:61,pass:60,pattern:60,peephol:60,perform:58,phase:[59,60,61,62,63,64],plugin:87,post:86,pre:85,precis:[51,52,54],precompil:85,prerequisit:85,program:[42,43,44,45,87],project:74,ptq:[20,29,30,40,44,70,86],python:[65,67,82,84,85,86],pytorch:[56,65,67,90],quantiz:[58,86],queri:88,quickstart:83,quot:76,rabbit:77,read:65,redund:60,refer:[57,76],regist:83,relationship:[1,3,4,46],releas:85,remov:60,replac:76,resnet:54,respons:66,result:[57,63],right:85,rubric:76,runtim:[62,63,64,87],s:[51,52,53,54,55,56],sampl:[55,57],save:82,script:56,second:77,section:79,segmentedblock:61,serial:63,serv:88,server:88,set:[55,88],set_devic:35,set_is_colored_output_on:27,set_logging_prefix:28,set_reportable_log_level:25,setup:85,shape:55,shape_analysi:61,shot:57,sidebar:76,simpl:55,singl:[51,52,54,57],so:87,sometim:65,sourc:85,speedup:57,ssd:57,start:[51,52,54,56,67,83],step:88,sticki:78,str:5,struct:[46,47,48,49],structur:79,subdirectori:[13,14],submenu:78,submodul:71,subsect:79,subsubmenu:78,subsubsect:79,support:68,system:64,tabl:[74,75,76,77,78,79],tarbal:85,target:76,templat:[3,4,29,30],tensorformat:2,tensorrt:[49,51,52,54,55,56,57,58,63,65,67,83,84,85,87,88,90],test_py_modul:75,text:76,theme:[74,80],thi:[77,80],through:68,time:67,titl:76,tl:55,toc:74,topic:76,torch:[49,51,52,54,55,56,57,58,65,67,83,84,87,88,90],torch_tensorrt:[15,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,45,69,70,71,72],torch_tensorrt_major_vers:7,torch_tensorrt_minor_vers:8,torch_tensorrt_patch_vers:6,torch_tensorrt_vers:12,torchscript:[31,32,33,37,41,56,67,82,83],torchtrt_api:9,torchtrt_hidden:11,torchtrtc:[83,89],trace:56,train:[58,86],transform:53,triton:88,trt:55,ts:72,tupl:60,type:[3,4,46],under:83,unpack:60,unrol:60,unsupport:83,up:[55,88],us:[55,58,60,65,83,84,85,90],util:[51,55,57],version:63,via:81,visual:57,wai:76,weight:66,what:[51,52,53,54,55,56,66],wide:74,without:55,work:[55,82,83],write:66,xstr:10,your:[86,88]}}) \ No newline at end of file +Search.setIndex({docnames:["_cpp_api/classtorch__tensorrt_1_1DataType","_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType","_cpp_api/classtorch__tensorrt_1_1TensorFormat","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator","_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502","_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268","_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e","_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827","_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b","_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da","_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59","_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883","_cpp_api/dir_cpp","_cpp_api/dir_cpp_include","_cpp_api/dir_cpp_include_torch_tensorrt","_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558","_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb","_cpp_api/file_cpp_include_torch_tensorrt_logging.h","_cpp_api/file_cpp_include_torch_tensorrt_macros.h","_cpp_api/file_cpp_include_torch_tensorrt_ptq.h","_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h","_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3","_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650","_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a","_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2","_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8","_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5","_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc","_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039","_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa","_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797","_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9","_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef","_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528","_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384","_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1","_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2","_cpp_api/namespace_torch_tensorrt","_cpp_api/namespace_torch_tensorrt__logging","_cpp_api/namespace_torch_tensorrt__ptq","_cpp_api/namespace_torch_tensorrt__torchscript","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h","_cpp_api/structtorch__tensorrt_1_1Device","_cpp_api/structtorch__tensorrt_1_1Input","_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec","_cpp_api/torch_tensort_cpp","_cpp_api/unabridged_orphan","_notebooks/CitriNet-example","_notebooks/EfficientNet-example","_notebooks/Hugging-Face-BERT","_notebooks/Resnet50-example","_notebooks/dynamic-shapes","_notebooks/getting_started_with_fx_path_module","_notebooks/lenet-getting-started","_notebooks/ssd-object-detection-demo","_notebooks/vgg-qat","contributors/conversion","contributors/lowering","contributors/partitioning","contributors/phases","contributors/runtime","contributors/system_overview","contributors/useful_links","contributors/writing_converters","index","indices/supported_ops","py_api/logging","py_api/ptq","py_api/torch_tensorrt","py_api/ts","src/pytorch-sphinx-theme/docs/changelog","src/pytorch-sphinx-theme/docs/configuring","src/pytorch-sphinx-theme/docs/demo/api","src/pytorch-sphinx-theme/docs/demo/demo","src/pytorch-sphinx-theme/docs/demo/lists_tables","src/pytorch-sphinx-theme/docs/demo/long","src/pytorch-sphinx-theme/docs/demo/structure","src/pytorch-sphinx-theme/docs/index","src/pytorch-sphinx-theme/docs/installing","tutorials/creating_torchscript_module_in_python","tutorials/getting_started_with_cpp_api","tutorials/getting_started_with_fx_path","tutorials/getting_started_with_python_api","tutorials/installation","tutorials/ptq","tutorials/runtime","tutorials/serving_torch_tensorrt_with_triton","tutorials/torchtrtc","tutorials/use_from_pytorch","tutorials/using_dla"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,nbsphinx:4,sphinx:56},filenames:["_cpp_api/classtorch__tensorrt_1_1DataType.rst","_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.rst","_cpp_api/classtorch__tensorrt_1_1TensorFormat.rst","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.rst","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.rst","_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.rst","_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.rst","_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.rst","_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.rst","_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.rst","_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.rst","_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.rst","_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.rst","_cpp_api/dir_cpp.rst","_cpp_api/dir_cpp_include.rst","_cpp_api/dir_cpp_include_torch_tensorrt.rst","_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.rst","_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.rst","_cpp_api/file_cpp_include_torch_tensorrt_logging.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_macros.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst","_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.rst","_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.rst","_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.rst","_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.rst","_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.rst","_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.rst","_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.rst","_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.rst","_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.rst","_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.rst","_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.rst","_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.rst","_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.rst","_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.rst","_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.rst","_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.rst","_cpp_api/namespace_torch_tensorrt.rst","_cpp_api/namespace_torch_tensorrt__logging.rst","_cpp_api/namespace_torch_tensorrt__ptq.rst","_cpp_api/namespace_torch_tensorrt__torchscript.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst","_cpp_api/structtorch__tensorrt_1_1Device.rst","_cpp_api/structtorch__tensorrt_1_1Input.rst","_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.rst","_cpp_api/torch_tensort_cpp.rst","_cpp_api/unabridged_orphan.rst","_notebooks/CitriNet-example.ipynb","_notebooks/EfficientNet-example.ipynb","_notebooks/Hugging-Face-BERT.ipynb","_notebooks/Resnet50-example.ipynb","_notebooks/dynamic-shapes.ipynb","_notebooks/getting_started_with_fx_path_module.ipynb","_notebooks/lenet-getting-started.ipynb","_notebooks/ssd-object-detection-demo.ipynb","_notebooks/vgg-qat.ipynb","contributors/conversion.rst","contributors/lowering.rst","contributors/partitioning.rst","contributors/phases.rst","contributors/runtime.rst","contributors/system_overview.rst","contributors/useful_links.rst","contributors/writing_converters.rst","index.rst","indices/supported_ops.rst","py_api/logging.rst","py_api/ptq.rst","py_api/torch_tensorrt.rst","py_api/ts.rst","src/pytorch-sphinx-theme/docs/changelog.rst","src/pytorch-sphinx-theme/docs/configuring.rst","src/pytorch-sphinx-theme/docs/demo/api.rst","src/pytorch-sphinx-theme/docs/demo/demo.rst","src/pytorch-sphinx-theme/docs/demo/lists_tables.rst","src/pytorch-sphinx-theme/docs/demo/long.rst","src/pytorch-sphinx-theme/docs/demo/structure.rst","src/pytorch-sphinx-theme/docs/index.rst","src/pytorch-sphinx-theme/docs/installing.rst","tutorials/creating_torchscript_module_in_python.rst","tutorials/getting_started_with_cpp_api.rst","tutorials/getting_started_with_fx_path.rst","tutorials/getting_started_with_python_api.rst","tutorials/installation.rst","tutorials/ptq.rst","tutorials/runtime.rst","tutorials/serving_torch_tensorrt_with_triton.rst","tutorials/torchtrtc.rst","tutorials/use_from_pytorch.rst","tutorials/using_dla.rst"],objects:{"":[[5,0,1,"c.STR","STR"],[9,0,1,"c.TORCHTRT_API","TORCHTRT_API"],[11,0,1,"c.TORCHTRT_HIDDEN","TORCHTRT_HIDDEN"],[7,0,1,"c.TORCH_TENSORRT_MAJOR_VERSION","TORCH_TENSORRT_MAJOR_VERSION"],[8,0,1,"c.TORCH_TENSORRT_MINOR_VERSION","TORCH_TENSORRT_MINOR_VERSION"],[6,0,1,"c.TORCH_TENSORRT_PATCH_VERSION","TORCH_TENSORRT_PATCH_VERSION"],[12,0,1,"c.TORCH_TENSORRT_VERSION","TORCH_TENSORRT_VERSION"],[10,0,1,"c.XSTR","XSTR"],[0,1,1,"_CPPv4N14torch_tensorrt8DataTypeE","torch_tensorrt::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value","torch_tensorrt::DataType::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE","torch_tensorrt::DataType::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEv","torch_tensorrt::DataType::DataType"],[0,3,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value","torch_tensorrt::DataType::DataType::t"],[0,3,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE","torch_tensorrt::DataType::DataType::t"],[0,4,1,"_CPPv4N14torch_tensorrt8DataType5ValueE","torch_tensorrt::DataType::Value"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kBoolE","torch_tensorrt::DataType::Value::kBool"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kCharE","torch_tensorrt::DataType::Value::kChar"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value6kFloatE","torch_tensorrt::DataType::Value::kFloat"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kHalfE","torch_tensorrt::DataType::Value::kHalf"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value4kIntE","torch_tensorrt::DataType::Value::kInt"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE","torch_tensorrt::DataType::Value::kUnknown"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kBoolE","torch_tensorrt::DataType::kBool"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kCharE","torch_tensorrt::DataType::kChar"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value6kFloatE","torch_tensorrt::DataType::kFloat"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kHalfE","torch_tensorrt::DataType::kHalf"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value4kIntE","torch_tensorrt::DataType::kInt"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE","torch_tensorrt::DataType::kUnknown"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypecv5ValueEv","torch_tensorrt::DataType::operator Value"],[0,2,1,"_CPPv4N14torch_tensorrt8DataTypecvbEv","torch_tensorrt::DataType::operator bool"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeneE8DataType","torch_tensorrt::DataType::operator!="],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE","torch_tensorrt::DataType::operator!="],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeneE8DataType","torch_tensorrt::DataType::operator!=::other"],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE","torch_tensorrt::DataType::operator!=::other"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType","torch_tensorrt::DataType::operator=="],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE","torch_tensorrt::DataType::operator=="],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType","torch_tensorrt::DataType::operator==::other"],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE","torch_tensorrt::DataType::operator==::other"],[46,1,1,"_CPPv4N14torch_tensorrt6DeviceE","torch_tensorrt::Device"],[46,2,1,"_CPPv4N14torch_tensorrt6Device6DeviceEv","torch_tensorrt::Device::Device"],[1,1,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypeE","torch_tensorrt::Device::DeviceType"],[46,1,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypeE","torch_tensorrt::Device::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv","torch_tensorrt::Device::DeviceType::DeviceType"],[1,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType::t"],[1,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType::t"],[46,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType::t"],[46,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType::t"],[1,4,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE","torch_tensorrt::Device::DeviceType::Value"],[46,4,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE","torch_tensorrt::Device::DeviceType::Value"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::Value::kDLA"],[46,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::Value::kDLA"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::Value::kGPU"],[46,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::Value::kGPU"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::kDLA"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::kGPU"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv","torch_tensorrt::Device::DeviceType::operator Value"],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv","torch_tensorrt::Device::DeviceType::operator Value"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv","torch_tensorrt::Device::DeviceType::operator bool"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv","torch_tensorrt::Device::DeviceType::operator bool"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!="],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!="],[1,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!=::other"],[46,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!=::other"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator=="],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator=="],[1,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator==::other"],[46,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator==::other"],[46,6,1,"_CPPv4N14torch_tensorrt6Device18allow_gpu_fallbackE","torch_tensorrt::Device::allow_gpu_fallback"],[46,6,1,"_CPPv4N14torch_tensorrt6Device11device_typeE","torch_tensorrt::Device::device_type"],[46,6,1,"_CPPv4N14torch_tensorrt6Device8dla_coreE","torch_tensorrt::Device::dla_core"],[46,6,1,"_CPPv4N14torch_tensorrt6Device6gpu_idE","torch_tensorrt::Device::gpu_id"],[17,4,1,"_CPPv4N14torch_tensorrt16EngineCapabilityE","torch_tensorrt::EngineCapability"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability15kDLA_STANDALONEE","torch_tensorrt::EngineCapability::kDLA_STANDALONE"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability7kSAFETYE","torch_tensorrt::EngineCapability::kSAFETY"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability9kSTANDARDE","torch_tensorrt::EngineCapability::kSTANDARD"],[47,1,1,"_CPPv4N14torch_tensorrt5InputE","torch_tensorrt::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE","torch_tensorrt::Input::Input::tensor"],[47,6,1,"_CPPv4N14torch_tensorrt5Input5dtypeE","torch_tensorrt::Input::dtype"],[47,6,1,"_CPPv4N14torch_tensorrt5Input6formatE","torch_tensorrt::Input::format"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9max_shapeE","torch_tensorrt::Input::max_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9min_shapeE","torch_tensorrt::Input::min_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9opt_shapeE","torch_tensorrt::Input::opt_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input5shapeE","torch_tensorrt::Input::shape"],[2,1,1,"_CPPv4N14torch_tensorrt12TensorFormatE","torch_tensorrt::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value","torch_tensorrt::TensorFormat::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE","torch_tensorrt::TensorFormat::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEv","torch_tensorrt::TensorFormat::TensorFormat"],[2,3,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value","torch_tensorrt::TensorFormat::TensorFormat::t"],[2,3,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE","torch_tensorrt::TensorFormat::TensorFormat::t"],[2,4,1,"_CPPv4N14torch_tensorrt12TensorFormat5ValueE","torch_tensorrt::TensorFormat::Value"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE","torch_tensorrt::TensorFormat::Value::kChannelsLast"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE","torch_tensorrt::TensorFormat::Value::kContiguous"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE","torch_tensorrt::TensorFormat::Value::kUnknown"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE","torch_tensorrt::TensorFormat::kChannelsLast"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE","torch_tensorrt::TensorFormat::kContiguous"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE","torch_tensorrt::TensorFormat::kUnknown"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatcv5ValueEv","torch_tensorrt::TensorFormat::operator Value"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormatcvbEv","torch_tensorrt::TensorFormat::operator bool"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat","torch_tensorrt::TensorFormat::operator!="],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator!="],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat","torch_tensorrt::TensorFormat::operator!=::other"],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator!=::other"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat","torch_tensorrt::TensorFormat::operator=="],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator=="],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat","torch_tensorrt::TensorFormat::operator==::other"],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator==::other"],[36,2,1,"_CPPv4N14torch_tensorrt15dump_build_infoEv","torch_tensorrt::dump_build_info"],[34,2,1,"_CPPv4N14torch_tensorrt14get_build_infoEv","torch_tensorrt::get_build_info"],[16,4,1,"_CPPv4N14torch_tensorrt7logging5LevelE","torch_tensorrt::logging::Level"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE","torch_tensorrt::logging::Level::kDEBUG"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kERRORE","torch_tensorrt::logging::Level::kERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE","torch_tensorrt::logging::Level::kGRAPH"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level5kINFOE","torch_tensorrt::logging::Level::kINFO"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE","torch_tensorrt::logging::Level::kINTERNAL_ERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE","torch_tensorrt::logging::Level::kWARNING"],[24,2,1,"_CPPv4N14torch_tensorrt7logging24get_is_colored_output_onEv","torch_tensorrt::logging::get_is_colored_output_on"],[22,2,1,"_CPPv4N14torch_tensorrt7logging18get_logging_prefixEv","torch_tensorrt::logging::get_logging_prefix"],[23,2,1,"_CPPv4N14torch_tensorrt7logging24get_reportable_log_levelEv","torch_tensorrt::logging::get_reportable_log_level"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE","torch_tensorrt::logging::kDEBUG"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kERRORE","torch_tensorrt::logging::kERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE","torch_tensorrt::logging::kGRAPH"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level5kINFOE","torch_tensorrt::logging::kINFO"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE","torch_tensorrt::logging::kINTERNAL_ERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE","torch_tensorrt::logging::kWARNING"],[26,2,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log"],[26,3,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log::lvl"],[26,3,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log::msg"],[27,2,1,"_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb","torch_tensorrt::logging::set_is_colored_output_on"],[27,3,1,"_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb","torch_tensorrt::logging::set_is_colored_output_on::colored_output_on"],[28,2,1,"_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE","torch_tensorrt::logging::set_logging_prefix"],[28,3,1,"_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE","torch_tensorrt::logging::set_logging_prefix::prefix"],[25,2,1,"_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level","torch_tensorrt::logging::set_reportable_log_level"],[25,3,1,"_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level","torch_tensorrt::logging::set_reportable_log_level::lvl"],[3,1,1,"_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE","torch_tensorrt::ptq::Int8CacheCalibrator"],[3,7,1,"_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE","torch_tensorrt::ptq::Int8CacheCalibrator::Algorithm"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE","torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE","torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator::cache_file_path"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::bindings"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::names"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::nbBindings"],[3,2,1,"_CPPv4NK14torch_tensorrt3ptq19Int8CacheCalibrator12getBatchSizeEv","torch_tensorrt::ptq::Int8CacheCalibrator::getBatchSize"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibratorcvPN8nvinfer115IInt8CalibratorEEv","torch_tensorrt::ptq::Int8CacheCalibrator::operator nvinfer1::IInt8Calibrator*"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache::length"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::cache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::length"],[4,1,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator"],[4,7,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator::Algorithm"],[4,7,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator::DataLoaderUniquePtr"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::cache_file_path"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::dataloader"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::use_cache"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::bindings"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::names"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::nbBindings"],[4,2,1,"_CPPv4NK14torch_tensorrt3ptq14Int8Calibrator12getBatchSizeEv","torch_tensorrt::ptq::Int8Calibrator::getBatchSize"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8CalibratorcvPN8nvinfer115IInt8CalibratorEEv","torch_tensorrt::ptq::Int8Calibrator::operator nvinfer1::IInt8Calibrator*"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache::length"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::cache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::length"],[30,2,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator"],[30,7,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator::Algorithm"],[30,3,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator::cache_file_path"],[29,2,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator"],[29,7,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::Algorithm"],[29,7,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::DataLoader"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::cache_file_path"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::dataloader"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::use_cache"],[35,2,1,"_CPPv4N14torch_tensorrt10set_deviceEKi","torch_tensorrt::set_device"],[35,3,1,"_CPPv4N14torch_tensorrt10set_deviceEKi","torch_tensorrt::set_device::gpu_id"],[48,1,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpecE","torch_tensorrt::torchscript::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::inputs"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec10capabilityE","torch_tensorrt::torchscript::CompileSpec::capability"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec5debugE","torch_tensorrt::torchscript::CompileSpec::debug"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec6deviceE","torch_tensorrt::torchscript::CompileSpec::device"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec12disable_tf32E","torch_tensorrt::torchscript::CompileSpec::disable_tf32"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec18enabled_precisionsE","torch_tensorrt::torchscript::CompileSpec::enabled_precisions"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec6inputsE","torch_tensorrt::torchscript::CompileSpec::inputs"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14min_block_sizeE","torch_tensorrt::torchscript::CompileSpec::min_block_size"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec20num_avg_timing_itersE","torch_tensorrt::torchscript::CompileSpec::num_avg_timing_iters"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec20num_min_timing_itersE","torch_tensorrt::torchscript::CompileSpec::num_min_timing_iters"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14ptq_calibratorE","torch_tensorrt::torchscript::CompileSpec::ptq_calibrator"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec5refitE","torch_tensorrt::torchscript::CompileSpec::refit"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec24require_full_compilationE","torch_tensorrt::torchscript::CompileSpec::require_full_compilation"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14sparse_weightsE","torch_tensorrt::torchscript::CompileSpec::sparse_weights"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec22torch_executed_modulesE","torch_tensorrt::torchscript::CompileSpec::torch_executed_modules"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec18torch_executed_opsE","torch_tensorrt::torchscript::CompileSpec::torch_executed_ops"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec24truncate_long_and_doubleE","torch_tensorrt::torchscript::CompileSpec::truncate_long_and_double"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14workspace_sizeE","torch_tensorrt::torchscript::CompileSpec::workspace_size"],[31,2,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support"],[31,3,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support::method_name"],[31,3,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support::module"],[32,2,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile"],[32,3,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile::info"],[32,3,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile::module"],[37,2,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::info"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::method_name"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::module"],[33,2,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module"],[33,3,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module::device"],[33,3,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module::engine"]]},objnames:{"0":["c","macro","C macro"],"1":["cpp","class","C++ class"],"2":["cpp","function","C++ function"],"3":["cpp","functionParam","C++ function parameter"],"4":["cpp","enum","C++ enum"],"5":["cpp","enumerator","C++ enumerator"],"6":["cpp","member","C++ member"],"7":["cpp","templateParam","C++ template parameter"]},objtypes:{"0":"c:macro","1":"cpp:class","2":"cpp:function","3":"cpp:functionParam","4":"cpp:enum","5":"cpp:enumerator","6":"cpp:member","7":"cpp:templateParam"},terms:{"0":[33,43,44,45,48,51,52,53,54,55,56,57,58,59,65,67,69,74,76,77,84,85,87,88,90,91,92,93],"00":[51,52,54,55,56,57,58,59],"0000":78,"00000000":[51,52,54,55,57],"000000037777":58,"000000252219":58,"000000397133":58,"000007":53,"000014":51,"000015":53,"000059":53,"000106":51,"000116":51,"000302":56,"000368":51,"000545":51,"000820":51,"000973":51,"001256":51,"001260":51,"001270":51,"001351":51,"0018":59,"002":54,"002251":53,"002259":53,"0023":59,"002305":53,"0026":59,"003287":53,"003289":53,"003317":53,"003462":51,"003774":51,"004":52,"004128":51,"004205":53,"004206":53,"004256":53,"004825":51,"005":[54,55],"006":[52,55],"006661":51,"006677":53,"006693":53,"006733":51,"006846":51,"006943":53,"0070":59,"008":59,"008071":51,"008453":51,"0087":59,"009802":51,"009803":51,"009836":51,"00f1b6db":[52,54,55],"01":[52,54,55,56,57,58,59,69,78,84],"0106":59,"010961":51,"011388":51,"013":59,"014965":56,"0151":59,"016114":51,"0163":59,"0169":59,"018642":51,"018643":51,"018670":51,"02":[52,54,55,59],"0208":84,"020804":51,"021143":51,"0220":59,"024492":51,"025":59,"025000":59,"026":56,"0263":59,"028":59,"0296":59,"03":[51,78],"03291":59,"033488":51,"033572":51,"03466":59,"035722":51,"0358":84,"0383":84,"04":[51,52,56,58,59,84,87,90],"0435":84,"04609":59,"0464":84,"04743":59,"04807":59,"0491":59,"0493":59,"04it":59,"05":[51,52,53,54,55,58,59],"050000":59,"0505":59,"05080":59,"0530":84,"05311":59,"05374":59,"057":59,"058047":51,"058053":51,"058375":51,"05945":59,"06":[51,52,58],"0622":59,"063":59,"06340":59,"06567":59,"0676ba61":[54,58],"0678":84,"069":59,"07":[52,54,55],"071":59,"071428":51,"072057":51,"07266":59,"073":56,"076796":51,"08":[52,54,55],"0805":84,"0818":84,"08331":59,"08555":59,"086":59,"09":[52,54,55,57],"0932":84,"096":59,"0a0":[51,52,77],"0a3":51,"0c106ec84f199a0fbcf1199010166986da732f9b0907768c9ac5ea5b120772db":87,"0f":58,"0mib":[52,54,55,57],"0rc1":51,"0s":54,"0x":53,"1":[3,4,33,43,44,45,47,48,51,52,53,54,55,56,57,58,59,61,62,64,67,69,74,75,77,78,81,83,84,85,86,87,88,91,92,93],"10":[48,51,52,53,54,55,56,57,58,59,81,83,84,87,88,90],"100":[52,54,55,57,58,59,85],"1000":[52,54,55,57,58,59,90],"10000":[52,54,55],"100000":59,"10018":59,"10070":59,"101":53,"101168":59,"1012":61,"1013":61,"10130":59,"102":51,"102248":59,"1024":[51,52,54,55,57,58,59,91],"10240mib":57,"10362":52,"104":[52,54,55],"1045":84,"105":59,"1056":84,"1063":84,"1065":51,"1069":51,"107":[52,54,55],"107194":59,"10732":59,"107625":59,"109":84,"10990":59,"10b0":51,"11":[51,52,53,54,55,57,58,59,61,77,81,84,85,87,90],"110":[58,59],"11299":59,"112mib":51,"11499":59,"115":57,"115269":59,"115740":59,"11594":59,"117":[52,54,55],"117969":59,"118358":59,"11879":59,"11888":59,"119":83,"1190":51,"119708":51,"11k":[52,54,55],"11w":52,"12":[51,52,53,54,55,57,58,59,61,77,81,83,84,85,90],"120":[57,59,83,84],"120097":51,"1201":51,"121":[54,57],"1216":53,"121618":51,"122":57,"12288mib":51,"123":[58,78],"12345":51,"126":59,"126382":59,"126834":59,"127":[52,59],"128":[51,52,53,54,55,57,58,59],"128674":59,"129":83,"129518":59,"12k":54,"13":[51,53,54,55,57,58,59,77,81,87],"130":51,"133":52,"13388":59,"135453":59,"135936":59,"136":90,"137":[51,83],"137858":59,"138":83,"138366":59,"139704147265344":59,"13x":52,"14":[51,52,53,54,55,57,58,59,81,90],"1409":88,"141":59,"143":51,"145":59,"145539":59,"146":51,"146053":59,"147871":59,"148353":59,"1488":51,"149":51,"14x":53,"15":[51,53,54,55,57,58,59,77,81],"1500":59,"1502":84,"150503":56,"150504":56,"150505":56,"150509":56,"1516":51,"1531":59,"1535566590":[52,54,55],"1538":51,"154252":59,"154685":59,"1549":[55,84],"1552":55,"1556":88,"1560":55,"1563":59,"156558":59,"1566":55,"1568":55,"157159":59,"1572":55,"1574":55,"1575":55,"1598":55,"15w":54,"15x":53,"16":[51,53,54,55,57,58,59,81,83,84,86],"16000":51,"163197":59,"163676":59,"164":[52,54,55],"165":58,"165549":59,"165991":59,"166":58,"167":58,"1691":84,"17":[51,52,53,54,55,57,58,59,81],"173":59,"173305":59,"173926":59,"176034":59,"176697":59,"1771":53,"1776":53,"1777":[51,59],"179":58,"1792":51,"18":[51,52,53,54,55,57,58,59,81,84,87],"182843":59,"183426":59,"185377":59,"185962":59,"188":59,"19":[51,53,54,58,59,78,81],"190":56,"1906":59,"191966":59,"192424":59,"194325":59,"194817":59,"1971":59,"198":51,"1994":[59,88],"1d":61,"1e":[54,55,56,59,91],"1f":[51,53],"1rc0":51,"1ubuntu0":51,"1x1":58,"2":[33,43,45,48,51,52,53,54,55,56,57,58,59,62,67,69,75,77,78,81,83,84,85,87,88,92],"20":[51,52,53,54,55,58,59,81],"200":[52,54,55,57,59],"2000000000":[51,53],"2002":59,"2009":88,"200w":55,"201":[52,54,55],"2010":[59,88],"2012":78,"2014":88,"2017":[51,53,58],"2018":[52,53,54,55],"2019":[51,52,53,54,57,58],"201988":59,"202":[52,54,55],"2020":[58,59,68,84],"2021":[51,53],"2022":[51,52,53,54,55,57,58,59],"2023":[59,88],"202665":59,"204763":59,"2048":[54,55],"205461":59,"20w":57,"21":[51,52,53,54,55,57,58,59],"211393":59,"211987":59,"213899":59,"214450":59,"215434":51,"215446":51,"215806":51,"216":52,"217":[54,55],"218":51,"22":[51,52,53,54,55,57,58,59,90],"220892":59,"221533":59,"222":54,"223":[54,55],"223519":59,"224":[52,54,55,62,90],"224037":59,"225":[52,54,55,90],"227":[52,54,55],"227739155292511":52,"229":[52,54,55,90],"23":[48,51,52,54,55,59,61,78],"2305":59,"23344755172729492":52,"233809":59,"234":59,"234375":90,"234434":59,"235":51,"237":59,"238":[55,59],"238212":59,"239042":59,"24":[51,54,57,58,59,61],"241":56,"241022":59,"24112":[52,54,55],"241654":59,"242":51,"243":[54,57],"245":58,"2453mib":51,"24576mib":[52,54],"246":52,"2462mib":51,"246kb":52,"247820":59,"248":61,"248445":59,"249":61,"24k":[52,54,55],"25":[51,54,55,59,84,85],"250366":59,"250959":59,"250w":51,"254":59,"256":[52,54,55,59,90],"257248":59,"257854":59,"258":77,"259968":59,"26":[51,53,54,55,58],"2606":[52,54,55],"260660":59,"265":51,"268160":59,"26w":51,"27":[51,52,53,57,59,84],"272":51,"28":[51,52,55,84,88,93],"280":59,"2802":84,"282":51,"2822":77,"285":59,"287":77,"288":[51,59],"28c":52,"29":[51,52,55,59,84],"291":59,"29c":54,"2_20200626":87,"2c3":78,"2c365_subsampl":[52,54,55],"2c916ef":51,"2f":[52,54,55,57,58,59],"2s":54,"2x":54,"3":[45,48,51,52,53,54,55,56,57,58,59,61,62,64,69,77,78,81,83,84,85,87,88,91,92,93],"30":[52,54,55,58,59],"300":[57,58,59,91,92],"300x300":58,"302":59,"309":59,"3090":[52,54],"31":[51,54,55,57,58,84],"311":59,"314":59,"315":51,"32":[51,52,53,55,57,58,59,83,84,86,88,91,93],"320":88,"3207":59,"320w":57,"321":52,"329273":59,"32bit":91,"32x32":54,"33":[52,54,55,57,58,84],"330212":59,"332529":59,"333365":59,"3393":52,"339547":59,"34":[52,54,55,56,57,58,59],"340248":59,"342257":59,"342890":59,"345":59,"346":84,"349":51,"35":[52,54,58,84],"350619":59,"350w":[52,54],"351372":59,"352":[52,54,55],"353470":59,"35363":[52,54,55],"353k":[52,54,55],"354121":59,"3550":59,"35k":[52,54,55],"35x":52,"36":[51,52,55,84],"360090":59,"360806":59,"361413":[52,54,55],"362803":59,"3631":59,"363274":59,"366":54,"366kb":54,"3677":61,"37":[51,52,54,55,59,84],"370369":59,"371057":59,"373071":59,"373766":59,"376":52,"3763":59,"379890":59,"38":[51,54,55,58,83],"380538":59,"382532":59,"383128":59,"385":59,"3877":59,"389077":59,"389760":59,"39":[51,52,53,54,55,56,57,58,59,83],"3909":51,"391815":59,"392399":59,"394":59,"39485082030296326":54,"395":59,"3987298309803009":52,"399809":59,"39c":51,"39mib":51,"3a8704db":77,"3d":85,"3e":56,"3f":59,"3x3":59,"4":[51,52,53,54,55,56,57,58,59,64,69,75,77,78,81,84,85,87],"40":[52,54,55,57,58,59],"400":[57,59],"400472":59,"402399":59,"402939":59,"406":[52,54,55,90],"408818":59,"409424":59,"4096":59,"40mb":54,"41":[51,54,55,57],"411513":59,"4116":55,"412097":59,"4122":55,"4123":55,"4142":55,"4156":55,"4161":51,"4166":55,"4170":55,"4172":55,"4176":55,"4178":55,"418537":59,"419128":59,"42":[51,55,57,58,59],"421343":59,"421946":59,"429":51,"429382":59,"429688":90,"42c":57,"42w":51,"43":[51,57,58,59],"430156":59,"432259":59,"433079":59,"4352":59,"439":59,"439297":59,"44":[51,58,59],"440027":59,"442":[52,54,55,59],"442149":59,"442826":59,"442k":[52,54,55],"443":[52,54,55],"4465":[59,88],"449377":59,"449968":59,"45":[51,52,58],"452122":59,"452718":[52,54,55],"452754":59,"456":[52,54,55,90],"45675724744796753":55,"4584":52,"459":59,"46":[51,52,58,59],"462532":59,"463295":59,"466963":59,"467725":59,"468750":90,"469692":59,"47":51,"470":[55,59],"4700":[52,54,55],"470336":59,"4726":59,"474":52,"476204":59,"4767":55,"476738":59,"47681mib":55,"478809":59,"479375":59,"48":[51,54,55],"481":54,"4822":[59,88],"484":59,"485":[52,54,55,90],"485666":59,"486219":59,"488416":59,"488986":59,"489":55,"49":[51,53,58],"4914":[59,88],"4935":55,"49785590171813965":54,"49788108468055725":55,"4980":55,"499":59,"4fef":[52,54,55],"4mib":51,"4s":52,"4x":51,"5":[51,52,53,54,55,56,57,58,59,64,65,77,78,81,83,84,85,87,90,91],"50":[51,52,53,55,57,58,59],"500":[57,59],"5002":55,"5005":55,"5014":55,"5016":55,"5018":55,"5020":55,"5024":55,"5026":55,"5027":55,"5033":55,"504":59,"5052":55,"5067":55,"5088":55,"5091":55,"5094":55,"5096":55,"510":[51,52,54,57],"5100":55,"511":59,"5110":55,"5115":55,"5117":59,"5118":55,"512":[51,54,55,59,91],"512364":59,"513354":59,"514046":59,"514638":59,"515270":59,"5153":55,"515859":59,"516441":59,"517009":59,"5172":59,"517600":59,"518167":59,"518752":59,"519333":59,"5197":55,"519911":59,"51c":55,"52":[52,54,55,59],"5202":55,"520473":59,"5207":55,"521038":59,"5215":55,"521596":59,"522170":59,"522742":59,"5231":55,"523360":59,"523438":90,"523957":59,"5242":55,"524581":59,"525059":59,"525366":59,"525675":59,"525962":59,"526257":59,"526566":59,"526885":59,"527188":59,"527489":59,"527792":59,"528097":59,"528387":59,"528834":59,"529163":59,"53":[51,54,58,78],"5320":59,"532748":59,"533468":59,"5335":59,"534033":59,"534684":59,"535320":59,"535983":59,"536":59,"536569":59,"537248":59,"537833":59,"538480":59,"539":84,"539074":59,"539724":59,"53k":[52,54,55],"540307":59,"540952":59,"541534":59,"542075":59,"542596":59,"543248":59,"543719":59,"544424":59,"544952":59,"545530":59,"546114":59,"546713":59,"547292":59,"547902":59,"548453":59,"549015":59,"549665":59,"55":55,"550436":59,"551":51,"551925":59,"553105":59,"55c":51,"55k":[52,54,55],"56":[51,52,55,57,84],"560":59,"5620":59,"564":59,"5676":59,"568":59,"57":[55,59],"5746":59,"576":[57,84],"58":[54,55,59],"59":[51,54,55,57,58],"594":51,"597":53,"599":53,"5d":59,"5f":59,"6":[51,52,53,54,55,56,57,59,61,64,69,81,83,84,87],"60":[52,54,55,58],"600":[57,59],"6047":51,"608":55,"608kb":55,"61":[58,59],"613":59,"62":[51,52,59],"622":[59,61],"62w":55,"62x":53,"63":[51,53,55],"630":[52,54,55],"635":59,"636":59,"637":59,"638":59,"639":59,"64":[53,54,55,59,85,86],"640":59,"641":59,"642":59,"643":59,"644":59,"6442285180091858":55,"6445754766464233":54,"646":59,"649":59,"64bit":91,"65":[51,52,54,55,59],"6539":59,"655":59,"66":52,"664062":90,"668":51,"669":51,"67":[55,59],"6733":59,"677":59,"67mib":51,"68":[54,59],"6812":[52,54,55],"687":59,"688":59,"689":59,"69":[54,55],"690":59,"6f":[51,53],"6s":55,"7":[51,52,53,54,55,56,57,59,64,65,81,84,87],"70":[52,54,55,58],"700":[57,59],"701":59,"709":51,"7099":59,"71":[52,55,59],"716":59,"72":[52,54],"7203":59,"72048":87,"721":59,"724":59,"728":51,"729":51,"73":[51,52,54,55],"7302":78,"732":59,"735":59,"7376":59,"738":59,"74":[58,59],"742":59,"7454":59,"75":[52,54,55,59],"7537":59,"76":59,"781":59,"79":[54,59],"796":59,"797":59,"7ubuntu0":51,"8":[3,51,52,53,54,55,56,57,58,59,61,77,78,81,84,85,87,90,91],"80":[51,52,54,55,58,59],"800":[57,59],"8000":90,"8001":90,"8002":90,"801":59,"81":[58,59],"818":59,"818977576572eadaf62c80434a25afe44dbaa32ebda3a0919e389dcbe74f8656":87,"82":59,"8204":59,"821":59,"83":[52,55,59],"834":59,"8351":59,"837":59,"84":[55,57,59,83,84],"847":59,"84e944ff11f8":[52,54,55],"84x":54,"85":[52,55,59],"86":[52,55],"860":59,"86k":[52,55],"87":59,"8732":58,"877":59,"8791":59,"88":[52,55,58],"89":[52,55],"898":59,"89k":[52,55],"8bit":59,"9":[51,52,53,54,55,56,57,58,59,81,84,90],"90":[52,54,55,58,90],"900":[57,59],"906":59,"90994":[52,55],"916":[51,59],"91a9cc5850784b2065e8a0aa3d526fd9":51,"92":[52,54,55,90],"9205bed204e2ae7aafd2e01cce0f21309e281e18d5bfd7172ef8541771539d41":87,"922029":56,"9223372036854775807":69,"923":[52,54,55],"925192":56,"927":59,"92k":54,"9367":59,"94":[52,54,55],"941":59,"94328":54,"944":59,"948":59,"94k":[52,54,55],"95":52,"951":53,"952":59,"953":[51,56,59],"955":51,"959":59,"96":[51,59],"9624":59,"9695423245429993":52,"97":[52,59],"98":59,"9899807572364807":54,"9899841547012329":55,"99":[51,52,53,54,55,58,59],"996":56,"997":59,"999":59,"9999":59,"99th_p":[51,53],"9ab0":[52,54,55],"9x":51,"abstract":[64,67,78],"boolean":[59,85],"break":[59,77,85],"byte":51,"case":[0,1,2,46,48,53,57,58,60,64,67,85,87,88,89],"catch":[61,84],"char":[3,4,44,84,91],"class":[17,29,30,44,45,46,50,52,53,54,55,56,57,58,59,64,67,77,78,83,84,85,86,88],"const":[0,1,2,3,4,29,30,31,32,33,35,37,44,45,46,61,67,69,84,88],"default":[0,1,2,3,4,16,29,30,43,45,46,47,48,51,52,54,55,57,58,62,75,76,77,84,85,87,88,91,92],"do":[51,52,54,57,58,60,61,62,67,76,78,83,84,85,86,88,93],"enum":[0,1,2,42,45,46,50,52,88],"export":[51,59,87],"final":[51,60,63,65,87],"float":[48,51,52,54,57,58,69,83,84,86,88,91,92],"function":[0,1,2,3,4,46,47,48,50,51,52,53,54,56,57,58,59,61,62,64,67,83,84,85,87,88,90,92,93],"import":[51,52,53,54,55,56,57,58,59,61,62,75,77,83,84,85,86,87,89,90,91,92],"int":[0,3,4,35,44,45,48,52,55,59,69,75,84,91],"long":[48,53,60,77,78,91],"new":[0,1,2,3,4,32,33,46,47,48,52,54,57,58,59,64,65,67,77,84,85,90],"null":51,"public":[0,1,2,3,4,44,45,46,47,48,78,88],"return":[0,1,2,3,4,23,24,29,30,31,32,33,34,37,42,43,44,45,46,51,52,53,54,55,56,57,59,61,63,64,65,67,83,84,85,86,88,90],"short":[61,77,78],"static":[47,48,60,67,75,84],"super":[44,56,57,83],"throw":[61,84,91],"true":[0,1,2,4,46,48,51,52,53,54,55,56,57,58,59,61,62,67,69,75,78,84,85,88,90,92,93],"try":[51,52,53,54,57,65,77,78,84,92],"var":69,"void":[3,4,25,26,27,28,35,36,42,44,45],"while":[56,59,87,88,90],A:[4,29,30,32,33,47,51,52,53,54,55,57,59,61,62,67,78,87,88,90],AS:[51,52,53,54,55,57,58,59],And:84,As:[55,84,85],At:76,But:[77,84],By:[29,30,50,57,58,62,75,83],For:[52,54,55,57,58,59,60,62,75,77,78,83,84,85,87,88,89,90,92],IS:[51,52,53,54,55,57,58,59],If:[27,51,52,53,54,56,57,58,59,60,61,75,77,84,85,87,88,89,90,93],In:[0,1,2,46,51,52,53,54,55,57,58,59,60,63,64,65,67,68,77,78,80,85,86,87,88,89,90],Is:24,It:[51,52,53,54,55,57,58,61,62,63,65,67,75,77,85,87,91],Its:[67,77],NOT:53,No:[52,54,55,57],Not:3,OF:[51,52,53,54,55,57,58,59],OR:[51,52,53,54,55,57,58,59],On:[51,52,54,55,57,62],One:[53,55,77,78,84,85],Or:77,THE:77,TO:[84,87],That:77,Thats:84,The:[1,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,75,78,83,85,86,87,88,90,91,92],Then:[56,62,87,88,92],There:[4,53,58,59,60,65,67,78,83,85,87,88,89,90],These:[52,53,54,60,64,75,77,88,90],To:[1,46,55,57,58,59,62,75,83,84,85,86,87,90,92],Will:31,With:[52,53,54,55,75,77,84,88,90],_:[51,52,53,54,55,56,57,58,59,77,85],___torch_mangle_10:83,___torch_mangle_4847:64,___torch_mangle_5:83,___torch_mangle_9:83,__and__:69,__attribute__:43,__future__:51,__getitem__:69,__gnuc__:43,__init__:[56,57,77,83],__is__:69,__isnot__:69,__not__:69,__or__:69,__range_length:69,__round_to_zero_floordiv:69,__torch__:[64,83,84],__torch___pytorch_detection_ssd_src_model_ssd300_trt_engin:64,__torch___torchvision_models_resnet____torch_mangle_4847_resnet_trt_engin:64,__version__:59,__visibility__:43,__xor__:69,_affin:59,_all_:61,_b:51,_c:92,_calibr:59,_convolut:[59,69,84],_input_quant:59,_jit_intern:51,_jit_to_backend:92,_pair:59,_quant:59,_run_on_acc:56,_run_on_acc_0:56,_run_on_acc_2:56,_run_on_gpu_1:56,_theme:82,_trace:51,_validate_not_a_forked_repo:[54,55,58,90],_weight_quant:59,a100:[51,52,53,54,57,58],a1b:78,aarch64:65,ab:69,abi:89,abil:55,abl:[52,53,54,55,57,58,60,61,67,68,85,88,92],about:[52,54,55,58,59,60,64,67,75,84,87,90,91],abov:[25,58,59,76,77,84,85,87],absl:51,absolut:[59,91],absolute_import:51,ac:80,acc:[56,59],acc_input:56,acc_mod:85,acc_norm:85,acc_op:[56,85],acc_op_convert:85,acc_ops_sigmoid:85,acc_trac:[56,85],acceler:[52,53,54,57,58,93],accept:[47,53,59,64,67,84,86,91],access:[55,58,61,67,68,75,84,92],accord:67,accordingli:[59,75,85],account:90,accumsan:80,accumul:48,accuraci:[58,59,88],achiev:[52,54,57,58,59],aco:69,acosh:69,acoust:51,acquir:84,across:[61,75],acthardtanh:67,action:[77,85],activ:[59,77,84,85,88,93],activationtyp:[67,85],actual:[57,59,61,64,67,83,84,85],ad:[25,60,85,91],adaptive_avg_pool1d:69,adaptive_avg_pool2d:69,adaptive_avg_pool3d:69,adaptive_max_pool1d:69,adaptive_max_pool2d:69,adaptive_max_pool3d:69,adaptiveavgpool2d:[54,55],add:[26,60,61,62,67,69,75,77,82,84,86,87],add_:[61,69,84],add_activ:85,add_patch:58,addactiv:67,addit:[55,58,59,61,84,85],addlay:84,address:78,addshuffl:84,adipisc:[78,80],adjac:77,adjust:[59,77],adjust_lr:59,adopt:53,advanc:[78,88],advis:77,aenean:80,affin:[54,55],afford:85,aforement:90,after:[55,56,58,59,60,61,62,68,83,84,85,86,89,90,91],again:[44,53,58,64,67,77],against:[84,91],agre:[51,52,53,54,55,57,58,59],agx:45,ahead:[55,84],aim:[53,61],aiohttp:51,aiosign:51,alabast:51,algo_typ:88,algorithm:[3,4,29,30,44,53,85,88],algorithm_selector:85,alias:43,align:77,align_corn:69,aliquam:80,aliquet:[78,80],all:[16,42,43,44,45,48,51,52,53,54,55,57,58,59,61,62,64,77,78,83,84,85,86,87,88,89,90,91],alloc:67,allow:[47,48,52,54,56,57,58,60,61,75,85,91],allow_gpu_fallback:[45,46,88,92,93],allow_tf32:69,almost:84,alpha:[58,69,78,85],alreadi:[51,52,53,54,55,57,58,59,60,61,84,88,91],also:[30,48,52,53,54,55,57,58,60,67,68,75,77,78,84,86,87,88],alter:55,altern:47,although:77,altogeth:[62,75],alwai:[3,4,27,77,91],amax:59,amax_sequeez:59,amazonaw:[52,54,55],amet:[78,80],amount:[53,59],amp:[52,54,55],amp_backend:51,an:[2,3,4,47,48,51,52,53,54,55,57,58,59,60,61,62,63,64,65,67,68,75,77,78,83,84,85,86,87,88,89,90,91],analogu:67,analysi:[58,62],analyt:75,analytics_id:75,ancient:77,ani:[47,51,52,53,54,55,57,58,59,60,67,75,77,84,85,86,87,88,91],ann:77,anneal:59,annot:[58,67,84],anonym:77,anoth:[53,77,78,83,86],ant:80,antlr4:51,anyon:78,anyth:[77,78,89],aot:[55,68,84],apach:[51,52,53,54,55,57,58,59],apex:58,api:[51,55,58,59,62,65,67,76,84,85,86,88,89,90,92],appdir:51,appear:77,append:[51,52,53,54,55,57,58,59,69],applehelp:51,appli:[59,88],applic:[1,30,46,51,52,53,54,55,57,58,59,61,65,84,86,89,91,92,93],approach:[52,54,57,58],apr:[51,84],apt:51,ar:[42,46,48,51,52,53,54,55,56,57,58,59,60,61,62,64,65,67,68,75,77,78,79,83,84,85,87,88,89,90,91,92],arab:78,arang:69,architectur:[53,58,59,68,87],archiv:[51,54,58,87],arcu:[78,80],area:79,aren:84,arg:[51,55,56,60,81,84,85],arg_replacement_tupl:85,argc:84,argmax:[52,53,54,55],argon2:[51,54,55,57,58],argpars:51,argument:[47,51,52,53,59,61,64,67,77,78,84,85,91],argv:84,around:[59,61,64,67,77,80,83],arrai:[3,4,33,51,53,60],arrayref:[45,47,48],arti:[52,54,55],arxiv:88,as_numpi:90,asin:69,asinh:69,aspect:91,asr:51,asr_model:51,assembl:[60,84],assert_clos:56,assign:[3,4,76],associ:[53,60,67,84],associatevalueandivalu:67,associatevalueandtensor:[67,84],assum:[51,59,92],ast:51,asttoken:[51,55,58],async:51,asyncio:[51,54,55,57,58],atan:69,atanh:69,aten:[48,58,59,61,62,66,67,69,84],atol:[56,91],attach:58,attent:53,attention_mask:53,attention_masks_tensor:53,attr:[51,54,55,57,58],attrdict:[51,90],attribut:[61,62,64,77,84,85],auctor:80,audio:51,audioread:51,augment:53,augu:80,auth:51,author:78,auto:[44,62,67,77,78,84,88,93],autodoc:[77,78],automat:[52,54,57,58,77,84],av:[54,55,57],avail:[52,54,55,57,58,67,75,85,87,91,93],averag:[48,52,54,55,57,58,59,91],avg:[52,58,59,91],avg_pool1d:69,avg_pool2d:69,avg_pool3d:69,avgpool:[54,55,58,59],avoid:[52,53,54,55,85],awai:77,await:[52,54,55],awaken:77,ax:[52,54,55,58],axi:[52,54,55,59,69],b0:54,b:[54,55,58,69,78,90],b_hh:69,b_ih:69,babel:51,back:[61,62,64,65,77,83,84],back_insert:44,backbon:[53,58],backcal:[51,54,55,57,58],backend:[51,52,53,54,55,56,57,58,59,76,92],background:[77,83],backlink:77,backport:51,backward:[59,85],bar:[75,77],base:[36,49,52,53,54,56,57,58,59,64,77,83,87,88],basebal:53,baselin:[55,59],bash:87,basi:[51,52,53,54,55,57,58,59,77],basic:[59,78,85,90,91],batch:[3,4,44,51,52,53,54,55,57,58,59,85,88,90,93],batch_norm:[67,69],batch_siz:[44,51,53,58,59,88],batched_attention_mask:53,batched_data_:44,batched_indexed_token:53,batched_segment_id:53,batchnorm2d:[54,55],batchnorm:[58,61],batchsiz:51,batchtyp:44,bathroom:77,bazel:[65,87],bazel_vers:87,bazelbuild:87,bazelisk:87,bazelvers:87,bbox:58,bdist_wheel:87,beat:78,beautifulsoup4:[51,55],becaus:[53,67,83,84,85,87],becom:[53,67],bee:77,been:[60,67,78,84],befor:[48,55,58,59,61,65,67,68,84,85,87,90],beforehand:84,begin:[44,53,77,85,87],beginn:83,begun:77,behav:[58,79],behavior:[48,58,85],behaviour:[51,52,53,54,55,57,58],behind:77,being:[52,54,57,58,84,85],belong:77,below:[53,58,67,77,84,85,87,90],benchmark:[52,53,54,57,69],benefit:[67,84],bertformaskedlm:53,bertforpretrain:53,bertforsequenceclassif:53,berttoken:53,besid:77,best:[52,54,55,57,58,77,85,87],best_result:58,best_results_per_input:58,best_results_per_input_trt:58,beta:69,better:[52,54,56,57,58,83,88],between:[58,61,67,77,78,87,88],bfe5ad2:52,bia:[53,54,55,56,57,59,61,69,84],bibendum:80,bibliograph:78,bibtex:51,bidirect:53,bigger:77,bin:87,binari:[44,88],binary_data:90,bind:[3,4,33,44,51,54,55,57,58,77],bird:[52,54,55,59,90],bit:[48,53,67,84,85],bitbucket:75,bitbucket_url:75,black:[51,58],blandit:80,blank:77,bleach:[51,54,55,57,58],blob:[66,75,88],block0:61,block1:61,block:[60,61,81,91],blue:77,bmm:69,bn1:[54,55],bn2:[54,55],bn3:[54,55],bodi:[77,78],bold:77,bool:[0,1,2,3,4,24,27,29,31,42,44,45,46,48,61,67,69,75,84,88],border:77,bot:58,both:[52,54,57,58,75,77,83,87,88],boto3:51,botocor:51,bottleneck:[54,55],bottom:75,bound:[58,59],box:[58,77],braceexpand:51,bracket:77,branch:[53,87],bread:77,breed:[52,54,55],brief:62,briefli:83,broadli:53,broken:[51,52,53,54,55,57,58],brontosaurus:77,browser:77,bsd:[42,43,44,45],bu:[51,52,54,55,57],buffer:[3,4,85],bug:87,bui:78,build:[29,30,34,48,51,52,56,60,63,65,67,76,81,84,85,88,91],build_fil:87,build_model:85,builder:85,builderconfig:45,built:[33,64,65,87,91],builtin:85,bust:[52,54,55],button:[75,77],bytearrai:85,c10:[0,1,45,46,47,48,84,88],c96b:55,c:[42,43,44,45,51,52,54,55,57,58,59,65,69,78,85,89,90,91,93],c_api:66,c_str:[67,84],ca6b:[52,54],cach:[3,4,29,30,44,51,54,55,58,59,84,85,88,91],cache_:44,cache_fil:[44,88],cache_file_path:[3,4,29,30,44],cache_file_path_:44,cache_size_:44,cachecalibr:88,cachetool:51,cackl:78,cadenc:55,calcuat:59,calcul:[47,60,62,84],calendar:51,calib:59,calib_output:59,calibr:[3,4,29,30,44,48,59,84,88,91],calibrate_model:59,calibration_cache_fil:[29,30,88],calibration_dataload:[29,88],calibration_dataset:88,calibrationalgo:88,call:[29,30,32,48,51,52,53,54,57,58,59,61,64,67,77,83,84,85,92],call_funct:[56,85],call_modul:56,callmethod:83,can:[0,1,4,29,30,37,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,75,77,83,84,85,86,87,88,89,90,91,92],canada:78,cannot:[47,57,58,59,61,62,76,83,85],canon:75,canonical_url:75,cap:[51,52,54,55,57],capabl:[17,45,48,64,91,92],capit:[53,77],caption:[77,80],captur:59,car:59,card:[52,53,54],cast:[3,4,61],cat:[59,69,87],caught:61,caus:[52,54,57,58,59,67,75,87],cd:[85,87,90],cdll:84,ceil:69,ceil_mod:[54,55,69],cell:[53,58,78],center:[52,53,54],centercrop:[52,54,55,90],cerr:84,certain:[51,85,87],certifi:[51,53],cf0691493d05062fe3239cf76773bae4c5124f4b039050dbdd291c652af3ab2a:87,cffi:[51,54,55,57,58],cfg:62,chain:67,challeng:[59,90],chanc:67,chang:[30,52,53,54,55,57,58,61,65,75,85,88,90],changelog:81,channel:[2,52,54,55,59,76],channel_last:55,charact:77,charset:[51,53],check:[0,1,31,46,55,58,61,67,84,85,87,89,90,91],check_method_operator_support:[21,41,45,49],checkmethodoperatorsupport:84,checkpoint:[51,53,54,58,59],child:[56,78],children:85,chimpansee_amber_r_1920x1080:[52,54,55],chimpanze:[52,54,55],choic:53,choos:[52,54,83,85],ci:[51,52,54,55,57],cifar10:[59,88],cifar:[59,88],circular:59,ckpt:59,ckpt_path:59,cl:53,clamp:[59,69],clamp_max:69,clamp_min:69,class_count:90,class_pr:59,class_prob:59,classes_to_label:58,classif:[57,58,59,83,84],classifi:[57,59,78],classification_index:90,clean:77,clear:44,cli:91,clib:51,click:[51,53,58],clickabl:77,client:[51,54,55,57,58],clone:[69,85],close:[59,84],closer:61,closet:77,cloud:51,cloudfront:[52,54,55],co:[69,78],coco:58,cocodataset:58,code:[52,53,54,55,57,58,62,65,68,76,78,83,84,85,88],collapse_navig:75,collat:78,collect:[51,52,54,57,58,59,84],collect_stat:59,colon:77,color:[24,27,56,77],colorama:51,colored_output_on:[27,42],column:78,com:[51,52,53,54,55,57,58,66,84,85,87,88,89,90],combin:85,come:[52,54,55,57,58,76,85,87,90],command:[77,78,83,84,87,90,91],comment:[77,87],commodo:80,common:[51,54,58,60,61,77,85],common_subexpression_elimin:61,commonli:78,commun:84,compani:53,compar:[53,56,58,59,85],comparis:[0,2],comparison:[1,46],compat:[0,1,46,52,54,57,58,61,64,85,87],compil:[21,31,37,41,45,48,49,51,52,53,54,55,57,58,59,61,62,64,67,75,83,86,88,89,90,91,92,93],compile_set:[51,88],compile_spec:[59,88,93],compilegraph:[84,88],compilesepc:33,compilespec:[3,4,21,32,37,41,45,49,62,84,88,93],compilespecstruct:49,complet:[51,52,53,54,57,58,62,83,84],complex:[83,87],compli:58,complianc:[51,52,53,54,55,57,58,59,91],compliat:88,complic:87,compon:[53,57,63,65,83,89],compos:[52,54,55,57,58,59,83,85,88,90],composit:[59,84],comprehens:58,compris:53,comput:[48,51,52,53,54,55,57,58,59,77,85,87,88],compute_amax:59,conceiv:77,concern:53,conclus:[51,52,53,54],concorr:90,conda:[51,52,53,54,55,57,58,59,85],condimentum:80,condit:[51,52,53,54,55,57,58,59,77],conduc:55,conduct:53,conf:[75,82],confid:[52,54,55,58],confidence_scor:90,config:[51,52,87,90],configur:[32,37,47,51,55,68,81,84,87,88,90],confirm:51,conflict:[51,52,53,54,55,57,58],congu:80,connect:[52,54,55,61,77,90,93],consectetur:[78,80],consecut:62,consid:[55,84],consider:90,consist:[53,61,77],consol:91,consolid:83,constant:[55,59,60,61,84],constant_pad_nd:69,constexpr:[0,1,2,45,46],construct:[0,1,2,3,4,46,47,48,60,61,63,65,67,77,78,84,85,88],constructor:[0,2,46,47,48,64,83],consult:76,consum:[4,60,83],contact:78,contain:[29,31,51,52,53,54,55,56,57,58,60,61,67,77,78,83,84,85,87,88,89,90],content:[55,81,88,90],context:[52,57,59,60,63,64,65],contextnet:51,contigu:[2,47,48,91],continu:[52,53,54,57,58,77,85,89],contributor:84,control:[57,58,83,85],conv1:[54,55,57,83,84],conv2:[54,55,57,83,84],conv2d:[54,55,57,59,83],conv3:[54,55],conv4_x:58,conv5_x:58,conv:[48,59,84,91],conv_asr:51,conval:80,convect:47,conveni:[58,88],convent:[52,53,54,57,58],convers:[52,57,58,59,61,62,64,84,85],conversionctx:[67,84],convert:[3,4,31,32,37,51,52,54,55,57,58,59,61,62,63,65,68,86,89,92],convert_method_to_trt_engin:[21,41,45,49,92],convertgraphtotrtengin:84,convien:48,convienc:[3,4,48],convnet:58,convolut:[51,52,55,58,59,88,93],convtert:85,coordin:65,copi:[44,51,52,53,54,55,57,58,59,67,69,78,85,90],copy_:69,copyright:[42,43,44,45,51,52,53,54,55,57,58,59,78,84],core:[45,51,52,54,55,57,58,61,62,65,84,91,93],corpor:[42,43,44,45,51,52,53,54,55,57,58,59],correct:[59,64,75,87],correctli:87,correspond:[58,59,67,85],cosh:69,could:85,count_include_pad:69,counterpart:59,coupl:[52,54,57,58,60,65,85,89],cout:84,cp38:58,cp:87,cpp:[14,15,42,43,44,45,50,61,65,84,88],cpp_frontend:88,cppdirectori:49,cppdoc:84,cpu:51,cra:80,creat:[29,30,33,51,52,53,54,55,57,58,59,60,64,67,77,84,85,90,91],create_model:52,create_transform:52,creating_torchscript_module_in_python:86,credit:84,crit:59,criteria:[62,63,65],cross:[59,77],crossentropyloss:59,cs:88,csrc:[61,66],cstddef:88,ctc_bpe_model:51,ctx:[67,84],ctype:84,cu102:87,cuda113:87,cuda:[48,51,52,53,54,55,56,57,58,59,64,84,86,87,88,90,92],cuda_runtim:[21,45],cudafloattyp:84,cudasetdevic:35,cudatoolkit:85,cudnn8:87,cudnn:[51,52,53,54,55,57,58,59],cudnn_en:69,cumsum:69,curabitur:80,curl:[77,87],current:[23,52,54,64,67,75,85],cursu:80,custom:[52,54,56,85,87],custom_mapp:85,cut:77,cxx11:89,cycler:51,cython:51,d17fnq9dkz9hgj:[52,54,55],d:[51,52,53,54,55,57,58,59,77,78,91,93],dapibu:80,data:[0,2,3,4,29,30,44,46,47,48,51,52,53,54,57,58,59,60,62,63,65,67,69,77,81,88,91],data_dir:88,data_item_1:76,data_load:59,data_typ:90,databas:51,dataclass:85,dataflow:[67,84],dataload:[4,29,30,44,48,59,88],dataloader_:44,dataloadercalibr:88,dataloaderopt:88,dataloaderuniqueptr:[4,44],dataset:[30,58,59,88],datatyp:[1,21,38,45,46,47,48,49,52,86,90],datatypeclass:49,date:78,dateutil:[51,54,55,57,58],david:78,dbg:87,ddof:[51,53],dead_code_elimin:61,deal:67,debian_frontend:51,debug:[16,27,45,48,59,67,91,92],debugg:91,debugpi:[51,54,55,57,58],decid:57,declar:[59,87],decod:[52,53,54,55],decode_result:58,deconvolut:93,decor:[51,54,55,57,58,85],dedic:[61,78],deep:[52,53,54,55,57,58,59,67,68,75,88,93],deeplearn:[66,85],deeplearningexampl:58,deer:59,def:[51,52,53,54,55,56,57,58,59,77,83,85,90],default_tim:[51,53],defer:55,defin:[0,1,2,3,4,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,43,46,47,48,50,51,53,55,57,59,75,83,84,85,86,88,91],definit:[50,67,77],defusedxml:[51,54,55,57,58],deiti:77,delet:[0,1,2,45,46,61],delimit:61,demo:[52,53,54,58,77,88],demonstr:[51,52,53,54,55,56,57,58,77,78,79,88,90],demonstrat:[52,54],denorm:58,denot:[53,77],dep:87,depend:[30,34,51,55,58,59,60,62,65,84,85,89,90],depickl:64,deploi:[52,54,55,57,58,63,65,68,84,88,90],deploy:[52,54,57,58,59,84,86,88,89,90,91,93],deprec:[51,69,85],depth:75,dequantizelay:59,descclassnam:77,descnam:77,describ:[48,54,57,58,67,83,90,92],descript:[55,62,78],deseri:84,design:[52,53,54,57,58,85,93],desir:[59,78,88],destini:78,destroi:[67,78],destructor:67,detail:[52,54,55,59,83,84,85,89,90],detect:[47,54,59,64],detections_batch:58,determin:[52,61,85],determinist:69,develop:[51,52,53,54,57,58,68,77,78,84,85,87],devhelp:51,deviat:91,devic:[21,33,35,38,45,48,49,52,54,56,57,58,59,64,69,86,88,91,92,93],device_typ:[45,46,88,92,93],deviceclass:49,devicetyp:[21,38,45,46,49,88,92,93],devicetypestruct:49,diam:80,dict:58,dictionari:[53,92],dictum:80,dictumst:80,did:77,didn:77,differ:[30,53,55,56,57,58,59,61,65,68,75,83,85],differenti:[52,54,57,58],digit:51,dignissim:80,dilat:[54,55,57,58,59,69],dim0:69,dim1:69,dim:[52,54,55,56,59,69,90],dim_int:69,dim_intlist:69,dimens:[47,55,61,85],dir:59,direct:[81,89],directli:[67,68,87,88],directori:[18,19,20,21,42,43,44,45,49,59,87,88],disabl:[52,54,55,57,58,59,75,76,87,91],disable_calib:59,disable_qu:59,disable_tf32:[45,48,88],disclos:87,disconnect:77,discret:77,discuss:[55,90],disp:[51,52,54,55,57],displai:[75,91],display_github:75,display_gitlab:75,display_vers:75,disregard:52,dist:87,distanc:51,distdir:87,distribut:[51,52,53,54,55,57,58,59,84,88,89],div:69,div_:69,divis:51,divisor_overrid:69,django:76,dl:77,dl_open:89,dla:[1,45,46,68,91],dla_cor:[45,46,88,91,92,93],dla_standalon:91,dlacor:91,doc:[59,65,66,75,76,77,82,87],docker:[51,52,53,54,57,58,90],docopt:51,docsrc:65,docstr:[77,78],document:[42,43,44,45,49,52,54,55,65,75,77,78,82,83,84,88,89,90,92],docutil:[51,77,78],doe:[43,44,53,58,61,62,67,77,85,88],doesn:[59,77,83,84],dog:59,dolor:[78,80],domain:[78,88],don:[56,57,67,75,77,78,85,88,90],done:[51,55,58,60,62,65,90],donec:[78,80],dont:42,dot:56,dothismethod:77,dotpai:76,dotpayprovid:76,doubl:[48,77,91],down:[52,54,57,58,75,85,87],download:[51,52,54,57,58,59,81,87,88,90],downsampl:[54,55],doxygen_should_skip_thi:[44,45],dream:78,driver:[51,52,54,55,57,87],drop:[58,75,87],dt:77,dtype:[45,47,48,51,52,53,54,55,57,58,59,69,85,86,91],dual:77,due:[3,4,52,54,57,58,59,76,77,87],dui:[78,80],dummi:53,dump:[36,87,91],dump_build_info:[21,38,45,49],durat:77,dure:[48,59,67,88,89,91],dynam:[47,48,58,59,85],dynamic_batch:85,e1109:59,e:[29,30,52,53,54,58,61,67,83,84,85,87,88,91],each:[3,4,48,53,56,58,59,60,61,62,64,67,75,77,84,85,87],eager:[52,54,56,57,58],ear:77,earli:85,earliest:59,eas:43,easi:[60,61,84,88,91],easier:[53,59,63,65,67,84,85,88],easiest:87,easili:[3,4],ecc:[51,52,54,55,57],echo:77,ecosystem:[52,54,57,58],edg:77,edgecolor:58,edit:75,editdist:51,edu:88,effect:[51,59,61,75,84,85,88],effici:67,efficientnet:[54,58],efficientnet_b0:52,efficientnet_b0_model:52,efficientnet_preprocess:52,efficitur:80,effort:55,eg:90,egesta:80,eget:80,either:[47,48,51,52,53,54,55,56,57,58,59,67,75,77,83,84,87,91],el:69,elaps:56,eleifend:78,element:[53,64,77,78,81,85],element_typ:44,elementum:80,elig:56,elit:[78,80],elk:77,els:[43,44,47,51,59,77,78],elu:69,emb:[33,78,91],embed:[64,69,77,91,93],embed_engine_in_new_modul:[21,41,45,49],emit:60,emphasi:77,emploi:53,empti:[48,57,78,83],emum:[16,17],en:[51,75],enabl:[3,4,24,48,52,54,55,57,58,59,62,63,65,75,85,91],enable_calib:59,enable_precis:84,enable_qu:59,enabled_precis:[45,48,51,52,53,54,55,57,58,59,84,86,88,90,92,93],enalbed_precis:93,enc:53,enc_input:53,encdecctcmodelbp:51,encod:[51,53,64],encoded_input:53,encorag:[52,53,54],encount:87,encourag:[55,90],end:[44,67,69,77,84,88,91],end_dim:[69,84],end_tim:[51,52,53,54,55,57,58,59],endif:[43,44,45],energi:77,enforc:84,engin:[0,1,17,32,33,37,45,46,47,48,51,53,55,56,60,62,63,65,68,75,84,86,88,89,91,92,93],engine_converted_from_jit:84,enginecap:[21,38,45,48,49,92],english:53,enhanc:[58,77],enim:80,enjoi:53,enough:59,ensur:[30,59,61,62],enter:[53,60],entir:[59,77],entiti:77,entri:[48,67],entropi:[29,30,59,88],entropy_calibration_2:88,entrypoint:[51,54,55,57,58],enumer:[0,1,2,16,17,46,53,59],environ:[51,52,53,54,55,57,58,85,90],ep:[54,55,69],epoch:59,eq:[69,77],equat:77,equival:[32,57,58,63,65,67,83,84,88],equivil:37,erat:80,erf:69,eric:77,ero:80,error:[16,48,51,52,53,54,57,58,60,61,65,77,84,85,87,91],eskimo_dog:52,essenc:77,essenti:[55,85],est:80,et:80,eta:[52,54,57,58],etc:[75,77,85,93],etiam:80,eu:80,euismod:80,eval:[51,52,54,55,56,57,58,59,84,86,90],evalu:[58,63,64,65],evaluated_value_map:[60,67],even:84,event:47,everi:[62,84],everyth:16,ex:[0,1,2,33,46,78,80],exact:90,exactli:[53,58],examin:[53,85],exampl:[47,52,54,55,56,57,58,59,62,64,65,67,75,76,78,81,83,84,85,88,89,90],exceedingli:77,except:[51,52,53,54,55,57,58,59,85],exception_elimin:61,excerpt:78,excit:51,execpt:61,execut:[33,51,52,54,55,57,58,61,63,64,65,83,84,85,88,90,91],execute_engin:[64,84],exert:77,exeuct:64,exhaust:84,exist:[4,31,32,37,51,56,85,87,88],exit:90,exp:69,expand:[61,69],expand_a:69,expanded_pad:59,expect:[47,48,52,53,54,55,57,58,61,67,84],experi:[52,53,54,57,58],experiment:[59,85],explain:85,explan:85,explic:[44,59],explicit:[0,1,2,3,4,45,46,55,61,68,77,85,88],explicit_batch_dimens:[56,85],explicitli:[53,59,62,63,65,88,92],explict:44,explictli:0,expon:69,export_util:51,expos:88,express:[51,52,53,54,55,57,58,59,77],ext:[77,78],extend:[51,63,65,67,69,84],extens:[51,53,55,58],extent:[68,84],extern:[75,77],extra:[48,84],extract:84,extractor:57,extrem:77,ey:77,f16:[84,91,93],f1:[52,54,55],f32:91,f:[51,57,59,77,83,85,87],facecolor:58,facilisi:80,fact:87,facto:77,factori:[4,29,30,88],fail:[84,93],fake:59,fake_quantize_per_:59,fake_quantize_per_channel_affin:[59,69],fake_quantize_per_tensor_affin:[59,69],fallback:[63,65,67,91,93],fals:[0,1,2,3,4,44,45,46,48,51,54,55,56,58,59,69,75,76,77,78,84,85,88,92],fame:80,famili:[52,54,57,58,59],familiar:90,familyhandyman:[52,54,55],fan:[51,52,54,55,57],far:[77,85],fashion:84,faster:59,fastjsonschema:55,fasttext:51,faucibu:80,fbed:[52,54,55],fc1:[57,83,84],fc2:[57,83,84],fc3:[57,83,84],fc:[48,54,55,58,59,61,91],feat:[57,83,84],featur:[51,52,53,54,55,57,58,59,62,84,85,88,91,92],feb:[52,54,57],fed:[3,4,47],feed:[29,30,59,84],feel:[55,68],feli:80,feugiat:[78,80],few:[52,54,57,58,85],ffmpeg:51,field:[3,4,88],fifth:78,fig:[52,54,55,58],figur:[62,78,80],file:[0,1,2,3,4,5,6,7,8,9,10,11,12,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,51,52,53,54,55,57,58,59,62,64,65,75,76,78,82,84,85,87,88,90,91],file_path:91,filelock:[51,53],filer_publ:[52,54,55],filer_public_thumbnail:[52,54,55],fill:[51,52,53,54,57],filter:[51,58,59],find:[4,53,58,84,85],fine:[51,59],finetun:59,finibu:80,finish:58,first:[47,51,53,57,58,59,60,61,77,78,84,85,86,88,90],firstli:90,fit:77,five:58,fix:[48,54,58,77,85,93],fixed_s:[45,48],flag:[59,62,63,65,87,89,91],flatten:[57,69,83,84],flatten_convert:84,flesh:90,flexibl:[52,54,57,58],float16:[51,52,54,57,58,91],float32:[47,48,51,52,53,54,55,56,59,85,91],float_int:69,floor:69,floor_divid:69,floordiv:69,flow:[56,57,58,59,67,77,83,85],flox:77,fluent:53,flush:77,fly:83,fmax:51,fmin:51,focal:51,fold:78,folder:85,follow:[33,51,52,53,54,55,57,58,59,62,64,75,77,78,82,83,84,85,87,88,89,90,91],fonttool:51,foo:[77,78,85],foo_kwarg:85,foo_nod:85,footprint:[52,54,57,58],forc:[75,85,91],force_fp32_output:85,forced_fallback_op:62,form:[51,53,60,77,90],format:[33,45,47,48,51,52,53,54,55,57,58,59,69,77,78,86,90,91],forth:78,forum:87,forward:[29,30,32,33,56,57,59,62,64,67,83,84,88,92],found:[42,43,44,45,51,52,54,55,57,58,77,84,87,88,89],four:[77,78],fp16:[0,47,48,53,55,57,58,59,68,84,86,91,93],fp32:[0,47,48,53,55,56,57,58,59,68,85,88,90,91],frac:77,framework:[52,54,57,58],franc:53,freed:67,freeli:55,freeze_modul:61,fri:52,friend:45,fringilla:80,frog:59,from:[0,1,2,3,4,29,30,44,46,47,48,51,52,53,54,56,57,58,59,60,61,62,63,64,65,67,68,75,76,77,78,83,84,85,88,90,91],from_pretrain:[51,53],from_tensor:[56,85],frozen:59,frozendict:51,frozenlist:51,fssl:87,fsspec:51,fstream:[20,44],full:[48,59,67,84,88,89,90,91,93],fulli:[31,56,61,84,88,91,93],further:85,fusc:80,fuse:[52,54,57,58],fuse_addmm_branch:61,fuse_flatten_linear:61,fuse_linear:61,fusion:[67,85],futur:[51,52,53,54,57,59,85],futurewarn:51,fx2trt:56,fx:56,g2p:51,g:[29,30,51,53,61,77,85,87,88,91],g_:77,gain:58,game:53,gamma:69,gatewai:76,gaurd:43,gcc:[65,84],gdown:51,ge:69,gear:88,geforc:[52,54,57],gener:[3,4,30,51,52,53,54,55,56,57,58,59,61,64,65,67,75,77,78,81,83,84,87,88,91],genutil:[51,54,55,57,58],geometr:53,get:[0,1,2,3,4,23,34,44,46,56,58,59,61,62,67,85,87,88,90],get_attr:56,get_batch_impl:44,get_build_info:[21,38,45,49],get_coco_object_dictionari:58,get_input:56,get_is_colored_output_on:[18,39,42,49],get_logging_prefix:[18,39,42,49],get_model_size_mb:51,get_output:85,get_reportable_log_level:[18,39,42,49],get_submod_input:56,getattr:[51,56,61,64,83,84],getbatch:[3,4,44],getbatchs:[3,4,44],getdimens:[67,84],getoutput:[67,84],gi:[51,52,54,55,57],git:[81,85],gitdb:51,github:[51,52,53,54,57,58,66,75,84,85,87,88,89,90],github_url:75,gitlab:75,gitlab_url:75,gitpython:51,give:[57,75,77,85],given:[47,48,53,58,61,83,84,85,91,92],global:[26,59,84],gnu:87,go:[44,52,54,55,57,58,59,61,62,68,83,84,85,90],goal:67,goe:[59,77,85],good:[44,67,77,85],goodger:78,googl:[51,53,75],got:[56,77,84],govern:[51,52,53,54,55,57,58,59],gpu:[1,32,35,37,45,46,51,52,53,54,55,56,57,58,59,84,85,88,90,91,92,93],gpu_id:[35,45,46,88,91,92,93],granular:57,graph:[16,31,32,37,45,51,52,54,55,56,57,58,59,60,62,63,65,67,68,83,84,85,91],graphic:55,graphnam:[51,53],gravida:80,great:[52,54,57,58,77,84],green_mamba:[54,55],group:[59,69,77,78],grpc:90,grpcio:51,gru_cel:69,gt:[51,52,53,54,55,57,58,69],gtc:68,guangzhou:78,guard:61,guard_elimin:61,guess:53,gui:77,guid:76,gulf:[52,54,55,90],gz:[77,78,87,88],h5py:51,h:[0,1,2,3,4,5,6,7,8,9,10,11,12,15,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,49,50,52,54,58,61,84,88,91],ha:[51,52,53,54,55,56,57,58,59,60,61,62,63,65,67,77,78,83,84,85,88],habit:80,habitass:80,hac:80,hack:44,hakaimagazin:[52,54,55,90],half:[53,55,57,58,59,77,84,86,88,90,91,92,93],hand:90,handl:[56,58,61,64,85],happen:[57,59,83,85],hardtanh:[67,69],hardtanh_:69,hardwar:[52,54,57,58,93],hasattr:51,hash:87,have:[30,33,44,51,52,53,54,55,56,57,58,60,61,67,68,77,83,84,85,87,88,90,91],haven:84,head:58,header:[52,54,55,75,77,78,84,90],heart:78,heaven:77,heck:77,heh:78,hehe:78,height:77,help:[27,51,52,53,54,57,59,60,67,84,85,89,91],helper:[51,57,58,59,67],henc:53,hendrerit:80,here:[44,51,52,53,54,55,57,58,60,62,64,75,77,78,83,84,85,87,88,89,90],hermet:87,hexagram:77,hfile:49,hi:[69,77,78],hidden:[43,53,75],hierarchi:59,high:[52,54,58,61,62,75],higher:[53,61,75,77,83],highfreq:51,highli:[55,90],highlight:77,hinton:88,hist_percentil:59,histogram:59,historgram:59,hit:51,hold:[46,47,60,67,88],holder:[64,79],holi:77,home:87,hood:[65,86],hope:78,hors:59,host:[54,55,57,58,59,87,90],how:[3,4,52,53,54,55,58,59,77,79,81,83,89,90,92],howev:[30,52,54,57,58,75,76,87,90],html:[59,66,77,83,87,88],html_theme:82,html_theme_opt:75,html_theme_path:82,htmlhelp:51,http:[51,52,53,54,55,57,58,59,66,75,77,83,84,85,87,88,89,90],http_archiv:87,httpclient:90,hub:[51,53,54,58,90],huge:53,huggingfac:[51,53],human:77,humankind:78,huski:[52,54,55],hx:69,hydra:51,hyperlink:77,hyphen:77,i0627:56,i8:91,i:[51,52,53,54,55,57,58,59,61,67,77,78,83,84,88,91],iaculi:80,icon:[75,77],id:[35,45,51,52,54,55,57,58,75,76,80,91,93],idea:[61,77],ident:[53,91],idna:[51,53],idx:[58,69],ifndef:[44,45],ifstream:44,iii:78,iint8calibr:[3,4,29,30,44,45,48,88],iint8entropycalibrator2:[3,4,29,30,44,88],iint8minmaxcalibr:[29,30,88],ilay:67,illustr:[59,85],imag:[52,54,55,58,59,88,90],image_classif:58,image_idx:58,imageio:58,imagenet:[52,54,55,59],imagenet_cla:[52,54,55],imagenet_class_index:[52,54,55],images:51,images_:88,img0:[52,54,55],img1:[52,54,55,90],img2:[52,54,55],img3:[52,54,55],img:[52,54,55,90],img_path:[52,54,55,90],impact:[52,53,54,57,58],imperdiet:80,implement:[3,4,52,53,54,55,56,57,58,61,62,64,76,84,85,88,89],impli:[51,52,53,54,55,57,58,59],implic:61,implicit:[69,77,85],importlib:[51,54,55,57,58],improv:[59,78],imshow:[52,54,55,58],in_featur:[54,55,57],in_shap:84,in_tensor:83,incas:44,includ:[13,15,16,34,36,42,43,44,45,50,52,54,57,58,62,63,64,65,75,77,83,84,85,87,88,91],includedirectori:49,includehidden:75,incompat:87,incorpor:78,incorrect:59,ind:[52,54,55],inde:[52,54,57,58],indent:77,independ:58,index:[33,51,52,53,54,55,57,58,59,66,68,69,75,81,88],indic:[51,53,69,75,77],indigo_bunt:52,indirect:77,inetworkdefinit:60,infer:[51,52,53,54,56,57,59,61,84,85,88],inference_output:90,inferenceservercli:90,inferinput:90,inferrequestedoutput:90,inflect:51,info:[16,32,37,45,48,67,84,91],inform:[25,33,34,36,47,51,55,58,59,60,62,64,68,77,83,84,85,87,88,91,92],infrastructur:[88,90],ingest:65,inherit:[49,85,88],iniconfig:51,init_weight:59,initi:[51,53,59,77],injuri:77,inlin:[0,1,2,3,4,29,30,44,46,48,51,54,55,57,58,61,78,81,84],inner:[48,78],innings:53,inplac:[54,55,56],input0:84,input1:84,input2:84,input:[3,4,21,30,33,38,44,45,48,49,51,52,53,54,55,56,57,58,59,60,61,62,64,67,69,78,83,84,85,86,88,90,91,92,93],input_0:[64,84],input__0:90,input_batch:[52,54,55],input_data:[52,54,55,57,58,59,83,86],input_file_path:[91,93],input_id:53,input_is_dynam:45,input_nam:85,input_s:[62,84],input_scal:69,input_shap:[51,52,54,55,57,58,59,88,93],input_spec:[85,91],input_tensor1:53,input_tensor2:53,input_tensor3:53,input_tensor:[51,52,54,55],input_tensor_spec:85,input_v:85,inputclass:49,inputrang:[62,84],inputtensorspec:[56,85],inreleas:51,insert:[59,84,88],inserting_befor:85,insid:[77,90],inspect:[52,54,57,58,67,83,84],instal:[51,52,53,54,55,57,58,59,68,81,84,89,90],instanc:[53,57,61,83,84],instance_norm:69,instanti:[51,63,64,65,67,84],instatin:[0,1,2,46],instead:[48,51,52,53,54,55,57,58,59,60,61,84,89,91],instnanti:64,instrucion:85,instruct:[62,63,65,84,85,87,90],insur:87,int32:[53,55],int64_t:[45,46,47,48,88,93],int8:[0,44,47,48,55,68,88,91,93],int8_t:[17,45],int8cachecalibr:[20,30,40,44,49],int8cachecalibratortempl:49,int8calibr:[3,20,29,40,44,49],int8calibratornamespac:49,int_float:69,integ:[59,80],integr:[52,53,54,55,57,58,68],intend:[51,87],intent:[61,77],interact:77,intercompat:58,interdum:80,interest:[61,77],interfac:[0,1,2,46,64,65,67,88],interfer:77,intermedi:[16,52,54,57,58,83],intern:[1,16,46,52,54,57,58,59,67,77,84],interp:56,interpol:[52,77],interpolationmod:52,interpret:[52,54,57,58,64,77,85],intro_to_torchscript_tutori:83,introduc:[52,54,57,58,59,85],introduct:53,invalid:59,invok:[83,84,85],involv:[51,52,53,54,57],io:[44,51,52,53,54,55,57,58,90],iostream:[20,21,44,45,84],ipad:51,ipso:77,ipsum:[78,80],ipykernel:[51,54,55,57,58],ipython:[51,54,55,57,58],ipywidget:[51,54,55,57,58,59],ir:[52,54,57,58,63,65,67,83],is_avail:[52,54,55],is_floating_point:69,is_tar:51,is_train:88,iscustomclass:67,isinst:[59,85],isn:[75,77],isort:51,issu:[3,4,51,52,53,54,57,84,87],istensor:67,istream_iter:44,it_:44,ital:77,item:[51,52,53,54,55,59,76,78],itensor:[60,67,84,85],iter:[20,44,48,51,52,53,54,55,56,57,58,59,60,91],its:[30,52,54,57,58,60,64,67,77],itself:[0,1,2,46,61,87,90,91,92],iv:78,ivalu:[60,64,67,84],ja:51,jan:78,jarowinkl:51,jedi:[51,54,55,57,58],jetpack:87,jetpack_4:87,jetson:[52,54,57,58],jieba:51,jinja2:[51,54,55,57,58],jit:[31,32,33,37,45,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,83,84,86,90,91,92],jit_model:59,jmespath:51,joblib:[51,53],join:59,jpeg:[52,54,55],jpg:[52,54,55,58,90],jpg__1920x1080_q85_subject_loc:[52,54,55],jsmath:51,json:[52,54,55],json_fil:[52,54,55],jsonschema:[51,54,55,57,58],jump:90,jupyt:[51,54,55,57,58],jupyterlab:[51,54,55,57,58],jupyterlab_widget:[54,57,58],just:[44,45,52,53,54,55,58,61,68,77,79,83,84,85,86,89,92],justo:[78,80],k:[53,69,88],kaldi:51,kaldiio:51,kb:[52,54,55,57,58],kbool:[0,45],kchannelslast:[2,45],kchar:[0,45],kclip:67,kcontigu:[2,45,47],kcpu:[1,46],kcuda:[1,46,62,84],kdebug:[16,42,44],kdla:[1,45,46,93],kdla_standalon:[17,45],keepdim:[56,69],kei:[53,59,77,83,90],kept:[59,78],kernel:[47,48,52,54,57,58,67,85,91],kernel_s:[54,55,57,69],kerror:[16,42],keyboard:77,keyword:51,kf16:[88,93],kfloat:[0,45,48],kgpu:[1,45,46],kgraph:[16,42,61],khalf:[0,45,84],ki8:88,kind:[51,52,53,54,55,57,58,59,60,85],kinfo:[16,42,44],kint:[0,45],kinternal_error:[16,42],kiwisolv:51,know:[42,56,67,75,77],knowledg:77,kriz:88,krizhevski:88,ksafeti:[17,45],kstandard:[17,45,48],ktest:88,ktrain:88,kunknown:[0,2,45],kwarg:[55,56,59,85],kwarn:[16,42],l:69,label:[52,54,55,58,59,77,88,90],lacinia:80,lack:[62,63,65,85],lacu:80,laid:84,lambda:[54,55,58,67,77,84,90],lang:76,languag:[51,52,54,55,57,58,59,76,77,78,83,90],laoreet:80,larg:[52,53,54,57,58,59,63,65,75,77,84,88],larger:[75,88],largest:69,last:[2,51,58,61,85],lastli:90,latenc:[51,53],later:[30,53,84,85],latest:[52,53,54,75,87],latexcodec:51,launch:90,law:[51,52,53,54,55,57,58,59],layer1:[54,55],layer2:[54,55],layer3:[54,55],layer4:[54,55],layer:[46,48,52,54,57,58,59,60,61,67,84,85,88,90,91,93],layer_norm:69,layout:[2,47,69],ld_library_path:87,ld_preload:89,ldd:87,le:69,lead:77,leader:77,leaky_relu:69,leaky_relu_:69,learn:[55,59,68,84,87,88,90,93],leas:78,least:[52,53,54,77,78],leav:[57,59,61],lectu:[78,80],left:[58,75,77],legend:77,len:[51,53,58,59,69],lenet:[83,84],lenet_script:[83,84],lenetclassifi:[57,83],lenetfeatextractor:[57,83],length:[3,4,44,52,53,54,55,69,78,85],leo:80,let:[46,51,52,54,55,57,58,61,67,75,77,85,90,91],letter:[51,78],level:[18,23,25,26,39,42,44,49,52,53,54,57,58,59,61,62,65,81,83,85,90],levelnamespac:49,leverag:[52,54,55,57,58,85,88],lib:[51,52,53,54,55,57,58,59,61,84,87],libero:[78,80],librari:[34,42,43,44,45,52,54,55,57,58,59,63,64,65,67,84],librosa:51,libsndfile1:51,libtorch:[4,36,52,54,57,58,67,84,87,88],libtorch_pre_cxx11_abi:87,libtorchtrt:[84,87,91],libtorchtrt_plugin:89,libtorchtrt_runtim:89,licens:[42,43,44,45,51,52,53,54,55,57,58,59,84],light:77,lightn:51,lightningdeprecationwarn:51,lightningmodul:51,ligula:80,like:[52,54,56,57,58,60,61,64,67,76,77,83,84,85,86,87,88,89,90,91],limit:[51,52,53,54,55,57,58,59,61,76,88],linalg:56,linalg_norm:56,linalg_norm_1:56,line:[78,84,91],linear:[2,54,55,56,57,59,69,83],linear_1:56,linear_bia:56,linear_weight:56,linewidth:58,link:[60,68,75,76,81,84,89,91],linux:[65,84,87],list:[18,19,20,21,31,48,50,51,53,58,59,60,62,64,67,69,81,84,85,86,87,90],listconstruct:[60,64,84],listunpack:[64,84],liter:78,literal:78,literal_block:77,live:[67,77],ll:[53,85],llvmlite:51,lo:69,load:[51,52,54,55,56,58,59,62,64,84,85,86,88,89,90,91,92],load_calib_amax:59,load_librari:89,load_state_dict:59,loader:[51,52,54,57,58],loading_data_recip:88,loborti:[78,80],local:[58,59,61,75,84],localhost:90,locat:[58,87,88],lock:76,log:[15,16,19,20,38,44,49,50,53,59,61,67,68,69,72,85],log_debug:67,loggingenum:49,logic:85,login:90,logist:85,logo_onli:75,lone:78,longer:[52,54,57,58,75,89],look:[51,52,53,54,55,57,58,59,60,61,83,88,90,92],loop:85,loop_unrol:61,lorem:[78,80],lorikeet:[54,55],lose:75,loss:[59,88],lot:67,low:85,lower:[16,55,56,78],lower_exampl:85,lower_graph:61,lower_precis:[56,85],lower_to_trt:85,lower_tupl:61,loweralltupl:61,lowered_model_output:56,lowerprecis:56,lowersimpletupl:61,lowfreq:51,lr:59,lstm_cell:69,lt:[51,53,54,55,57,58,59,69],ltorchtrt:89,luctu:80,lvl:[25,26,42],m:[51,52,54,55,57,78],machin:[52,54,57,58,64,87,88,90],macro:[5,6,7,8,9,10,11,12,15,18,21,42,45,49,50],mad:77,made:[58,61,63,65,77],maecena:80,magna:80,mai:[51,52,53,54,55,57,58,59,60,64,65,77,78,83,84,85,87,88,90],main:[58,61,62,63,64,65,67,75,77,79,84,85],mainli:85,maintain:[53,62,64,67],major:[52,54,57,58,65,85],make:[52,53,54,55,56,57,58,60,77,79,84,85,86,87,88,90,93],make_data_load:[4,88],make_int8_cache_calibr:[20,40,44,49,88],make_int8_calibr:[20,30,40,44,49,88],malesuada:80,man:[77,78],manag:[51,52,53,54,55,57,58,60,63,65,67,84],mangag:61,mani:[75,77,78,85],manifest_filepath:51,mantissa:48,manual:[76,77,85,87],manual_se:51,manylinux2014_x86_64:58,manylinux_2_17_x86_64:58,map:[1,46,56,60,61,63,65,67,84,85,88,90,92],mapper:85,mark:[52,61,75],markdown:51,marknodesforfallback:61,markup:[78,81],markup_process:77,markupsaf:[51,54,55,57,58],marshmallow:51,mask:[51,69],masked_fil:69,masked_sent:53,massa:80,master:[66,77,87,88,89],mat2:69,match:[48,56,61,87],math:81,mathemat:53,matmul:[61,69,84],matplotlib:[51,52,54,55,57,58],matric:53,matrix:66,matter:85,matti:78,matur:65,mauri:[78,80],max:[47,48,54,55,57,58,59,67,69,75,91],max_batch_s:[85,90],max_bound:59,max_c:91,max_dur:51,max_h:91,max_length:53,max_n:91,max_pool1d:69,max_pool2d:[57,69,83,84],max_pool3d:69,max_shap:[45,47,55,57,85,86],max_val:[67,69],max_valu:59,max_w:91,max_workspace_s:85,maxcalibr:59,maxim:55,maximu:80,maximum:[47,48,52,53,54,55,59,85,90,91],maxpool2d:[54,55],maxpool:[54,55],mayb:[55,77],mb:[52,54,55,57,58,91],md:66,me:[77,78],mean:[51,52,53,54,55,57,58,59,62,67,68,69,85,90],mecab:51,mechan:[51,53,67,85],media:[52,54,55],median:[51,53],medium:77,mel:51,member:[46,47,48],memeori:2,memori:[20,21,44,45,48,51,52,54,55,57,58,61,67,84,86],memory_format:69,memoryformat:[2,45],men:77,mental:77,menu:[75,77,91],menuselect:77,messag:[16,25,26,91],meta:[81,85],metadata:[51,64,67,75],meth:77,method:[31,32,33,37,47,51,52,54,55,57,58,59,61,67,77,83,84,85,87,91,92],method_nam:[31,37,45,84,91],metric:51,metu:80,mi:80,middl:77,mig:[51,52,54,55,57],might:[53,59,61,75,87],min:[47,48,67,69,91],min_block_s:[45,48,62],min_bound:59,min_c:91,min_h:91,min_n:91,min_shap:[45,47,55,57,85,86],min_val:[67,69],min_valu:59,min_w:91,mind:77,mine:77,mini:[52,54,55],minim:[48,88,91],minimum:[47,48,55,62,91],minmax:[29,30,88],misbuild:75,miss:[77,84],mistun:[51,54,55,57,58],mix:58,mixin:51,mkdir:[52,54,55,87],mlm_model_t:53,mm:[51,90],mmb:77,mobilenet_v2:92,mod:[51,56,62,81,84,85,88,91],mode:[56,59,85,86,88],mode_:88,model:[51,56,62,64,68,83,84,86,88,91,92],model_math:58,model_nam:[51,59,90],model_repositori:90,model_s:51,model_state_dict:59,modelpt:51,modern:58,modifi:[78,85,87],modified_state_dict:59,modul:[31,32,33,37,45,48,51,52,53,54,55,56,57,58,59,62,63,64,65,67,68,76,77,78,85,86,88,91,92,93],modular:84,module_fallback:61,module_nam:91,molesti:80,momentum:[54,55,59,69],mon:55,month:51,monthli:[51,55],morbi:80,more:[52,54,55,57,58,59,60,68,75,78,83,84,85,87,88,89,90,92],most:[53,65,85,87,89,90],most_likely_token_id:53,most_likely_token_ids_trt:53,mother:77,motion:77,mous:77,move:[29,44,45,52,54,55,57,58,61,64,84,88],mpmath:51,ms:[52,54,55,57,58,59],mse:59,msg:[26,42,51,53],mu:77,much:[67,75,77,88],mul:[59,69],mul_:69,multi:91,multidict:51,multipl:[64,77,78,88,90],multipli:48,must:[33,47,48,53,58,61,62,67,77,78,84,85,87,89,91],mutil:78,my:77,my_pytorch_model:85,myclass:77,mymodel:[62,86],mypi:58,myself:78,n01537544:52,n01739381:52,n01749939:[54,55],n01820546:[54,55],n02109961:52,n02110185:[54,55],n02481823:[52,54,55],n:[51,52,53,54,56,57,67,84,88,91],n_fft:51,n_mel:51,nabla:77,nacc_op:56,nam:[78,80],name:[3,4,31,33,37,44,51,52,54,55,56,57,58,59,62,64,67,77,78,83,84,85,87,90,92],named_children:56,named_modul:59,namedtupl:85,namespac:[42,43,44,45,50,61,68,88],narrow:[59,69],nativ:[59,65,66,84],native_funct:66,natur:[53,77],nav:[75,81],navig:75,navigation_depth:75,nbbind:[3,4,44],nbclient:[51,54,55,57,58],nbconvert:[51,54,55,57,58],nbformat:[51,54,55,57,58],nchw:2,ncol:[52,54,55],ne:[61,69],nec:80,necessari:[42,89],need:[0,1,2,25,30,43,46,52,54,55,56,58,60,61,67,77,84,85,86,87,88,89,90],neg:69,negative_slop:69,nemo:51,nemo_1:51,nemo_asr:51,nemo_log:51,nemo_toolkit:51,nequ:[78,80],nest:[49,51,54,55,57,58,77,78],net:[52,54,55,67,77,78,84],netu:80,network:[29,30,52,54,57,58,59,67,84,85,88,90,93],networkx:58,neural:[52,54,58,93],new_lay:67,new_level:53,new_local_repositori:87,new_lr:59,new_siz:88,newer:[52,54,57,58],newest:51,newli:51,next:[3,4,58,59,60,64,75,77,78,88,90],nfilt:51,ngc:[51,52,53,54,55,57,58,87,90],nhwc:[2,91],nibh:[78,80],nice:87,nickel:77,night:78,nightli:85,nine:53,ninja:87,nisi:80,nisl:80,nl:[52,54,55],nlp:[29,30,53,88],nltk:51,nn:[51,52,54,55,56,57,59,61,66,83,84,85,86],no_grad:[51,52,53,54,55,57,58,59],node:[56,59,61,62,63,65,67,84,85],node_info:[67,84],node_support_preview:56,noexcept:[3,4,44,88],non:[56,78,80],non_block:[59,69],none:[52,54,56,57,58,59,67,69,75,77,85],nonetheless:77,nonexist:77,noninteract:51,nonloc:56,norm:[56,69],normal:[0,1,2,46,51,52,53,54,55,57,58,59,77,83,84,85,88,90,93],normalized_shap:69,noskipw:44,notatemoduleforfallback:61,note:[1,46,47,53,67,75,77,84,85,87,93],notebook:[51,52,53,54,55,57,58,59,65],notic:[57,58],now:[51,52,53,54,57,58,61,65,67,77,84,85,87,92],np:[51,52,53,54,55,57,58,59,90],nrow:[52,54,55],nrun:[52,54,55,57,58,59],nsupport:56,nu:77,nulla:80,nullptr:[44,45,48],num:[51,53,91],num_avg_timing_it:[45,48,92],num_batch:59,num_bit:59,num_calib_batch:59,num_class:59,num_epoch:59,num_it:91,num_loop:[51,53],num_min_timing_it:[45,48,92],num_op:91,num_work:[59,88],numba:51,number:[3,4,48,51,52,53,54,59,61,62,67,75,84,85,91],numel:69,numer:[51,78,85,91],numpi:[51,52,53,54,55,57,58,59,90],nunc:80,nunsupport:56,nvcr:[51,90],nvidia:[32,37,42,43,44,45,51,52,53,54,55,57,58,59,66,84,85,87,90,91,93],nvidia_convnets_processing_util:58,nvidia_deeplearningexamples_torchhub:58,nvidia_efficientnet:58,nvidia_efficientnet_b0:58,nvidia_efficientnet_b4:58,nvidia_efficientnet_widese_b0:58,nvidia_efficientnet_widese_b4:58,nvidia_resnet50:58,nvidia_resnext101_32x4d:58,nvidia_resnext:58,nvidia_se_resnext101_32x4d:58,nvidia_ssd:58,nvidia_ssd_processing_util:58,nvidia_ssdpyt_amp_200703:58,nvidia_tacotron2:58,nvidia_tts_util:58,nvidia_waveglow:58,nvinfer1:[3,4,29,30,44,45,48,67,88],nvinfer:[20,44],nwarmup:[52,54,55,57,58,59],o:[52,54,55,77,87,90],oauthlib:51,obj:69,object:[0,1,2,3,4,46,47,48,64,67,88,92],observ:[51,52,53,54,59],obsolet:58,obtain:[51,52,53,54,55,57,58,59,86],obvious:83,octet:[52,54,55],odio:[78,80],off:[51,52,54,55,57,58,62,64],offici:87,ofstream:[44,84],often:77,oh:78,ok:[52,54,55,77,84],okai:48,older:65,omegaconf:51,onc:[42,43,44,45,60,61,64,85,88,89,90],one:[53,58,59,61,67,77,83,84,85,90],ones:[42,52,54,57,58,62,63,65,77,84,87],onli:[1,3,4,16,30,44,46,47,57,58,61,62,65,67,77,85,87,88,89,91,93],onnx:[51,61],onto:[64,91],onward:[52,54,55],op:[52,53,54,55,56,58,59,60,61,63,65,67,84,89,91],op_and_target:85,op_nam:91,op_precis:[52,54,55,58],open:[52,54,55,57,58,90],opencc:51,oper:[0,1,2,3,4,31,44,45,46,48,52,54,55,56,57,58,59,60,61,62,63,64,65,67,68,85,86,88,91,93],opset:[63,65],opt:[47,48,51,52,53,54,55,57,58,59,87],opt_c:91,opt_h:91,opt_n:91,opt_shap:[45,47,55,57,86],opt_state_dict:59,opt_w:91,optim:[47,51,52,53,54,55,57,58,59,61,68,83,84,85,86,91],optimin:47,optimiz:[52,54,57,58,83],optimize_target_shap:85,optimized_execut:51,optimz:90,option:[44,47,56,62,63,65,77,81,85,87,88,89,91,93],orchestra:77,orci:80,ord:56,order:[48,58,62,67,84,85,86],org:[51,52,53,54,55,57,58,59,66,75,77,83,84,87,88],organ:78,origin:[51,53,58,59,85],original_nam:57,ornar:[78,80],os:[45,59],ostream:45,other:[0,1,2,45,46,52,54,55,56,57,58,59,60,61,64,68,69,76,77,84,85,86,87,89,91],otherwis:[52,53,54,87,89],our:[52,53,54,55,57,58,62,65,83,84,90],out:[31,44,51,52,53,54,55,57,59,60,61,62,63,65,67,77,84,87,90],out_dir:59,out_featur:[54,55,57],out_shap:84,out_tensor:[67,84],output0:61,output:[24,27,33,48,52,53,54,55,57,58,59,60,61,62,64,67,75,77,78,84,85,87,90,91],output__0:90,output_file_path:[91,93],output_nam:85,output_pad:69,output_s:[54,55,69],output_trt:53,outself:84,outsid:77,over:[52,54,55,57,63,65,77,85,90],overal:56,overkil:57,overrid:[3,4,29,30,44,85,88],overview:[53,66,68],own:[51,52,53,54,57,67,77,84,90],p0:55,p2:51,p8:[51,52,54,57],p:[52,54,55,69,84,90,91,93],packag:[51,52,53,54,55,57,58,59,61,84,85,91],pad:[51,53,54,55,59,69],padding_idx:69,padding_mod:59,page:[55,68,79,81,90],pair:[51,61,67,77,87,88],panda:51,pandocfilt:[51,54,55,57,58],pane:77,pangu:51,paper:[52,54,58],paragraph:[78,81],parallel:53,param:76,param_group:59,paramet:[0,1,2,3,4,25,26,27,29,30,31,32,33,35,37,46,47,48,59,60,61,67,81,83,84,85],parameter:51,parent:[14,15,18,19,20,21],pari:53,pars:[59,77,84],parser:77,parso:[51,54,55,57,58],part:[51,56,62,65,75,76,77,85,91],parti:55,partial:[52,54,57,58,77,91],particular:57,particularli:53,partit:61,partitioninfo:62,pass:[51,53,59,60,62,63,64,65,67,83,84,85,88],past:77,patch:58,path:[4,13,14,15,29,30,56,57,58,59,83,84,87,88,90,91],path_to_torchtrt_root:87,pathspec:[51,58],pathtool:51,pathwai:83,pattern:[67,84],payment:76,pbtxt:90,peephole_optimz:61,pellentesqu:80,peopl:77,pep:77,per:[55,58,59],percentil:[51,53,59],perf:[51,52,54,55,57],perfom:59,perforamnc:85,perform:[29,30,52,53,54,55,56,57,58,88,90],performac:88,permiss:[51,52,53,54,55,57,58,59],permit:77,permut:[69,85],persist:[51,52,54,55,57,77],pesq:51,pexpect:[51,54,55,57,58],pharetra:80,phase:[16,59,67,84],phasellu:80,phi:77,philosoph:77,phrase:77,pi:77,pick:[57,83],pick_best:58,pickler:64,pickleshar:[51,54,55,57,58],pid:[51,52,54,55,57],piec:51,pil:[52,54,55,90],pillow:[51,52,58],pin:76,pin_memori:69,pip3:[85,87],pip:[51,52,53,54,55,57,58,59,87,90],pipelin:[91,93],piplein:84,pipreq:51,pixel_shuffl:69,pl:76,place:[47,61,77,78,79,85,87,88],placehold:56,placerat:80,plan:[65,91],plane:59,platea:80,platform:[45,52,54,57,58,65,87,90,91,93],platformdir:58,pleas:[51,52,59,77,84,85,87,90],plot:58,plot_result:58,plt:[52,54,55,58],pluggi:51,plugin:[51,85],po:53,point:[75,76,77,84,90],pointer:[3,4,88],polish:76,pooch:51,pool:[54,55,57,58,59,93],pop:64,popular:[53,76,87],portabl:[52,54,57,58,64],portalock:51,portion:77,porttitor:[78,80],pos_mask:53,posit:[51,53,75,85,91],possibl:[52,53,54,57,58,77,90],post1:51,post:[29,30,48,68,84,91],posuer:[78,80],potenti:[48,80],pow:69,power:[52,54,57,58,77,84,85],pr:84,practic:[52,54,57,58],praesent:80,pragma:[42,43,44,45,88],pre:[33,51,52,53,54,59,61,88,89],pre_cxx11_abi:87,preced:77,precis:[48,53,55,57,58,68,84,85,86,88,91,93],precisions_str:51,pred:[52,54,55,59],pred_label:58,pred_loc:58,predict:[52,53,54,55,58],prefer:84,prefix:[27,28,42,77],preinstal:87,prelu:69,prepar:[51,52,53,54,57,58,85,90],prepare_input:58,prepare_tensor:58,preprint:88,preprocess:[51,52,54,55,59,88,90],preserv:[59,77,83,88],prespect:83,press:77,pretium:80,pretrain:[51,52,53,54,55,58,90,92],pretti:84,prev_next_buttons_loc:75,prevent:[48,91],preview:56,previou:[53,75],previous:[30,33,84],prim:[60,61,64,69,83,84],prim_devic:69,primal:77,primari:53,primarili:[65,84],print:[16,31,44,51,52,53,54,55,56,57,58,59,77,84,90,92],print_funct:51,printout:53,printstat:[51,53],priorit:87,privat:[3,4,44,45,88],prob:[52,54,55],probabl:[52,53,54,55,58],probablil:[52,54,55],problem:[53,77],problemat:77,proce:[52,54,55,90],proceed:90,process:[51,52,53,54,55,57,58,59,62,76,77,83,88,90,91,92],prod:69,produc:[47,60,64,67,77,84],product:[48,52,54,57,58],profil:[47,57],profiling_verbos:85,program:[18,19,20,21,30,50,55,57,58,63,64,65,68,83,91],programm:77,progress:78,proin:80,project:[76,81],prometheu:[51,54,55,57,58],promis:[51,85],prompt:[51,54,55,57,58],properli:87,properti:[51,53,75],propog:61,prose:77,protobuf:51,provid:[3,4,48,51,52,53,54,55,56,62,64,67,77,84,85,86,87,88,89,90,91,92],providi:[63,65],provok:77,psutil:[51,55],pt:[53,56,58,59,84,85,90,91],pth:[54,58,59],ptq:[3,4,15,18,38,49,50,68,72,91],ptq_calibr:[3,4,45,48,88],ptqtemplat:49,ptyprocess:[51,54,55,57,58],publish:90,pull:[87,90],purchas:76,pure:[31,51,55,58],purpos:[55,56,58,85,87,90],puru:80,push:64,push_back:[44,62],put:77,pwd:90,pwr:[51,52,54,55,57],py2:[54,57,58],py3:[51,52,53,54,57,58,90],py:[51,52,56,58,59,61,65,75,77,82,83,84,85,87,88],pyannot:51,pyasn1:51,pybind11:51,pybtex:51,pycpars:[51,54,55,57,58],pycr:51,pydeprec:51,pydub:51,pygment:[51,54,55,57,58],pyindex:[85,90],pypa:[51,52,53,54,55,57,58],pypars:[51,53,54,55,57,58],pypi:[51,52,53,54,55,57,58,59,87],pypinyin:51,pyplot:[52,54,55,58],pyrsist:[51,54,55,57,58],pysock:51,pystoi:51,pytest:51,python3:[51,52,53,54,55,57,58,59,61,84,87],python:[51,52,53,54,55,57,58,59,62,65,77,78,84,85,89,90,91,92,93],python_api:66,python_env:85,pythonhost:[54,55,57,58,59],pyton:85,pytorch:[47,48,51,52,53,54,55,56,58,59,61,62,63,64,65,67,83,84,86,87,88,89,90,91],pytorch_libtorch:90,pytorch_lightn:51,pytorch_quant:[58,59],pytorch_sphinx_them:[75,82],pytorch_vision_v0:55,pytz:51,pywavelet:58,pyyaml:[51,53],pyzmq:[51,54,55,57,58],qat:59,qat_model:59,qthelp:51,qualiti:[52,54,58],quant:59,quant_dim:59,quant_input:59,quant_max:69,quant_min:69,quant_modul:59,quant_nn:59,quant_weight:59,quantconv2d:59,quantdescriptor:59,quantiz:[29,30,58,68,84,91],quantizatiom:48,quantizelay:59,quantlinear:59,quantoz:59,quantpool:59,quartznet:51,question:84,qui:[78,80],quick:59,quickli:[52,54,84,88,91],quisqu:80,quit:[55,67,84],quot:78,r:[56,58,77],rais:[61,85],raiseexcept:61,rand:[84,85],randn:[51,52,54,55,56,57,58,59,62,84,92],random:51,randomcrop:59,randomhorizontalflip:59,rang:[47,48,51,52,53,54,55,57,58,59,85,91],rank:75,rapidfuzz:51,rate:59,rather:61,raw:[58,75],re:[51,56,77,85],read:[3,4,29,30,44,51,55,75,77,88],readcalibrationcach:[3,4,44],reader:77,readi:[51,55],readm:[51,52,53,54,57,58],realiz:64,realli:67,reason:[0,56,58,83,85],reattribut:78,recalibr:30,receiv:85,recip:88,recipi:58,reciproc:69,recognit:[51,54,59,88],recomend:[29,30],recommend:[29,30,51,52,53,54,55,57,58,59,77,84,85,87,90],recompil:58,record:[57,59,60,83],rect:58,rectangl:58,recurs:60,recursivescriptmodul:57,redistribut:78,reduc:[52,54,57,58,59,61,63,65,85,88],redund:85,ref:77,refer:[47,59,63,65,76,81,84,85,86,88,90],referenc:[58,87],refit:[45,48,92],reflect:45,reflection_pad1d:69,reflection_pad2d:69,regard:[77,87],regardless:78,regex:[51,53],region:85,regist:[33,64,67,85],register_acc_op:85,register_acc_op_map:85,register_custom_acc_mapper_fn:85,register_forward_pre_hook:56,registernodeconversionpattern:[67,84],registr:85,registri:[60,84],regular:59,regular_model_output:56,reinterpret_cast:44,rel:91,relat:[46,77],relationship:49,releas:[51,53,77],reload_model_output:[56,85],reload_trt_mod:[56,85],relu:[54,55,56,57,62,69,83,84],relu_2:56,relu_3:56,relu_:69,remain:[52,53,54,57,58,61,88],rememb:85,remov:[51,52,54,56,57,58,59,75],remove_contigu:61,remove_dropout:61,remove_to:61,render:75,rent:78,repack:64,repeat:[69,91],replac:[53,56,58,61],replication_pad1d:69,replication_pad2d:69,replication_pad3d:69,report:[23,44],repositori:[52,54,58,65,75,82,90],repres:[47,48,59,67,77,85],represent:[52,53,54,57,58,61,67,83,85],request:[51,52,53,54,55,84,90],requir:[30,48,51,52,53,54,55,57,58,59,60,61,75,84,85,88,89,90,91],require_full_compil:[45,48,52,54,57,58],requires_grad:69,resampi:51,research:[52,54,57,58,85],reserv:[42,43,44,45,51,52,53,54,55,57,58,59],reset:44,reshap:[69,90],residu:54,resiz:[52,54,55,90],resnet50:[54,55,58,90],resnet50_model:[54,55],resnet:[55,58,64,90],resnet_trt:64,resolv:[52,54,55,60,61,63,65],resolve_data_config:52,resourc:[51,54,55,57,58,60,88],respons:[30,52,54,55,59,64,77],respositori:53,rest:[77,78,85],restor:51,restrict:48,restructuredtext:[77,78],result:[51,52,53,54,55,56,57,59,60,61,75,83,86,90],results_per_input:58,ret:61,rethink:52,return_tensor:53,reus:[61,85,88],revert:75,revis:[77,78],revisit:77,rfc:77,rgb:[52,54],rho_:77,rhoncu:80,right:[42,43,44,45,51,52,53,54,55,57,58,59,61,65,67,77],risu:80,rm:90,rn50_preprocess:[54,55,90],role:77,roll:69,roman:78,room:77,root:[42,43,44,45,51,52,53,54,55,57,58,59,75,87,88],roughli:62,round:[48,59],round_:59,rounding_mod:69,row:78,rsa:51,rst:[75,77],rsub:69,rtol:[56,91],ruamel:51,rule:[85,87],ruler:77,run:[1,37,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,68,77,83,84,85,86,87,88,89,90,91,92,93],run_on_acc_:56,run_on_gpu_:56,runner:51,running_loss:59,running_mean:69,running_var:69,runtim:[51,52,54,55,57,58,68,84],runtimeerror:85,rutrum:[78,80],s3:[52,54,55],s3transfer:51,s:[47,48,58,59,62,64,67,68,75,77,78,83,84,85,86,88,90],sacrebleu:51,sacremos:[51,53],safe:67,safeti:[48,91],sage:77,sagitti:[78,80],sai:[55,78],said:77,same:[52,54,55,58,64,75,77,83,84,85,87,90,92],sampl:[51,52,54,77,85,88,90],sample_input:85,sample_r:51,sapien:80,satisfi:[51,52,53,54,55,57,58,62,85],save:[30,44,51,52,54,55,56,57,58,59,64,84,85,86,89,90,91],save_checkpoint:59,save_restore_connector:51,saw:84,scalar:[67,69],scalaropt_dim:69,scalartyp:[0,45,69],scale:[52,59,69,88],scale_factor:69,scale_grad_by_freq:69,scales_d:69,scales_h:69,scales_w:69,scelerisqu:80,schedul:[59,90],schema:[67,84],scheme:85,scientist:77,scikit:[51,58],scikit_imag:58,scipi:[51,58],scope:61,score:[52,54,55,58],scratch:30,scratch_spac:90,screen:75,script:[31,53,58,59,61,62,83,84,86,92],script_model:[57,83,92],scripted_model:93,scriptmodul:84,scroll:[75,79],sdk:[51,52,54,57,58,66],se:51,seamlessli:[55,68],search:[53,68,75],second:[52,53,55,61,77,85],secondli:90,section:[55,59,75,77,78,79,81,84,85,88,90],secur:[51,87],sed:[78,80],see:[31,51,52,53,54,55,56,57,58,59,61,64,77,83,84,85,87],seen:[77,78],segment:[51,56,62],segments_tensor:53,select:[17,29,30,37,48,52,54,57,58,64,69,76,79,85,87,88,91],self:[51,53,56,57,59,61,64,67,69,83,84,93],self_1:[64,84],self_int:69,sell:78,seller:76,seller_id:76,sem:80,semant:77,semper:80,send2trash:[51,54,55,57,58],send:90,senectu:80,sens:[77,84],sent:[52,54,55],sentenc:[53,77],sentencepiec:51,sentencepiecetoken:51,sentinel:[0,2],sentri:51,separ:[52,54,57,58,62,63,65],seq_relationship:53,sequenc:[51,53,77,85],sequenti:[54,55],serial:[33,37,63,65,84,91],serializ:[64,83],serialized_cach:85,serializinghtml:51,seril:64,serv:[64,68,85,91],server:51,servic:77,session:77,session_nam:77,set:[3,4,16,21,25,27,30,32,35,37,45,46,47,48,52,54,57,58,59,60,61,62,63,64,65,68,75,79,82,83,84,85,86,87,88,93],set_data_from_numpi:90,set_devic:[21,38,45,49],set_is_colored_output_on:[18,39,42,49],set_logging_prefix:[18,39,42,49],set_reportable_log_level:[18,39,42,49,53,59],set_typecheck_en:51,setalpha:67,setattr:56,setbeta:67,setnam:[67,84],setproctitl:51,setreshapedimens:84,setup:[43,51,59,85,88,90],setup_multiple_test_data:51,setup_multiple_validation_data:51,setup_test_data:51,setup_training_data:51,setup_validation_data:51,setuptool:[51,54,55,57,58],sever:[16,26,53,56],sgd:59,sh:87,sha256:87,shape:[45,47,48,51,52,53,54,57,58,59,62,67,69,85,86,90,91,93],shape_rang:85,share:87,shell_command:77,shellingham:51,shift:[69,77,87],ship:[59,84,89],shorthand:77,shortuuid:51,should:[0,3,4,30,45,48,52,55,59,60,61,62,63,65,67,68,75,77,80,85,88,90,91],show:[58,75,77],showcas:[52,54,55],shown:[53,75,77,84],shuffl:[51,59,84,88],shutterstock_780480850:[52,54,55],siberian:[52,54,55],siberian_huski:[54,55],side:[61,75,84],sidebar:[75,81],sigmoid:[69,85],sigmoid_:69,sign:90,signifi:[47,61],signific:[58,59,77],significantli:[61,75],similar:[58,67,84,85,89,92],simonyan:88,simpil:88,simpl:[51,52,53,54,57,58,59,77,78,83,85,90],simplejson:51,simplest:[53,90],simpli:[55,57,61],simplic:[52,54,58],simplifi:60,simul:59,sin:[69,77],sinc:[53,56,57,61,77,83,84,85,88],sing:77,singl:[47,48,53,57,61,77,83,84,85,88,91],singular:67,sinh:69,sink:77,sit:[78,80],site:[51,52,53,54,55,57,58,59,61,77,84,87],six:[51,53,54,55,57,58,77],sixth:78,size:[3,4,44,47,48,51,52,53,54,55,57,58,59,61,62,69,75,84,85,88,91,93],size_t:[3,4,44,88],skip:[56,91],slash:75,slice:69,slightli:85,slither:[52,54,55],sm:64,sm_output:[52,54,55],small:[59,61,90],smaller:51,smallest:53,smi:[51,52,54,55,57],smmap:51,snake:[52,54,55],snowballstemm:51,so:[0,44,52,54,55,57,59,60,61,64,65,67,68,76,77,78,84,85,87,88,91],sodal:80,softmax:[52,54,55,58,59,61,69,85],softwar:[51,52,53,54,55,57,58,59,77],sole:88,sollicitudin:80,solv:90,some:[52,53,54,56,60,61,63,64,65,67,76,77,84,85,88],some_funct:77,someth:[43,61,77,90],someurl:77,sort:[67,69,92],sortedcontain:51,soundfil:51,soupsiev:[51,55],sourc:[42,43,44,45,52,54,58,65,85],sourceforg:[77,78],sox:51,space:[77,78,88],spaces_and_linebreak:77,span:78,spars:[69,91],sparse_weight:[45,48,85],sparsiti:[48,85,91],speak:53,speaker:53,spec:[47,48,52,54,57,58,91,92],specif:[32,48,51,52,53,54,55,57,58,59,61,63,65,77],specifi:[3,4,48,52,53,54,55,57,58,59,67,68,75,77,85,86,90,91,92],speech:51,speed:[51,52,53,54,55,58],speed_m:[51,53],speed_mean:[51,53],speedup:[51,52,53,54],sphinx:[51,75,76,77,78,82],sphinx_rtd_them:[77,78],sphinxcontrib:51,spin:90,spirit:77,split:[53,56,69,85],split_mod:56,split_siz:69,split_with_s:69,splitter:56,sqrt:69,squeez:[51,69],sr:51,src:[64,66,69],ss:44,ssd300:58,ssd300_trt:64,ssd:64,ssd_300_trace:58,ssd_pyt_ckpt_amp:58,ssd_trace:91,ssd_trt:91,sstream:[20,44],stabl:[59,66,75],stack:[51,55,58,59,64,69,88],stage:[60,85],stand:[64,77],standalon:77,standard:[52,53,54,55,57,58,64,68,77,89,91,92],stapl:78,start:[53,55,58,59,60,62,69,78,85,87,92],start_dim:[69,84],start_step:69,start_tim:[51,52,53,54,55,57,58,59],startswith:59,stat:59,state:[51,52,53,54,59,60,67,84],state_dict:59,statement:[61,77],static_cast:44,statist:[53,59],statu:[44,78],std:[3,4,22,26,28,29,30,31,33,34,37,42,44,45,47,48,51,52,53,54,55,62,84,88,90,93],std_dev:[51,53],stderr:59,stdout:36,steamlin:88,step:[51,52,53,54,55,57,58,59,68,69,85,88],stft:51,stick:75,sticki:[75,81],sticky_navig:[75,79],still:[44,56,58,62,85,88],stitch:[57,62,84],stop:84,storag:88,store:[2,4,60,64,67,83,84,85],str:[19,43,44,49,52,54,55,69,85],straight:67,strang:77,strategi:53,stream:[52,54,55],street:78,strict:89,strict_type_constraint:85,stride:[54,55,57,58,59,69],string:[3,4,18,20,21,22,26,28,29,30,31,33,34,37,42,44,45,48,62,64,67,75,84,88],stringstream:44,strip_prefix:87,strong:[52,54,57,58,77],strongli:77,struct:[1,21,38,41,45,88],structur:[30,46,48,52,54,57,58,62,65,67,75,77,81,83,90],structuredtext:77,stt_en_citrinet_256:51,stt_en_citrinet_256_bs128_torch:51,stt_en_citrinet_256_bs1_torch:51,stt_en_citrinet_256_bs32_torch:51,stt_en_citrinet_256_bs8_torch:51,stub:78,stuff:77,style:[42,43,44,45,75,77,78],style_external_link:75,sub:[69,77,83],sub_:69,subdirectori:50,subexpress:61,subgraph:[48,56,60,61,67,84,91],subject:65,submenu:81,submod:56,submodul:[56,57,83],subplot:[52,54,55,58],subscript:77,subsect:77,subset:[59,88],substitut:77,subtitl:77,subtre:82,subword:51,successfulli:[51,52,54,57,58],sudo:87,suffic:61,suggest:90,suit:[55,68],suitabl:85,sum:[48,59,69,85],summari:53,summarywrit:59,superscript:77,suppli:77,support:[0,1,2,27,31,46,47,48,52,54,55,56,57,58,59,62,66,68,75,76,83,84,85,87,90,91,93],sure:[56,84,86,87,90,93],suscipit:[78,80],suspendiss:80,swap:51,sy:59,symbol:[33,77,85,87,89],symlink:82,sympi:51,synchron:[51,52,53,54,55,57,58,59],system:[51,52,53,54,55,57,58,60,67,68,87],t1:69,t2:69,t:[0,1,2,45,46,55,56,57,59,61,67,69,75,77,78,83,84,85,87,88,90],t_:77,tabl:[81,87],tabul:51,tag:[77,90],take:[31,32,33,37,51,52,54,57,58,60,63,64,65,67,75,77,84,85,88,92],taken:[52,54,58,77],talk:68,tan:69,tanh:69,tanh_:69,tar:[77,87,88],tarbal:[84,88],target:[1,33,45,46,47,48,52,54,55,56,57,58,64,65,68,85,86,88,91,92,93],targets_:88,tarred_audio_filepath:51,task:[29,30,51,53,85,88],techinqu:84,techniqu:[59,88],tell:[61,62,63,64,65,67,77],tellu:80,tem:91,temp:[51,52,54,55,57],templat:[20,40,44,45,49,75,84],temporari:85,tempu:80,tensor:[2,33,44,45,47,48,51,52,53,54,55,57,58,59,60,61,62,64,67,69,83,84,85,88],tensor_mod:69,tensor_qu:59,tensor_quant:59,tensor_scalar:69,tensor_tensor:69,tensorboard:[51,59],tensorcontain:67,tensorformat:[21,38,45,47,49],tensorformatenum:49,tensorlist:[62,67],tensorquant:59,tensorrt:[0,1,3,4,29,30,31,32,33,36,37,44,45,46,47,48,53,56,60,61,62,63,65,67,83,88,91],tensorrt_convert:85,tensorrtcompilespec:92,tensort:85,teo:91,term:[55,77,78,88],termin:[27,84,91],terminado:[51,54,55,57,58],test:[51,52,53,54,55,56,57,58,59,65,77,78,85,88,90,91],test_acc:59,test_acc_trac:85,test_loss:59,test_pr:59,test_prob:59,test_ptq_dataloader_calibr:88,test_ptq_trt_calibr:88,test_py_modul:[77,81],testing_dataload:[59,88],testing_dataset:[59,88],testpath:[51,54,57,58],text:[51,53,58,78,80],tf32:[48,91],tgz:87,than:[51,53,55,61,68,76,77,89],thats:[60,88],the_model_repositori:90,thei:[46,53,58,59,60,61,64,67,75,77,85,87,91],them:[51,52,53,54,56,57,58,61,62,64,75,84,85,87],theori:[60,77],therebi:64,therefor:[30,51,52,54,57,58,64,77,84,85],theres:89,therfor:89,theta:77,thi:[0,1,2,29,30,42,43,44,45,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,75,76,77,79,80,83,84,85,87,88,89,90,91,92],thicker:77,thin:77,thing1:77,thing2:77,thing3:77,thing:[57,77,85,87],think:[67,77],third:[55,78,85],third_parti:[65,87],this_arg_is_opt:85,those:[53,60,77],though:[58,65,67,83,84,91],thought:77,threadpoolctl:51,three:[47,55,56,63,65,77,78,85,90],threshold:91,through:[47,51,52,53,54,55,57,58,60,61,62,64,68,77,84,85],throughout:[52,54],throughput:52,throught:85,thrown:48,thu:[51,57,77],tifffil:58,time:[48,51,52,53,54,55,56,57,58,59,60,61,63,64,65,67,75,77,84,85,88,91],time_99th:[51,53],time_m:[51,53],time_mean:[51,53],time_std:[51,53],timegraph:[51,53],timeit:[51,53],timeout:51,timing_cach:85,timm:[52,54],tincidunt:80,tini:88,tinycss2:55,titan:[51,52,54,57,58],titl:[52,54,55],titles_onli:75,tmp:84,toctre:75,tocustomclass:67,todim:84,todo:[75,85],togeth:[57,60,67,84],toilet:[52,54,55],token:[51,53],token_type_id:53,tokens_tensor:53,toler:91,toml:51,tomli:58,too:[75,77,78,87],took:53,tool:[52,53,54,56,57,58,67,84,85],toolchain:[65,87],toolkit:[51,54,55,57,58,59],top:[58,65,75,79],topk:69,topolog:53,torch:[0,1,2,4,20,29,30,31,32,33,36,37,44,45,46,47,48,53,56,60,61,62,63,64,65,67,83,87,88,91,93],torch_executed_modul:[45,48,62],torch_executed_op:[45,48,62],torch_scirpt_modul:83,torch_script_modul:84,torch_tensorrt:[0,1,2,3,4,14,16,17,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,62,68,84,85,86,88,89,90,91,92,93],torch_tensorrt_major_vers:[19,43,49],torch_tensorrt_minor_vers:[19,43,49],torch_tensorrt_patch_vers:[19,43,49],torch_tensorrt_vers:[19,43,49],torch_tensorrtfil:49,torch_tensorrtnamespac:49,torchbind:64,torchhub:[58,90],torchmetr:51,torchscript:[19,21,38,43,45,48,49,51,52,53,54,55,58,59,63,64,65,85,86,91,92,93],torchscriptstruct:49,torchtext:85,torchtrt:[43,51,62],torchtrt_api:[19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,42,43,44,45,49],torchtrt_check:67,torchtrt_hidden:[19,43,49],torchtrt_runtime_exampl:89,torchtrt_unus:67,torchtrtc:[68,93],torchvis:[51,52,54,55,59,64,85,88,90,92],tornado:[51,54,55,57,58],toronto:88,tortor:80,total:59,totensor:[52,54,55,59,88,90],tovec:84,toward:88,tqdm:[51,53,59],trace:[51,53,56,58,59,62,83,84,85,86],traced_mlm_model:53,traced_model:[57,58,83],tracer:56,tracerwarn:59,track:[67,88],track_running_stat:[54,55],trade:58,tradit:[47,88],traget:32,trail:75,train:[29,30,48,51,52,53,54,58,68,69,84,86,91],trainabl:61,trained_vgg16_qat:59,trainer:51,training_dataload:59,training_dataset:59,traitlet:[51,54,55,57,58],transcrib:51,transfer:76,transform:[51,52,54,55,56,57,58,59,84,88,90],transformed_img:90,transforms_factori:52,translat:[58,84],transmit:77,transpos:[69,85],trash:77,travers:[63,65],treat:[59,91],tree:[42,43,44,45,51,75,88,89],trigger:[57,84,85],trim:88,trim_sil:51,tristiqu:80,triton:68,triton_to_np_dtyp:90,tritoncli:90,tritonserv:90,trt:[0,1,3,4,46,47,51,56,60,61,64,67,69,84,85],trt_interpreter_result:85,trt_lenet_script:84,trt_mod:[56,59,62,84,88,93],trt_model:[53,58,62,90,92],trt_model_fp16:[52,53,54],trt_model_fp32:[52,54],trt_model_with_d:55,trt_model_without_d:55,trt_script_modul:57,trt_splitter:56,trt_ts_modul:[51,57,62,86],trtinterpret:[56,85],trtinterpreterresult:85,trtmodul:[56,85],trtorch:51,trtsplitter:56,truck:59,truncat:[48,91],truncate_long_and_doubl:[45,48,51,53],trust:[54,55,57,58,59],ts:[43,51,57,62,68,72,83,84,86,91,92],ts_model:[62,84],tt:77,tue:[54,78],tune:[51,52,54,57,58,59],tupl:[64,85],tupleconstruct:[61,64],tupleunpack:61,turn:51,turpi:80,tutori:[52,54,55,83,88],two:[51,57,58,61,67,77,78,82,83,85,87,88,90,91],type:[0,1,2,29,47,48,49,51,52,53,54,55,56,57,58,59,60,64,67,77,84,85,88,91],type_fp32:90,typecheck:51,typenam:[3,4,29,30,44],typer:51,typic:[60,67,90],typing_extens:52,ubuntu:[51,87],ugli:77,ui:76,uint64_t:[45,48],ultric:80,un:[52,54,88],unabl:[67,84],unbind:69,unbroken:77,uncas:53,unchang:53,uncom:87,uncorr:[51,52,54,55,57],undefin:58,under:[42,43,44,45,51,52,53,54,55,57,58,59,65,77,86],underli:[0,1,2,46,67],understand:[52,54],unidecod:51,union:[67,84],uniqu:4,unique_ptr:[4,29],unit:[53,57,85],univers:77,unless:[51,52,53,54,55,57,58,59,85],unlik:[55,68,87,92],unlimit:75,unmask:53,unmasked_sent:53,unmasked_sentences_trt:53,unmasked_token:53,unmasked_tokens_trt:53,unpack_addmm:61,unpack_log_softmax:61,unqiue_ptr:4,unreferenc:77,unrestrict:77,unsign:59,unsqueez:[52,54,55,69],unstabl:65,unsupport:[31,48,56],unsur:67,untest:65,until:[55,60,65,67,87],unwrap:67,unwraptodoubl:67,unwraptoint:84,unzip:87,up:[51,52,53,54,57,58,59,60,61,63,64,65,77,83,85],updat:[51,55,59,85],upgrad:51,upload:[52,54,55,90],upon:75,upper:[59,78],upsample_bilinear2d:69,upsample_linear1d:69,upsample_nearest1d:69,upsample_nearest2d:69,upsample_nearest3d:69,upsample_trilinear3d:69,upscale_factor:69,upstream:84,uri:[58,77],url:[75,87,90],urllib3:[51,53],urna:80,us:[0,1,2,3,4,29,30,32,35,37,43,44,45,46,47,48,51,52,53,54,56,57,58,60,62,64,65,67,68,75,76,77,78,83,85,88,89,90,91,93],usabl:85,usag:[51,52,54,55,57,77,84],use_amp:51,use_cach:[3,4,29,44,88],use_cache_:44,use_fb_fake_qu:59,use_input_stat:69,use_start_end_token:51,use_subset:88,usecas:87,user:[42,47,48,51,52,53,54,55,56,57,58,62,63,64,65,77,78,84,87,88,90],userguid:59,userwarn:[51,52,58],using_int:[69,84],usr:87,usual:[58,59,75,85],ut:80,utf:[77,78],util:[52,54,56,57,59,67,84,88,90],v0:[54,55,74,90],v1:51,v2:[29,30,58],v8:87,v:[51,52,53,54,57,58,78,90,91],val2017:58,val:[58,59],valid:[1,46,51,57,58,59,67],valu:[0,1,2,16,17,45,46,47,53,57,59,60,64,67,69,75,84],value_tensor_map:[60,67],vanilla:85,vari:[52,53,54,55],variabl:[47,85],variant:[51,89],varient:61,varieti:90,variou:[51,85,93],variu:80,vcs_pageview_mod:75,vec:69,vector:[20,21,44,45,47,48,62,64,84,88,93],vehicula:80,vel:80,velit:80,venenati:80,venv:[51,52,53,54,55,57,58],verbios:91,verbos:[78,91],veri:[59,78,79,88,90,92],verifi:[53,59,62],version:[34,36,51,52,53,54,55,57,58,59,65,75,78,85,87,90],vertic:[75,77],vestibulum:[78,80],vgg16:[59,88],vgg16_base_ckpt:59,vgg16_qat_ckpt:59,vgg:[58,59,88],vi:77,via:[51,55,56,58,68,75,81,85,86,88,89],view:[69,75],vine_snak:52,virtual:[51,52,53,54,55,57,58,88],vision:[52,53,54,55,85,90],visit:[52,54,55,58],visitor:75,visual:55,vita:[78,80],vivamu:80,viverra:80,vm:78,volatil:[51,52,54,55,57],volta:[52,54,57,58],volutpat:80,vs:[0,1,2,46,61,92],vulput:80,w1109:59,w:[51,52,54,58,91],w_hh:69,w_ih:69,wa:[51,52,53,54,57,58,61,64,77,84,85],wai:[52,54,59,83,84,85,87,88,91],walk:[51,52,53,54,57,58],walkthrough:55,wandb:51,want:[42,52,54,56,57,58,62,83,84,85,88,90,92],warm:[51,52,53,54,55,57,58,59],warn:[16,44,51,52,53,54,55,57,58,59,67,91],warranti:[51,52,53,54,55,57,58,59],wash:77,wcwidth:[51,54,55,57,58],we:[42,44,51,52,53,54,55,56,57,58,59,60,61,63,64,65,67,75,77,83,84,85,88,90],weak:77,web:77,webdataset:51,webencod:[51,54,55,57,58],websit:87,weight:[47,48,53,56,59,60,69,77,84,85,91],weight_decai:59,welcom:[84,85],welecom:[52,54],well:[48,52,53,54,57,58,77,84,87,88],were:[53,58,84],werkzeug:51,wget:[51,52,54,55,90],what:[4,56,58,61,77,83,84,85],whatev:[64,85],wheel:[51,87],when:[27,44,45,46,52,53,54,57,58,59,60,61,63,64,65,67,75,77,79,83,84,85,87,88,91],where:[51,52,54,57,60,61,67,78,84,85,88],wherev:85,whether:[4,76,85,88,91],which:[1,2,30,32,37,46,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,75,77,78,83,84,85,86,87,88,89,90,92],white:[58,77],whitespac:77,whl:[52,54,57,58,87],who:77,whole:[52,54,57,58,85],whose:[56,61,85],why:77,wide:[55,81],widespread:53,widget:[51,54,55,57,58],widgetsnbextens:[51,54,55,57,58],width:[52,54,55,77],window:77,window_nam:77,wish:78,wit:51,within:[51,52,53,54,55,57,58,63,65,75,77],without:[51,52,53,54,56,57,58,59,67,75,77,84,88],wl:89,won:55,wooden:77,word:[51,53,77],wordninja:51,work:[44,57,61,65,67,77,78,85,88],worker:88,workflow:[59,92],workspac:[48,87,88,91,93],workspace_s:[45,48,51,52,53,54,55,58,88,91,93],world:[52,54,57,58,77],would:[56,67,84,85,87,89,90,91,92],wp:[52,54,55,90],wrap:[59,63,64,65,77,80,84,85,92],wrapper:67,wrapt:51,write:[3,4,29,30,44,51,52,53,54,55,57,58,59,60,68,77,84,85,88,90],writecalibrationcach:[3,4,44],writer:59,written:[52,54],wrote:77,www:[51,52,53,54,55,57,58,59,75,77,84,87,88,90],x64:87,x86:89,x86_64:[65,87],x9:61,x:[5,10,33,43,52,54,56,57,58,59,61,78,83,84,87],x_0:77,x_1:77,x_2:77,x_3:77,x_4:77,x_:77,xavier:[45,52,54,57,58,93],xstr:[19,43,49],xx:90,xxx:85,y:[33,51,58,78],yahoo:78,yaml:[51,66],yarg:51,yarl:51,year:51,yet:85,yield:53,you:[0,1,2,29,30,46,47,48,51,52,53,54,55,57,58,59,60,61,62,64,65,67,68,75,77,78,79,83,84,85,86,87,88,89,90,91,92],your:[51,52,53,54,55,57,58,59,67,68,75,77,78,82,83,84,86,87,89,92],yourself:[52,53,54,84],youtokentom:51,yy:[51,90],z:78,zero_grad:59,zero_point:69,zeroth:55,zip:[54,58,64,87],zipp:[51,54,55,57,58],zisserman:88},titles:["Class DataType","Class Device::DeviceType","Class TensorFormat","Template Class Int8CacheCalibrator","Template Class Int8Calibrator","Define STR","Define TORCH_TENSORRT_PATCH_VERSION","Define TORCH_TENSORRT_MAJOR_VERSION","Define TORCH_TENSORRT_MINOR_VERSION","Define TORCHTRT_API","Define XSTR","Define TORCHTRT_HIDDEN","Define TORCH_TENSORRT_VERSION","Directory cpp","Directory include","Directory torch_tensorrt","Enum Level","Enum EngineCapability","File logging.h","File macros.h","File ptq.h","File torch_tensorrt.h","Function torch_tensorrt::logging::get_logging_prefix","Function torch_tensorrt::logging::get_reportable_log_level","Function torch_tensorrt::logging::get_is_colored_output_on","Function torch_tensorrt::logging::set_reportable_log_level","Function torch_tensorrt::logging::log","Function torch_tensorrt::logging::set_is_colored_output_on","Function torch_tensorrt::logging::set_logging_prefix","Template Function torch_tensorrt::ptq::make_int8_calibrator","Template Function torch_tensorrt::ptq::make_int8_cache_calibrator","Function torch_tensorrt::torchscript::check_method_operator_support","Function torch_tensorrt::torchscript::compile","Function torch_tensorrt::torchscript::embed_engine_in_new_module","Function torch_tensorrt::get_build_info","Function torch_tensorrt::set_device","Function torch_tensorrt::dump_build_info","Function torch_tensorrt::torchscript::convert_method_to_trt_engine","Namespace torch_tensorrt","Namespace torch_tensorrt::logging","Namespace torch_tensorrt::ptq","Namespace torch_tensorrt::torchscript","Program Listing for File logging.h","Program Listing for File macros.h","Program Listing for File ptq.h","Program Listing for File torch_tensorrt.h","Struct Device","Struct Input","Struct CompileSpec","Torch-TensorRT C++ API","Full API","Torch-TensorRT Getting Started - CitriNet","Torch-TensorRT Getting Started - EfficientNet-B0","Masked Language Modeling (MLM) with Hugging Face BERT Transformer","Torch-TensorRT Getting Started - ResNet 50","Torch-TensorRT - Using Dynamic Shapes","<no title>","Torch-TensorRT Getting Started - LeNet","Object Detection with Torch-TensorRT (SSD)","Deploying Quantization Aware Trained models in INT8 using Torch-TensorRT","Conversion Phase","Lowering Phase","Partitioning Phase","Compiler Phases","Runtime Phase","System Overview","Useful Links for Torch-TensorRT Development","Writing Converters","Torch-TensorRT","Operators Supported","torch_tensorrt.logging","torch_tensorrt.ptq","torch_tensorrt","torch_tensorrt.ts","Changelog","Configuration","5. :mod:`test_py_module`","3. Paragraph Level Markup","4. Lists & Tables","1. Long Sticky Nav","1. Structural Elements","<no title>","Installation","Creating a TorchScript Module","Getting Started with C++","Torch-TensorRT (FX Path) User Guide","Using Torch-TensorRT in Python","Installation","Post Training Quantization (PTQ)","Deploying Torch-TensorRT Programs","Serving a Torch-TensorRT model with Triton","torchtrtc","Using Torch-TensorRT Directly From PyTorch","DLA"],titleterms:{"1":[79,90],"10":79,"11":79,"12":79,"13":79,"14":79,"15":79,"16":79,"17":79,"18":79,"19":79,"2":[79,80,90],"20":79,"3":[79,90],"4":79,"5":79,"50":54,"6":[58,79],"7":[58,79],"8":79,"9":79,"class":[0,1,2,3,4,20,21,38,40,41,49,71,72],"enum":[16,17,18,21,38,39,49,71,72],"function":[18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,49,55,66,72,73],"long":[79,81],A:77,And:77,But:78,By:[18,19],Or:61,The:[77,84],To:61,aarch64:87,abi:[64,87],acc:85,add:85,addmm:61,admonit:77,advic:67,ahead:68,an:81,api:[49,50,66,68,87],applic:88,arg:[67,76],automat:62,avail:66,awar:59,b0:52,background:[64,67],base:[3,4,75],benchmark:[51,55,58,59],bert:53,binari:87,block:77,branch:61,build:[55,75,87,90],bullet:78,c:[49,66,68,84,87,88],can:78,caption:[78,81],center:77,ch:77,changelog:74,check_method_operator_support:31,choos:87,citat:[77,88],citrinet:51,cli:87,client:90,code:[61,77],compil:[32,63,65,68,84,87],compilespec:48,compound:77,conclus:[57,58],configur:75,construct:64,content:[18,19,20,21,38,39,40,41,51,52,53,54,57,58,75,76,77,78,79,80],context:[67,75],contigu:61,contract:67,contributor:68,convers:[60,63,65,67],convert:[60,67,69,84,85],convert_method_to_trt_engin:37,cpp:[13,18,19,20,21,62],creat:[83,88],creativ:77,cudnn:87,current:69,custom:84,cxx11:87,data:[55,76],datatyp:0,dead:61,debug:87,deeper:78,defin:[5,6,7,8,9,10,11,12,19,49],definit:[18,19,20,21,78],demo:81,depend:87,deploi:[59,89],descript:[52,54,58],deseri:64,detail:58,detect:58,detector:58,develop:66,devic:[1,46],devicetyp:1,dimens:66,direct:77,directli:92,directori:[13,14,15,50],disk:83,distribut:87,dla:93,doctest:77,documen:68,document:[0,1,2,3,4,5,6,7,8,9,10,11,12,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,66,68,80,81],down:78,download:[55,77,82],dr:55,dropout:61,dump_build_info:36,dynam:55,easier:66,efficientnet:52,element:80,elimin:61,eliminatecommonsubexpress:61,embed_engine_in_new_modul:33,emphas:77,engin:[64,85],enginecap:17,enumer:78,envior:87,evalu:[60,69],exampl:[77,79],execept:61,executor:64,expect:66,explan:55,face:53,fallback:[61,62],field:78,figur:77,file:[15,18,19,20,21,42,43,44,45,49,50],flatten:61,footnot:77,format:64,fp16:[51,52,54],fp32:[51,52,54],freez:61,from:[55,87,92],full:[49,50],fuse:61,fx2trt:85,fx:85,gaurd:61,gener:76,get:[51,52,54,55,57,68,84],get_build_info:34,get_is_colored_output_on:24,get_logging_prefix:22,get_reportable_log_level:23,giant:78,git:82,glossari:77,gpu:68,graph:[61,64],grid:78,guarante:67,guid:85,h:[18,19,20,21,42,43,44,45,62],half:[51,52,54],have:78,hierarchi:49,hlist:78,hole:78,hood:84,how:[75,85,88],html:75,hub:55,hug:53,ien:77,imag:[77,78],includ:[14,18,19,20,21],incred:81,index:76,indic:68,infer:[58,90],inherit:[3,4],inlin:77,input:47,instal:[82,85,87],int8:59,int8cachecalibr:3,int8calibr:4,ir:66,jetson:87,jit:68,languag:53,layer:66,learn:[51,52,53,54,57,58],lenet:57,level:[16,75,77,78],librari:[87,89],libtorchtrt:89,like:78,line:77,linear:61,link:[66,77],list:[42,43,44,45,78],liter:77,local:87,log:[18,22,23,24,25,26,27,28,39,42,70],logsoftmax:61,loop:61,lower:[61,63,65],macro:[19,43],make_int8_cache_calibr:30,make_int8_calibr:29,markup:77,mask:53,math:77,measur:58,menu:[79,81],meta:77,miss:85,mlm:53,mod:76,model:[52,53,54,55,57,58,59,85,90],modul:[61,83,84],multibox:58,namespac:[18,19,20,21,38,39,40,41,49],nativ:87,native_op:66,nav:79,nest:[1,46],next:[51,52,53,54,55,57],node:60,number:[77,78],nvidia:68,object:[51,52,53,54,57,58],one:78,op:[64,85],oper:[69,84],optim:90,optimz:61,option:[75,76,78],other:67,overview:[51,52,54,57,58,59,65],own:88,packag:[87,89],page:75,paragraph:[77,80],paramet:76,partit:[62,63,65],partitoninfo:62,pass:61,path:85,pattern:61,peephol:61,perform:59,phase:[60,61,62,63,64,65],plugin:89,post:88,pre:87,precis:[51,52,54],precompil:87,prerequisit:87,program:[42,43,44,45,89],project:75,ptq:[20,29,30,40,44,71,88],python:[66,68,83,86,87,88],pytorch:[57,66,68,85,92],quantiz:[59,88],queri:90,quickstart:84,quot:77,rabbit:78,read:66,redund:61,refer:[58,77],regist:84,relationship:[1,3,4,46],releas:87,remov:61,replac:77,resnet:54,respons:67,result:[58,64],right:87,rubric:77,runtim:[63,64,65,89],s:[51,52,53,54,55,57],sampl:[55,58],save:83,script:57,second:78,section:80,segmentedblock:62,serial:64,serv:90,server:90,set:[55,90],set_devic:35,set_is_colored_output_on:27,set_logging_prefix:28,set_reportable_log_level:25,setup:87,shape:55,shape_analysi:62,shot:58,sidebar:77,simpl:55,singl:[51,52,54,58],so:89,sometim:66,sourc:87,speedup:58,ssd:58,start:[51,52,54,57,68,84],step:90,sticki:79,str:5,struct:[46,47,48,49],structur:80,subdirectori:[13,14],submenu:79,submodul:72,subsect:80,subsubmenu:79,subsubsect:80,support:69,system:65,tabl:[75,76,77,78,79,80],tarbal:87,target:77,templat:[3,4,29,30],tensorformat:2,tensorrt:[49,51,52,54,55,57,58,59,64,66,68,84,85,86,87,89,90,92],test_py_modul:76,text:77,theme:[75,81],thi:[78,81],through:69,time:68,titl:77,tl:55,toc:75,topic:77,torch:[49,51,52,54,55,57,58,59,66,68,84,85,86,89,90,92],torch_tensorrt:[15,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,45,70,71,72,73],torch_tensorrt_major_vers:7,torch_tensorrt_minor_vers:8,torch_tensorrt_patch_vers:6,torch_tensorrt_vers:12,torchscript:[31,32,33,37,41,57,68,83,84],torchtrt_api:9,torchtrt_hidden:11,torchtrtc:[84,91],trace:57,tracer:85,train:[59,88],transform:53,triton:90,trt:55,ts:73,tupl:61,type:[3,4,46],under:84,unpack:61,unrol:61,unsupport:84,up:[55,90],us:[55,59,61,66,84,86,87,92],user:85,util:[51,55,58],version:64,via:82,visual:58,wai:77,weight:67,what:[51,52,53,54,55,57,67],wide:75,without:55,work:[55,83,84],write:67,xstr:10,your:[88,90]}}) \ No newline at end of file diff --git a/docs/src/pytorch-sphinx-theme/docs/changelog.html b/docs/src/pytorch-sphinx-theme/docs/changelog.html index 7673017417..882544e597 100644 --- a/docs/src/pytorch-sphinx-theme/docs/changelog.html +++ b/docs/src/pytorch-sphinx-theme/docs/changelog.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/src/pytorch-sphinx-theme/docs/configuring.html b/docs/src/pytorch-sphinx-theme/docs/configuring.html index eaec9e3429..7336967bec 100644 --- a/docs/src/pytorch-sphinx-theme/docs/configuring.html +++ b/docs/src/pytorch-sphinx-theme/docs/configuring.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/api.html b/docs/src/pytorch-sphinx-theme/docs/demo/api.html index 4fe78280e0..98d7cdeadb 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/api.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/api.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/demo.html b/docs/src/pytorch-sphinx-theme/docs/demo/demo.html index 91b4265a83..657c9acefa 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/demo.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/demo.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        @@ -546,7 +546,7 @@

        3.4.4.

        3.4.5. Code Blocks

        # parsed-literal test
        -curl -O http://someurl/release-master (1.2.0a0+ffedb78).tar-gz
        +curl -O http://someurl/release-master (1.2.0a0+3a8704db).tar-gz
        Code Blocks can have captions.
        {
        diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html b/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html
        index e53381d148..e459e66e21 100644
        --- a/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html
        +++ b/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html
        @@ -197,7 +197,7 @@
                       
                       
                         
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/long.html b/docs/src/pytorch-sphinx-theme/docs/demo/long.html index 1ba6d32b98..fabfe99fd6 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/long.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/long.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/structure.html b/docs/src/pytorch-sphinx-theme/docs/demo/structure.html index 116a3a8f76..6f6d6c0343 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/structure.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/structure.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/src/pytorch-sphinx-theme/docs/index.html b/docs/src/pytorch-sphinx-theme/docs/index.html index 262205461f..4f2cecd555 100644 --- a/docs/src/pytorch-sphinx-theme/docs/index.html +++ b/docs/src/pytorch-sphinx-theme/docs/index.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/src/pytorch-sphinx-theme/docs/installing.html b/docs/src/pytorch-sphinx-theme/docs/installing.html index a957814bd1..35b193ef52 100644 --- a/docs/src/pytorch-sphinx-theme/docs/installing.html +++ b/docs/src/pytorch-sphinx-theme/docs/installing.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/tutorials/creating_torchscript_module_in_python.html b/docs/tutorials/creating_torchscript_module_in_python.html index cd4f108032..22d0922ff1 100644 --- a/docs/tutorials/creating_torchscript_module_in_python.html +++ b/docs/tutorials/creating_torchscript_module_in_python.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/tutorials/getting_started_with_cpp_api.html b/docs/tutorials/getting_started_with_cpp_api.html index e5ccc14ec0..805d564f96 100644 --- a/docs/tutorials/getting_started_with_cpp_api.html +++ b/docs/tutorials/getting_started_with_cpp_api.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/tutorials/getting_started_with_fx_path.html b/docs/tutorials/getting_started_with_fx_path.html new file mode 100644 index 0000000000..617792d8c0 --- /dev/null +++ b/docs/tutorials/getting_started_with_fx_path.html @@ -0,0 +1,916 @@ + + + + + + + + + + + + + Torch-TensorRT (FX Path) User Guide — Torch-TensorRT master documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
        +
        +
        + + + + + + + + + + + + + + + + +
        + +
          + +
        • + + + Docs + + > +
        • + + +
        • Torch-TensorRT (FX Path) User Guide
        • + + +
        • + + + + + +
        • + +
        + + +
        +
        + +
        + Shortcuts +
        +
        + +
        +
        + + + +
        + +
        +
        + +
        +

        Torch-TensorRT (FX Path) User Guide

        +

        Torch-TensorRT (FX Path) is a tool that can convert a PyTorch model through torch.FX to an TensorRT engine optimized targeting running on Nvidia GPUs. TensorRT is the inference engine developed by Nvidia which composed of various kinds of optimization including kernel fusion, graph optimization, low precision, etc.. +This tool is developed in Python environment providing most usability to researchers and engineers. There are a few stages that a user want to use this tool and we will introduce them here.

        +
        +

        Installation

        +
          +
        • Method 1. Follow the instrucions for Torch-TensorRT

        • +
        • Method 2. To install FX path only (Python path) and avoid the C++ build for torchscript path

        • +
        +
        $ conda create --name python_env python=3.8
        +$ conda activate python_env
        +
        +# Recommend to install PyTorch 1.12 and later
        +$ conda install pytorch torchvision torchtext cudatoolkit=11.3 -c pytorch-nightly
        +
        +# Install TensorRT python package
        +$ pip3 install nvidia-pyindex
        +$ pip3 install nvidia-tensorrt==8.2.4.2
        +$ git clone https://github.com/pytorch/TensorRT.git
        +$ cd TensorRT/py && python setup.py install --fx-only && cd ..
        +
        +$ pyton -c "import torch_tensorrt.fx"
        +# Test an example by
        +$ python py/torch_tensorrt/fx/example/lower_example.py
        +
        +
        +
        +
        +

        Converting a PyTorch Model to TensorRT Engine

        +

        We will go through an example to illustrate the major steps that FX path uses to

        +
          +
        • Step 1: Trace the model with acc_tracer

        • +
        +

        Acc_tracer is a tracer inheritated from FX tracer. It comes with args normalizer to convert all args to kwargs and pass to TRT converters.

        +
        import torch_tensorrt.fx.tracer.acc_tracer.acc_tracer as acc_tracer
        +
        +# Build the model which needs to be a PyTorch nn.Module.
        +my_pytorch_model = build_model()
        +
        +# Prepare inputs to the model. Inputs have to be a List of Tensors
        +inputs = [Tensor, Tensor, ...]
        +
        +# Trace the model with acc_tracer.
        +acc_mod = acc_tracer.trace(my_pytorch_model, inputs)
        +
        +
        +

        Common Errors:

        +

        symbolically traced variables cannot be used as inputs to control flow +This means the model contains dynamic control flow. Please refer to section “Dynamic Control Flow” in FX guide.

        +
          +
        • Step 2: Build TensorRT engine

        • +
        +

        There are two different modes for how TensorRT handles batch dimension, explicit batch dimension and implicit batch dimension. This mode was used by early versions of TensorRT, and is now deprecated but continues to be supported for backwards compatibility. In explicit batch mode, all dimensions are explicit and can be dynamic, that is their length can change at execution time. Many new features, such as dynamic shapes and loops, are available only in this mode. User can still choose to use implicit batch mode when they set explicit_batch_dimension=False in lower_to_trt(). We do not recommend to use it since it will lack of support in future TensorRT versions.

        +

        Explicit batch is the default mode and it must be set for dynamic shape. For most of vision task, user can choose to enable dynamic_batch in lower_to_trt() if they want to get the similar effects as implicit mode where only batch dimension changes. It has some requirements: +1. Shapes of inputs, outputs and activations are fixed except batch dimension. +2. Inputs, outputs and activations have batch dimension as the major dimension. +3. All the operators in the model do not modify batch dimension (permute, transpose, split, etc.) or compute over batch dimension (sum, softmax, etc.).

        +

        For examples of the last path, if we have a 3D tensor t shaped as (batch, sequence, dimension), operations such as torch.transpose(0, 2). If any of these three are not satisfied, we’ll need to specify InputTensorSpec as inputs with dynamic range.

        +
        import deeplearning.trt.fx2trt.converter.converters
        +from torch.fx.experimental.fx2trt.fx2trt import InputTensorSpec, TRTInterpreter
        +
        +# InputTensorSpec is a dataclass we use to store input information.
        +# There're two ways we can build input_specs.
        +# Option 1, build it manually.
        +input_specs = [
        +  InputTensorSpec(shape=(1, 2, 3), dtype=torch.float32),
        +  InputTensorSpec(shape=(1, 4, 5), dtype=torch.float32),
        +]
        +# Option 2, build it using sample_inputs where user provide a sample
        +inputs = [
        +torch.rand((1,2,3), dtype=torch.float32),
        +torch.rand((1,4,5), dtype=torch.float32),
        +]
        +input_specs = InputTensorSpec.from_tensors(inputs)
        +
        +# IMPORTANT: If dynamic shape is needed, we need to build it slightly differently.
        +input_specs = [
        +    InputTensorSpec(
        +        shape=(-1, 2, 3),
        +        dtype=torch.float32,
        +        # Currently we only support one set of dynamic range. User may set other dimensions but it is not promised to work for any models
        +        # (min_shape, optimize_target_shape, max_shape)
        +        # For more information refer to fx/input_tensor_spec.py
        +        shape_ranges = [
        +            ((1, 2, 3), (4, 2, 3), (100, 2, 3)),
        +        ],
        +    ),
        +    InputTensorSpec(shape=(1, 4, 5), dtype=torch.float32),
        +]
        +
        +# Build a TRT interpreter. Set explicit_batch_dimension accordingly.
        +interpreter = TRTInterpreter(
        +    acc_mod, input_specs, explicit_batch_dimension=True/False
        +)
        +
        +# The output of TRTInterpreter run() is wrapped as TRTInterpreterResult.
        +# The TRTInterpreterResult contains required parameter to build TRTModule,
        +# and other informational output from TRTInterpreter run.
        +class TRTInterpreterResult(NamedTuple):
        +    engine: Any
        +    input_names: Sequence[str]
        +    output_names: Sequence[str]
        +    serialized_cache: bytearray
        +
        +#max_batch_size: set accordingly for maximum batch size you will use.
        +#max_workspace_size: set to the maximum size we can afford for temporary buffer
        +#lower_precision: the precision model layers are running on (TensorRT will choose the best perforamnce precision).
        +#sparse_weights: allow the builder to examine weights and use optimized functions when weights have suitable sparsity
        +#force_fp32_output: force output to be fp32
        +#strict_type_constraints: Usually we should set it to False unless we want to control the precision of certain layer for numeric #reasons.
        +#algorithm_selector: set up algorithm selection for certain layer
        +#timing_cache: enable timing cache for TensorRT
        +#profiling_verbosity: TensorRT logging level
        +trt_interpreter_result = interpreter.run(
        +    max_batch_size=64,
        +    max_workspace_size=1 << 25,
        +    sparse_weights=False,
        +    force_fp32_output=False,
        +    strict_type_constraints=False,
        +    algorithm_selector=None,
        +    timing_cache=None,
        +    profiling_verbosity=None,
        +)
        +
        +
        +

        Common Errors:

        +

        RuntimeError: Conversion of function xxx not currently supported! +- This means we don’t have the support for this xxx operator. Please refer to section “How to add a missing op” below for further instructions.

        +
          +
        • Step 3: Run the model

        • +
        +

        One way is using TRTModule, which is basically a PyTorch nn.Module.

        +
        from torch_tensorrt.fx import TRTModule
        +mod = TRTModule(
        +    trt_interpreter_result.engine,
        +    trt_interpreter_result.input_names,
        +    trt_interpreter_result.output_names)
        +# Just like all other PyTorch modules
        +outputs = mod(*inputs)
        +torch.save(mod, "trt.pt")
        +reload_trt_mod = torch.load("trt.pt")
        +reload_model_output = reload_trt_mod(*inputs)
        +
        +
        +

        So far, we give a detailed explanation of major steps in convterting a PyTorch model into TensorRT engine. Users are welcome to refer to the source code for some parameters explanations. In the converting scheme, there are two important actions in it. One is acc tracer which helps us to convert a PyTorch model to acc graph. The other is FX path converter which helps to convert the acc graph’s operation to corresponding TensorRT operation and build up the TensoRT engine for it.

        +
        +
        +

        Acc Tracer

        +

        Acc tracer is a custom FX symbolic tracer. It does a couple more things compare to the vanilla FX symbolic tracer. We mainly depend on it to convert PyTorch ops or builtin ops to acc ops. There are two main purposes for fx2trt to use acc ops:

        +
          +
        1. there’re many ops that do similar things in PyTorch ops and builtin ops such like torch.add, builtin.add and torch.Tensor.add. Using acc tracer, we normalize these three ops to a single acc_ops.add. This helps reduce the number of converters we need to write.

        2. +
        3. acc ops only have kwargs which makes writing converter easier as we don’t need to add additional logic to find arguments in args and kwargs.

        4. +
        +
        +
        +

        FX2TRT

        +

        After symbolic tracing, we have the graph representation of a PyTorch model. fx2trt leverages the power of fx.Interpreter. fx.Interpreter goes through the whole graph node by node and calls the function that node represents. fx2trt overrides the original behavior of calling the function with invoking corresponding converts for each node. Each converter function adds corresponding TensorRT layer(s).

        +

        Below is an example of a converter function. The decorator is used to register this converter function with the corresponding node. In this example, we register this converter to a fx node whose target is acc_ops.sigmoid.

        +
        @tensorrt_converter(acc_ops.sigmoid)
        +def acc_ops_sigmoid(network, target, args, kwargs, name):
        +    """
        +    network: TensorRT network. We'll be adding layers to it.
        +
        +    The rest arguments are attributes of fx node.
        +    """
        +    input_val = kwargs['input']
        +
        +    if not isinstance(input_val, trt.tensorrt.ITensor):
        +        raise RuntimeError(f'Sigmoid received input {input_val} that is not part '
        +                        'of the TensorRT region!')
        +
        +    layer = network.add_activation(input=input_val, type=trt.ActivationType.SIGMOID)
        +    layer.name = name
        +    return layer.get_output(0)
        +
        +
        +
        +

        How to Add a Missing Op

        +

        You can actually add it wherever you want just need to remember import the file so that all acc ops and mapper will be registered before tracing with acc_tracer.

        +
          +
        • Step 1. Add a new acc op

        • +
        +

        TODO: Need to explain more on the logistic of acc op like when we want to break down an op and when we want to reuse other ops.

        +

        In acc tracer, we convert nodes in the graph to acc ops if there’s a mapping registered for the node to an acc op.

        +

        In order to make the conversion to acc ops to happen, there’re two things required. One is that there should be an acc op function defined and the other is there should be a mapping registered.

        +

        Defining an acc op is simple, we first just need a function and register the function as an acc op via this decorator acc_normalizer.py. e.g. the following code adds an acc op named foo() which adds two given inputs.

        +
        # NOTE: all acc ops should only take kwargs as inputs, therefore we need the "*"
        +# at the beginning.
        +@register_acc_op
        +def foo(*, input, other, alpha):
        +    return input + alpha * other
        +
        +
        +

        There’re two ways to register a mapping. One is register_acc_op_mapping(). Let’s register a mapping from torch.add to foo() we just created above. We need to add decorator register_acc_op_mapping to it.

        +
        this_arg_is_optional = True
        +
        +@register_acc_op_mapping(
        +    op_and_target=("call_function", torch.add),
        +    arg_replacement_tuples=[
        +        ("input", "input"),
        +        ("other", "other"),
        +        ("alpha", "alpha", this_arg_is_optional),
        +    ],
        +)
        +@register_acc_op
        +def foo(*, input, other, alpha=1.0):
        +    return input + alpha * other
        +
        +
        +

        op_and_target determines which node will trigger this mapping. op and target are the attributes of FX node. In acc_normalization when we see a node with the same op and target as set in the op_and_target, we will trigger the mapping. Since we want to map from torch.add, then op would be call_function and target would be torch.add. arg_replacement_tuples determines how we construct kwargs for new acc op node using args and kwargs from original node. Each tuple in arg_replacement_tuples represents one argument mapping rule. It contains two or three elements. The third element is a boolean variable that determines whether this kwarg is optional in original node. We only need to specify the third element if it’s True. The first element is the argument name in original node which will be used as the acc op node’s argument whose name is the second element in the tuple. The sequence of the tuples does matter because the position of the tuple determines where the argument is in original node’s args. We use this information to map args from original node to kwargs in acc op node. +We don’t have to specify arg_replacement_tuples if none of the followings are true.

        +
          +
        1. kwargs of original nodes and acc op nodes have different name.

        2. +
        3. there’re optional arguments.

        4. +
        +

        The other way to register a mapping is through register_custom_acc_mapper_fn(). This one is designed to reduce the redundant op registration as it allows you to use a function to map to one or more existing acc ops throught some combinations. In the function, you can do basically whatever you want. Let’s use an example to explain how it works.

        +
        @register_acc_op
        +def foo(*, input, other, alpha=1.0):
        +    return input + alpha * other
        +
        +@register_custom_acc_mapper_fn(
        +    op_and_target=("call_function", torch.add),
        +    arg_replacement_tuples=[
        +        ("input", "input"),
        +        ("other", "other"),
        +        ("alpha", "alpha", this_arg_is_optional),
        +    ],
        +)
        +def custom_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node:
        +    """
        +    `node` is original node, which is a call_function node with target
        +    being torch.add.
        +    """
        +    alpha = 1
        +    if "alpha" in node.kwargs:
        +        alpha = node.kwargs["alpha"]
        +    foo_kwargs = {"input": node["input"], "other": node["other"], "alpha": alpha}
        +    with node.graph.inserting_before(node):
        +        foo_node = node.graph.call_function(foo, kwargs=foo_kwargs)
        +        foo_node.meta = node.meta.copy()
        +        return foo_node
        +
        +
        +

        In the custom mapper function, we construct an acc op node and return it. The node we returns here would take over all the children nodes of original nodes acc_normalizer.py.

        +

        The last step would be adding unit test for the new acc op or mapper function we added. The place to add the unit test is here test_acc_tracer.py.

        +
          +
        • Step 2. Add a new fx2trt converter

        • +
        +

        All the developed converters for acc ops are all in acc_op_converter.py. It could give you a good example of how the converter is added.

        +

        Essentially, the converter is the mapping mechanism that maps the acc ops to a TensorRT layer. If we are able to find all the TensorRT layers we need we can get start to add a converter for the node using TensorRT APIs.

        +
        @tensorrt_converter(acc_ops.sigmoid)
        +def acc_ops_sigmoid(network, target, args, kwargs, name):
        +    """
        +    network: TensorRT network. We'll be adding layers to it.
        +
        +    The rest arguments are attributes of fx node.
        +    """
        +    input_val = kwargs['input']
        +
        +    if not isinstance(input_val, trt.tensorrt.ITensor):
        +        raise RuntimeError(f'Sigmoid received input {input_val} that is not part '
        +                        'of the TensorRT region!')
        +
        +    layer = network.add_activation(input=input_val, type=trt.ActivationType.SIGMOID)
        +    layer.name = name
        +    return layer.get_output(0)
        +
        +
        +

        We need to use tensorrt_converter decorator to register the converter. The argument for the decorator is the target of the fx node that we need to convert. In the converter, we can find the inputs to the fx node in kwargs. As in the example, the original node is acc_ops.sigmoid which only has one argument “input” in acc_ops.py. We get the input and check if it’s a TensorRT tensor. After that, we add a sigmoid layer to TensorRT network and return the output of the layer. The output we returned will be passed to the children nodes of acc_ops.sigmoid by fx.Interpreter.

        +

        What if we can not find corresponding layers in TensorRT that do the same thing as the node.

        +

        In this case, we would need to do a bit more work. TensorRT provides plugins which serves as custom layers. We have not implement this feature yet. We will update once it is enabled.

        +

        Last step would be adding the unit test for the new converter we added. User could add corresponding unit test in this folder.

        +
        +
        +
        + + +
        + +
        +
        + + + + +
        + + + +
        +

        + © Copyright 2021, NVIDIA Corporation. + +

        +
        + +
        + Built with Sphinx using a theme provided by Read the Docs. +
        + + +
        + +
        +
        + + +
        +
        + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
        +
        +
        +
        +

        Docs

        +

        Access comprehensive developer documentation for PyTorch

        + View Docs +
        + +
        +

        Tutorials

        +

        Get in-depth tutorials for beginners and advanced developers

        + View Tutorials +
        + +
        +

        Resources

        +

        Find development resources and get your questions answered

        + View Resources +
        +
        +
        +
        + + + + + + + + + +
        +
        +
        +
        + + +
        +
        +
        + + +
        + + + + + + + + \ No newline at end of file diff --git a/docs/tutorials/getting_started_with_python_api.html b/docs/tutorials/getting_started_with_python_api.html index e2a0aa0d6f..d2a00024d2 100644 --- a/docs/tutorials/getting_started_with_python_api.html +++ b/docs/tutorials/getting_started_with_python_api.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/tutorials/installation.html b/docs/tutorials/installation.html index 9b486dde84..18bdc09fe3 100644 --- a/docs/tutorials/installation.html +++ b/docs/tutorials/installation.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/tutorials/ptq.html b/docs/tutorials/ptq.html index 1d24461f41..0da616e6b0 100644 --- a/docs/tutorials/ptq.html +++ b/docs/tutorials/ptq.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/tutorials/runtime.html b/docs/tutorials/runtime.html index 41506380a8..7b8e9d799a 100644 --- a/docs/tutorials/runtime.html +++ b/docs/tutorials/runtime.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/tutorials/serving_torch_tensorrt_with_triton.html b/docs/tutorials/serving_torch_tensorrt_with_triton.html index 82d5f07b63..1d09be2b1a 100644 --- a/docs/tutorials/serving_torch_tensorrt_with_triton.html +++ b/docs/tutorials/serving_torch_tensorrt_with_triton.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/tutorials/torchtrtc.html b/docs/tutorials/torchtrtc.html index fe52e83d5e..242bffad20 100644 --- a/docs/tutorials/torchtrtc.html +++ b/docs/tutorials/torchtrtc.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/tutorials/use_from_pytorch.html b/docs/tutorials/use_from_pytorch.html index 4162f4793c..156510f206 100644 --- a/docs/tutorials/use_from_pytorch.html +++ b/docs/tutorials/use_from_pytorch.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docs/tutorials/using_dla.html b/docs/tutorials/using_dla.html index 79a04f4c23..ed054d3e0f 100644 --- a/docs/tutorials/using_dla.html +++ b/docs/tutorials/using_dla.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+ffedb78) + master (1.2.0a0+3a8704db)
        diff --git a/docsrc/conf.py b/docsrc/conf.py index b386657e8c..4e65020672 100644 --- a/docsrc/conf.py +++ b/docsrc/conf.py @@ -206,4 +206,4 @@ def handle_item(fieldarg, content): return nodes.field('', fieldname, fieldbody) -TypedField.make_field = patched_make_field \ No newline at end of file +TypedField.make_field = patched_make_field From f44658bea01b2bdeab6ad93e762bc18d5eb88977 Mon Sep 17 00:00:00 2001 From: Wei Wei Date: Tue, 28 Jun 2022 15:08:33 -0700 Subject: [PATCH 09/10] Revert "make html" This reverts commit 7db85f3111d02ccfd6aa615d663c4db61940f598. --- .../classtorch__tensorrt_1_1DataType.html | 2 +- ...rch__tensorrt_1_1Device_1_1DeviceType.html | 2 +- .../classtorch__tensorrt_1_1TensorFormat.html | 2 +- ...ensorrt_1_1ptq_1_1Int8CacheCalibrator.html | 2 +- ...ch__tensorrt_1_1ptq_1_1Int8Calibrator.html | 2 +- ...8h_1a18d295a837ac71add5578860b55e5502.html | 2 +- ...8h_1a282fd3c0b1c3a215148ae372070e1268.html | 2 +- ...8h_1a31398a6d4d27e28817afb0f0139e909e.html | 2 +- ...8h_1a35703561b26b1a9d2738ad7d58b27827.html | 2 +- ...8h_1abd1465eb38256d3f22cc1426b23d516b.html | 2 +- ...8h_1abe87b341f562fd1cf40b7672e4d759da.html | 2 +- ...8h_1ad19939408f7be171a74a89928b36eb59.html | 2 +- ...8h_1adad592a7b1b7eed529cdf6acd584c883.html | 2 +- docs/_cpp_api/dir_cpp.html | 2 +- docs/_cpp_api/dir_cpp_include.html | 2 +- .../dir_cpp_include_torch_tensorrt.html | 2 +- ...8h_1a130f65408ad8cbaee060f05e8db69558.html | 2 +- ...8h_1a3fbe5d72e4fc624dbd038853079620eb.html | 8 +- ..._cpp_include_torch_tensorrt_logging.h.html | 2 +- ...e_cpp_include_torch_tensorrt_macros.h.html | 2 +- ...file_cpp_include_torch_tensorrt_ptq.h.html | 2 +- ...clude_torch_tensorrt_torch_tensorrt.h.html | 2 +- ...8h_1a0593f776f469c20469e2f729fc7861a3.html | 2 +- ...8h_1a0c012cb374addd90eb1f42eaec570650.html | 2 +- ...8h_1a56e110feaaba2c3fd44bd201fd21a76a.html | 2 +- ...8h_1a7cb50492421ea9de4e3db895819df6f2.html | 2 +- ...8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html | 2 +- ...8h_1ad2efd47b6c3689e58ccc595680579ae5.html | 2 +- ...8h_1af8f3443813315af7901903d25dd495cc.html | 2 +- ...8h_1a83ff2be7e0b80bc7434de415861dc039.html | 2 +- ...8h_1a9835f6e605dce1abf442a55b64d6dffa.html | 2 +- ...8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html | 2 +- ...8h_1a6e19490a08fb1553c9dd347a5ae79db9.html | 2 +- ...8h_1a710df824a7718b440e4bc17bf9693cef.html | 2 +- ...8h_1ac4ab8313ae72c2c899ea31548b528528.html | 2 +- ...8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html | 2 +- ...8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html | 2 +- ...8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html | 2 +- docs/_cpp_api/namespace_torch_tensorrt.html | 2 +- .../namespace_torch_tensorrt__logging.html | 2 +- .../namespace_torch_tensorrt__ptq.html | 2 +- ...namespace_torch_tensorrt__torchscript.html | 2 +- ..._cpp_include_torch_tensorrt_logging.h.html | 2 +- ...e_cpp_include_torch_tensorrt_macros.h.html | 2 +- ...file_cpp_include_torch_tensorrt_ptq.h.html | 2 +- ...clude_torch_tensorrt_torch_tensorrt.h.html | 2 +- .../structtorch__tensorrt_1_1Device.html | 2 +- .../structtorch__tensorrt_1_1Input.html | 2 +- ...ensorrt_1_1torchscript_1_1CompileSpec.html | 2 +- docs/_cpp_api/torch_tensort_cpp.html | 2 +- docs/_cpp_api/unabridged_orphan.html | 2 +- docs/_notebooks/CitriNet-example.html | 24 +- docs/_notebooks/EfficientNet-example.html | 24 +- docs/_notebooks/Hugging-Face-BERT.html | 28 +- docs/_notebooks/Resnet50-example.html | 24 +- docs/_notebooks/dynamic-shapes.html | 4 +- .../getting_started_with_fx_path_module.html | 1093 ----------------- .../getting_started_with_fx_path_module.ipynb | 469 ------- docs/_notebooks/lenet-getting-started.html | 16 +- .../_notebooks/ssd-object-detection-demo.html | 24 +- docs/_notebooks/vgg-qat.html | 44 +- ...ting_started_with_fx_path_module.ipynb.txt | 441 ------- .../getting_started_with_fx_path.rst.txt | 304 ----- docs/contributors/conversion.html | 2 +- docs/contributors/lowering.html | 2 +- docs/contributors/partitioning.html | 2 +- docs/contributors/phases.html | 2 +- docs/contributors/runtime.html | 2 +- docs/contributors/system_overview.html | 2 +- docs/contributors/useful_links.html | 2 +- docs/contributors/writing_converters.html | 2 +- docs/genindex.html | 256 +++- docs/index.html | 2 +- docs/indices/supported_ops.html | 2 +- docs/objects.inv | Bin 23628 -> 24856 bytes docs/py_api/logging.html | 203 ++- docs/py_api/ptq.html | 112 +- docs/py_api/torch_tensorrt.html | 340 ++++- docs/py_api/ts.html | 227 +++- docs/search.html | 2 +- docs/searchindex.js | 2 +- .../pytorch-sphinx-theme/docs/changelog.html | 2 +- .../docs/configuring.html | 2 +- .../pytorch-sphinx-theme/docs/demo/api.html | 2 +- .../pytorch-sphinx-theme/docs/demo/demo.html | 4 +- .../docs/demo/lists_tables.html | 2 +- .../pytorch-sphinx-theme/docs/demo/long.html | 2 +- .../docs/demo/structure.html | 2 +- docs/src/pytorch-sphinx-theme/docs/index.html | 2 +- .../pytorch-sphinx-theme/docs/installing.html | 2 +- ...creating_torchscript_module_in_python.html | 2 +- .../getting_started_with_cpp_api.html | 2 +- .../getting_started_with_fx_path.html | 916 -------------- .../getting_started_with_python_api.html | 2 +- docs/tutorials/installation.html | 2 +- docs/tutorials/ptq.html | 2 +- docs/tutorials/runtime.html | 2 +- .../serving_torch_tensorrt_with_triton.html | 2 +- docs/tutorials/torchtrtc.html | 2 +- docs/tutorials/use_from_pytorch.html | 2 +- docs/tutorials/using_dla.html | 2 +- docsrc/conf.py | 2 +- 102 files changed, 1271 insertions(+), 3452 deletions(-) delete mode 100644 docs/_notebooks/getting_started_with_fx_path_module.html delete mode 100644 docs/_notebooks/getting_started_with_fx_path_module.ipynb delete mode 100644 docs/_sources/_notebooks/getting_started_with_fx_path_module.ipynb.txt delete mode 100644 docs/_sources/tutorials/getting_started_with_fx_path.rst.txt delete mode 100644 docs/tutorials/getting_started_with_fx_path.html diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html b/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html index a59d53413a..7d2b43a650 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html b/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html index 1b1e3c38fd..3acf6242f8 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html b/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html index cad1ec9f5b..c794f56758 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html index 9bc569f705..25f2a76005 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html index f6e9e5acc3..30a841989d 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html b/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html index 35f58d0ff8..068f461588 100644 --- a/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html +++ b/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html b/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html index f85b69a8a2..8523b0f2ab 100644 --- a/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html +++ b/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html b/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html index 3c69beaabe..91ae6b4bc4 100644 --- a/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html +++ b/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html b/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html index 2cf8f5bf13..31c9e74d99 100644 --- a/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html +++ b/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html b/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html index 3d84e4fc97..98dfc1b64a 100644 --- a/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html +++ b/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html b/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html index 7e1fb36098..54e1b888c6 100644 --- a/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html +++ b/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html b/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html index 230b5da237..d0f03666bf 100644 --- a/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html +++ b/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html b/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html index 7d8daff60e..2e9a5ad66b 100644 --- a/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html +++ b/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/dir_cpp.html b/docs/_cpp_api/dir_cpp.html index 22b6adf413..b5a8da952c 100644 --- a/docs/_cpp_api/dir_cpp.html +++ b/docs/_cpp_api/dir_cpp.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/dir_cpp_include.html b/docs/_cpp_api/dir_cpp_include.html index 63ec5b512c..d65425efc9 100644 --- a/docs/_cpp_api/dir_cpp_include.html +++ b/docs/_cpp_api/dir_cpp_include.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html b/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html index 6ebe38e365..f28daeb41a 100644 --- a/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html +++ b/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html b/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html index 58f2ae067f..193f257934 100644 --- a/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html +++ b/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html b/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html index 56d0400a60..89b614bb83 100644 --- a/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html +++ b/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        @@ -365,17 +365,17 @@

        Enum Documentation
        -enumerator kSTANDARD
        +enumerator kSTANDARD
        -enumerator kSAFETY
        +enumerator kSAFETY
        -enumerator kDLA_STANDALONE
        +enumerator kDLA_STANDALONE
        diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html index 5f927b4668..c62df2f40d 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html index 8a66432732..03d6a3d087 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html index 468869ddb3..f16bb9cbe1 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html index c5baadd29b..77a3f66aaa 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html b/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html index 8cc3af913c..f4ec7cf898 100644 --- a/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html +++ b/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html b/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html index 7dfd971c02..53d6ea2b83 100644 --- a/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html +++ b/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html b/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html index abc2d66097..3aac0afd52 100644 --- a/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html +++ b/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html b/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html index 492bbc1bb0..a17a31c20f 100644 --- a/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html +++ b/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html b/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html index bb598c1214..20be71d2a1 100644 --- a/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html +++ b/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html b/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html index 6a65f08d88..811a21aa5b 100644 --- a/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html +++ b/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html b/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html index 3dfa1cba90..fab20d1457 100644 --- a/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html +++ b/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.html b/docs/_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.html index cc7e47407a..c6812c54b7 100644 --- a/docs/_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.html +++ b/docs/_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.html b/docs/_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.html index 6d31473b19..283ecf2907 100644 --- a/docs/_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.html +++ b/docs/_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html b/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html index e07b816931..267423c7b2 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html b/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html index 3a4998e76f..7328eaddc6 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.html b/docs/_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.html index 8c0dfb6bcd..4b4fb4b142 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html index f913a43ed4..0106231d18 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html index 84fbd2033c..bd94c10b75 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html index 5d3a3ea80a..65f72c8326 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html index d4ac6dbf90..7725f1ac84 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/namespace_torch_tensorrt.html b/docs/_cpp_api/namespace_torch_tensorrt.html index 3c0b040b09..b12e1d909d 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt.html +++ b/docs/_cpp_api/namespace_torch_tensorrt.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/namespace_torch_tensorrt__logging.html b/docs/_cpp_api/namespace_torch_tensorrt__logging.html index 2d7553fb68..3915f9942a 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt__logging.html +++ b/docs/_cpp_api/namespace_torch_tensorrt__logging.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/namespace_torch_tensorrt__ptq.html b/docs/_cpp_api/namespace_torch_tensorrt__ptq.html index 0817e41cdc..e780be2799 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt__ptq.html +++ b/docs/_cpp_api/namespace_torch_tensorrt__ptq.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html b/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html index 6c5b5353f9..7422ce4aff 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html +++ b/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html index 1b4df13eaf..8de4dfa497 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html index 9ef5d96570..fccc343fdd 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html index 6381a34fca..ff4fec239f 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html index 300ed123f6..a0191faee5 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/structtorch__tensorrt_1_1Device.html b/docs/_cpp_api/structtorch__tensorrt_1_1Device.html index 6f683302d8..2178f4c32e 100644 --- a/docs/_cpp_api/structtorch__tensorrt_1_1Device.html +++ b/docs/_cpp_api/structtorch__tensorrt_1_1Device.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/structtorch__tensorrt_1_1Input.html b/docs/_cpp_api/structtorch__tensorrt_1_1Input.html index a41f548feb..ecb48d8acb 100644 --- a/docs/_cpp_api/structtorch__tensorrt_1_1Input.html +++ b/docs/_cpp_api/structtorch__tensorrt_1_1Input.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html b/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html index b78b61a977..9e870c731d 100644 --- a/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html +++ b/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/torch_tensort_cpp.html b/docs/_cpp_api/torch_tensort_cpp.html index 81e9c7f584..48d8b11c14 100644 --- a/docs/_cpp_api/torch_tensort_cpp.html +++ b/docs/_cpp_api/torch_tensort_cpp.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_cpp_api/unabridged_orphan.html b/docs/_cpp_api/unabridged_orphan.html index 5d243535cb..232e61fedf 100644 --- a/docs/_cpp_api/unabridged_orphan.html +++ b/docs/_cpp_api/unabridged_orphan.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/_notebooks/CitriNet-example.html b/docs/_notebooks/CitriNet-example.html index 548bbbd8ca..fb1282d7cd 100644 --- a/docs/_notebooks/CitriNet-example.html +++ b/docs/_notebooks/CitriNet-example.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        @@ -618,7 +618,7 @@

        -

        058c2a32b62b4b52a6bf5f2233a2258a

        +

        2acf632451c2482b8eee3d1e461fb6c5

        Torch-TensorRT Getting Started - CitriNet

        @@ -640,9 +640,7 @@

        ContentBenchmark Torch-TensorRT models

      • Conclusion

      • -
        -

        ## 1. Requirements

        -
        +

        ## 1. Requirements

        Follow the steps in README to prepare a Docker container, within which you can run this notebook. This notebook assumes that you are within a Jupyter environment in a docker container with Torch-TensorRT installed, such as an NGC monthly release of nvcr.io/nvidia/pytorch:<yy.mm>-py3 (where yy indicates the last two numbers of a calendar year, and mm indicates the month in two-digit numerical form)

        Now that you are in the docker, the next step is to install the required dependencies.

        -
        -

        ## 2. Download Citrinet model

        -
        +

        ## 2. Download Citrinet model

        Next, we download a pretrained Nemo Citrinet model and convert it to a Torchscript module:

        diff --git a/docs/_notebooks/EfficientNet-example.html b/docs/_notebooks/EfficientNet-example.html index 2e91f44e38..05393fa342 100644 --- a/docs/_notebooks/EfficientNet-example.html +++ b/docs/_notebooks/EfficientNet-example.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        @@ -618,7 +618,7 @@ -

        41bd2c3185814f14a40caa4b3963533a

        +

        783b2cf2fc5d4e06a7736325633fdd88

        Torch-TensorRT Getting Started - EfficientNet-B0

        @@ -691,22 +691,16 @@

        Contentlatest pytorch container to run this notebook.

        Otherwise, you can follow the steps in notebooks/README to prepare a Docker container yourself, within which you can run this demo notebook.

        -
        -

        ## 2. EfficientNet Overview

        -
        +

        ## 2. EfficientNet Overview

        PyTorch has a model repository called timm, which is a source for high quality implementations of computer vision models. We can get our EfficientNet model from there pretrained on ImageNet.

        Model Description

        This model is based on the EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks paper.

        alt

        -
        -

        ## 3. Running the model without optimizations

        -
        +

        ## 3. Running the model without optimizations

        PyTorch has a model repository called timm, which is a source for high quality implementations of computer vision models. We can get our EfficientNet model from there pretrained on ImageNet.

        [4]:
        @@ -981,9 +975,7 @@ 

        Model Descriptiondocumentation.

        @@ -1134,9 +1126,7 @@

        FP16 (half precision) -
        -

        ## 5. Conclusion

        -
        +

        ## 5. Conclusion

        In this notebook, we have walked through the complete process of compiling TorchScript models with Torch-TensorRT for EfficientNet-B0 model and test the performance impact of the optimization. With Torch-TensorRT, we observe a speedup of 1.35x with FP32, and 3.13x with FP16 on an NVIDIA 3090 GPU. These acceleration numbers will vary from GPU to GPU(as well as implementation to implementation based on the ops used) and we encorage you to try out latest generation of Data center compute cards for maximum acceleration.

        diff --git a/docs/_notebooks/Hugging-Face-BERT.html b/docs/_notebooks/Hugging-Face-BERT.html index 5fd0d4ca30..42c58b5cef 100644 --- a/docs/_notebooks/Hugging-Face-BERT.html +++ b/docs/_notebooks/Hugging-Face-BERT.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        @@ -618,7 +618,7 @@ -

        8ebcdec6af2d48ce9991ef016c10f3fd

        +

        2e8a7944f7a54c9a93c9656fc33a0ab3

        Masked Language Modeling (MLM) with Hugging Face BERT Transformer

        @@ -635,9 +635,7 @@

        ContentsBenchmarking

      • Conclusion

      • -
        -

        ## 1. Requirements

        -
        +

        ## 1. Requirements

        NVIDIA’s NGC provides a PyTorch Docker Container which contains PyTorch and Torch-TensorRT. Starting with version 22.05-py3, we can make use of latest pytorch container to run this notebook.

        Otherwise, you can follow the steps in notebooks/README to prepare a Docker container yourself, within which you can run this demo notebook.

        @@ -690,17 +688,13 @@

        Contentsbert-base-uncased model (BERT’s smallest and simplest form, which does not employ text capitalization) for MLM.

        -
        -

        ## 3. Creating TorchScript modules

        -
        +

        ## 3. Creating TorchScript modules

        First, create a pretrained BERT tokenizer from the bert-base-uncased model

        -
        -

        ## 1. Requirements

        -
        +

        ## 1. Requirements

        NVIDIA’s NGC provides PyTorch Docker Container which contains PyTorch and Torch-TensorRT. We can make use of latest pytorch container to run this notebook.

        Otherwise, you can follow the steps in notebooks/README to prepare a Docker container yourself, within which you can run this demo notebook.

        -
        -

        ## 2. ResNet-50 Overview

        -
        +

        ## 2. ResNet-50 Overview

        PyTorch has a model repository called the PyTorch Hub, which is a source for high quality implementations of common models. We can get our ResNet-50 model from there pretrained on ImageNet.

        Model Description

        This ResNet-50 model is based on the Deep Residual Learning for Image Recognition paper, which describes ResNet as “a method for detecting objects in images using a single deep neural network”. The input size is fixed to 32x32.

        alt

        -
        -

        ## 3. Running the model without optimizations

        -
        +

        ## 3. Running the model without optimizations

        PyTorch has a model repository called timm, which is a source for high quality implementations of computer vision models. We can get our EfficientNet model from there pretrained on ImageNet.

        [3]:
        @@ -1228,9 +1222,7 @@ 

        Model Descriptiondocumentation.

        @@ -1353,9 +1345,7 @@

        FP16 (half precision) -
        -

        ## 5. Conclusion

        -
        +

        ## 5. Conclusion

        In this notebook, we have walked through the complete process of compiling TorchScript models with Torch-TensorRT for EfficientNet-B0 model and test the performance impact of the optimization. With Torch-TensorRT, we observe a speedup of 1.84x with FP32, and 5.2x with FP16 on an NVIDIA 3090 GPU. These acceleration numbers will vary from GPU to GPU(as well as implementation to implementation based on the ops used) and we encorage you to try out latest generation of Data center compute cards for maximum acceleration.

        diff --git a/docs/_notebooks/dynamic-shapes.html b/docs/_notebooks/dynamic-shapes.html index b8694b4eec..172b61fbce 100644 --- a/docs/_notebooks/dynamic-shapes.html +++ b/docs/_notebooks/dynamic-shapes.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        @@ -618,7 +618,7 @@ -

        22724bc77cb446a7944bbacf7074a017

        +

        195ac3794a674b1a8c327ebde46a3be4

        Torch-TensorRT - Using Dynamic Shapes

        Torch-TensorRT is a compiler for PyTorch/TorchScript, targeting NVIDIA GPUs via NVIDIA’s TensorRT Deep Learning Optimizer and Runtime. Unlike PyTorch’s Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into a module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extension and compiles modules that integrate into diff --git a/docs/_notebooks/getting_started_with_fx_path_module.html b/docs/_notebooks/getting_started_with_fx_path_module.html deleted file mode 100644 index dbeab43b3a..0000000000 --- a/docs/_notebooks/getting_started_with_fx_path_module.html +++ /dev/null @@ -1,1093 +0,0 @@ - - - - - - - - - - - - - <no title> — Torch-TensorRT master documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

        - - - - - - - - - - - -
        -
        -
        - - - - - - - - - - - - - - - - -
        - - - - -
        -
        - -
        - Shortcuts -
        -
        - -
        -
        - - - -
        - -
        -
        - - - -

        The purpose of this example is to demonstrate the overall flow of lowering a PyTorch model to TensorRT via FX with existing FX based tooling. The general lowering flow would be like: 1. Use splitter to split the model if there’re ops in the model that we don’t want to lower to TensorRT for some reasons like the ops are not supported in TensorRT or running them on other backends provides better performance. 2. Lower the model (or part of the model if splitter is used) to TensorRT via fx path. If -we know the model is fully supported by fx path (without op unsupported) then we can skip the splitter.

        -
        -
        [1]:
        -
        -
        -
        import torch
        -import torch.fx
        -import torch.nn as nn
        -from torch_tensorrt.fx.utils import LowerPrecision
        -import torch_tensorrt.fx.tracer.acc_tracer.acc_tracer as acc_tracer
        -from torch_tensorrt.fx import InputTensorSpec, TRTInterpreter, TRTModule
        -from torch_tensorrt.fx.tools.trt_splitter import TRTSplitter
        -
        -
        -
        -
        -
        [2]:
        -
        -
        -
        class Model(nn.Module):
        -    def __init__(self):
        -        super().__init__()
        -        self.linear = nn.Linear(10, 10)
        -        self.relu = nn.ReLU()
        -
        -    def forward(self, x):
        -        x = self.linear(x)
        -        x = self.relu(x)
        -        x = torch.linalg.norm(x, ord=2, dim=1)
        -        x = self.relu(x)
        -        return x
        -
        -
        -inputs = [torch.randn((1, 10), device=torch.device('cuda'))]
        -model = Model().cuda().eval()
        -
        -
        -
        -

        acc_tracer is a custom fx tracer that maps nodes whose targets are PyTorch operators to acc ops.

        -
        -
        [3]:
        -
        -
        -
        traced = acc_tracer.trace(model, inputs)
        -
        -
        -
        -

        Splitter will split the model into several submodules. The name of submodules will be either run_on_acc_{} or run_on_gpu_{}. Submodules named run_on_acc_{} can be fully lowered to TensorRT via fx2trt while submodules named run_on_gpu_{} has unsupported ops and can’t be lowered by fx2trt. We can still run run_on_gpu_{} submodules on GPU if ops there have cuda implementation.

        -
        -
        [4]:
        -
        -
        -
        splitter = TRTSplitter(traced, inputs)
        -
        -
        -
        -

        Preview functionality allows us to see what are the supported ops and unsupported ops. We can optionally the dot graph which will color supported ops and unsupported ops differently.

        -
        -
        [5]:
        -
        -
        -
        splitter.node_support_preview()
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -Supported node types in the model:
        -acc_ops.linear: ((), {'input': torch.float32, 'weight': torch.float32, 'bias': torch.float32})
        -acc_ops.relu: ((), {'input': torch.float32})
        -
        -Unsupported node types in the model:
        -acc_ops.linalg_norm: ((), {'input': torch.float32})
        -
        -
        -
        -
        -
        [5]:
        -
        -
        -
        -
        -"\nSupported node types in the model:\nacc_ops.linear: ((), {'input': torch.float32, 'weight': torch.float32, 'bias': torch.float32})\nacc_ops.relu: ((), {'input': torch.float32})\n\nUnsupported node types in the model:\nacc_ops.linalg_norm: ((), {'input': torch.float32})\n"
        -
        -
        -

        After split, there are three submodules, _run_on_acc_0 and _run_on_gpu_1.

        -
        -
        [6]:
        -
        -
        -
        split_mod = splitter()
        -print(split_mod.graph)
        -
        -
        -
        -
        -
        -
        -
        -
        -Got 2 acc subgraphs and 1 non-acc subgraphs
        -graph():
        -    %x : [#users=1] = placeholder[target=x]
        -    %_run_on_acc_0 : [#users=1] = call_module[target=_run_on_acc_0](args = (%x,), kwargs = {})
        -    %_run_on_gpu_1 : [#users=1] = call_module[target=_run_on_gpu_1](args = (%_run_on_acc_0,), kwargs = {})
        -    %_run_on_acc_2 : [#users=1] = call_module[target=_run_on_acc_2](args = (%_run_on_gpu_1,), kwargs = {})
        -    return _run_on_acc_2
        -
        -
        -
        -
        [7]:
        -
        -
        -
        print(split_mod._run_on_acc_0.graph)
        -print(split_mod._run_on_gpu_1.graph)
        -print(split_mod._run_on_acc_2.graph)
        -
        -
        -
        -
        -
        -
        -
        -
        -graph():
        -    %x : [#users=1] = placeholder[target=x]
        -    %linear_weight : [#users=1] = get_attr[target=linear.weight]
        -    %linear_bias : [#users=1] = get_attr[target=linear.bias]
        -    %linear_1 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.linear](args = (), kwargs = {input: %x, weight: %linear_weight, bias: %linear_bias})
        -    %relu_2 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.relu](args = (), kwargs = {input: %linear_1, inplace: False})
        -    return relu_2
        -graph():
        -    %relu_2 : [#users=1] = placeholder[target=relu_2]
        -    %linalg_norm_1 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.linalg_norm](args = (), kwargs = {input: %relu_2, ord: 2, dim: 1, keepdim: False})
        -    return linalg_norm_1
        -graph():
        -    %linalg_norm_1 : [#users=1] = placeholder[target=linalg_norm_1]
        -    %relu_3 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.relu](args = (), kwargs = {input: %linalg_norm_1, inplace: False})
        -    return relu_3
        -
        -
        -

        The split_mod contains the child modules supported by TRT or eager gpu. We can iterate them to transform the module into TRT engine.

        -
        -
        [8]:
        -
        -
        -
        def get_submod_inputs(mod, submod, inputs):
        -    acc_inputs = None
        -
        -    def get_input(self, inputs):
        -        nonlocal acc_inputs
        -        acc_inputs = inputs
        -
        -    handle = submod.register_forward_pre_hook(get_input)
        -    mod(*inputs)
        -    handle.remove()
        -    return acc_inputs
        -
        -# Since the model is splitted into three segments. We need to lower each TRT eligible segment.
        -# If we know the model can be fully lowered, we can skip the splitter part.
        -for name, _ in split_mod.named_children():
        -    if "_run_on_acc" in name:
        -        submod = getattr(split_mod, name)
        -        # Get submodule inputs for fx2trt
        -        acc_inputs = get_submod_inputs(split_mod, submod, inputs)
        -
        -        # fx2trt replacement
        -        interp = TRTInterpreter(
        -            submod,
        -            InputTensorSpec.from_tensors(acc_inputs),
        -            explicit_batch_dimension=True,
        -        )
        -        r = interp.run(lower_precision=LowerPrecision.FP32)
        -        trt_mod = TRTModule(*r)
        -        setattr(split_mod, name, trt_mod)
        -
        -lowered_model_output = split_mod(*inputs)
        -
        -
        -
        -
        -
        -
        -
        -
        -I0627 150503.073 fx2trt.py:190] Run Module elapsed time: 0:00:00.014965
        -I0627 150504.996 fx2trt.py:241] Build TRT engine elapsed time: 0:00:01.922029
        -I0627 150505.026 fx2trt.py:190] Run Module elapsed time: 0:00:00.000302
        -I0627 150509.953 fx2trt.py:241] Build TRT engine elapsed time: 0:00:04.925192
        -
        -
        -

        Model can be saved by torch.save and loaded with torch.load. Then we can compare the results with eager mode inference.

        -
        -
        [9]:
        -
        -
        -
        torch.save(split_mod, "trt.pt")
        -reload_trt_mod = torch.load("trt.pt")
        -reload_model_output = reload_trt_mod(*inputs)
        -
        -# Make sure the results match
        -regular_model_output = model(*inputs)
        -torch.testing.assert_close(
        -    reload_model_output, regular_model_output, atol=3e-3, rtol=1e-2
        -)
        -
        -
        -
        - - -
        - -
        -
        - - - - -
        - - - -
        -

        - © Copyright 2021, NVIDIA Corporation. - -

        -
        - -
        - Built with Sphinx using a theme provided by Read the Docs. -
        - - -
        - -
        -
        - -
        -
        -
        -
          -
        - -
        -
        -
        -
        -
        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        -
        -
        -
        -

        Docs

        -

        Access comprehensive developer documentation for PyTorch

        - View Docs -
        - -
        -

        Tutorials

        -

        Get in-depth tutorials for beginners and advanced developers

        - View Tutorials -
        - -
        -

        Resources

        -

        Find development resources and get your questions answered

        - View Resources -
        -
        -
        -
        - - - - - - - - - -
        -
        -
        -
        - - -
        -
        -
        - - -
        - - - - - - - - \ No newline at end of file diff --git a/docs/_notebooks/getting_started_with_fx_path_module.ipynb b/docs/_notebooks/getting_started_with_fx_path_module.ipynb deleted file mode 100644 index f17ad14e03..0000000000 --- a/docs/_notebooks/getting_started_with_fx_path_module.ipynb +++ /dev/null @@ -1,469 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "code_folding": [], - "customInput": null, - "hidden_ranges": [], - "originalKey": "aac0295c-e26e-45cb-b1b6-7796ee860152", - "showInput": false - }, - "source": [ - "The purpose of this example is to demonstrate the overall flow of lowering a PyTorch\n", - "model to TensorRT via FX with existing FX based tooling. The general lowering flow would be like:\n", - "1. Use splitter to split the model if there're ops in the model that we don't want to lower to TensorRT for some reasons like the ops are not supported in TensorRT or running them on other backends provides better performance.\n", - "2. Lower the model (or part of the model if splitter is used) to TensorRT via fx path.\n", - "If we know the model is fully supported by fx path (without op unsupported) then we can skip the splitter." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false, - "customInput": null, - "customOutput": null, - "executionStartTime": 1656367410991, - "executionStopTime": 1656367412604, - "originalKey": "ca68b029-68a6-42d6-968e-95bb7c1aae73", - "requestMsgId": "f56944ff-ade2-4041-bdd6-3bce44b1405f", - "showInput": true - }, - "outputs": [], - "source": [ - "import torch\n", - "import torch.fx\n", - "import torch.nn as nn\n", - "from torch_tensorrt.fx.utils import LowerPrecision\n", - "import torch_tensorrt.fx.tracer.acc_tracer.acc_tracer as acc_tracer\n", - "from torch_tensorrt.fx import InputTensorSpec, TRTInterpreter, TRTModule\n", - "from torch_tensorrt.fx.tools.trt_splitter import TRTSplitter" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "code_folding": [], - "collapsed": false, - "customInput": null, - "customOutput": null, - "executionStartTime": 1656367414494, - "executionStopTime": 1656367422756, - "hidden_ranges": [], - "originalKey": "8f974ab2-d187-4ffe-a09b-16cd85949be4", - "requestMsgId": "564359f5-ac69-4666-91e1-41b299495ed1", - "showInput": true - }, - "outputs": [], - "source": [ - "class Model(nn.Module):\n", - " def __init__(self):\n", - " super().__init__()\n", - " self.linear = nn.Linear(10, 10)\n", - " self.relu = nn.ReLU()\n", - "\n", - " def forward(self, x):\n", - " x = self.linear(x)\n", - " x = self.relu(x)\n", - " x = torch.linalg.norm(x, ord=2, dim=1)\n", - " x = self.relu(x)\n", - " return x\n", - "\n", - "\n", - "inputs = [torch.randn((1, 10), device=torch.device('cuda'))]\n", - "model = Model().cuda().eval()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "code_folding": [], - "customInput": null, - "hidden_ranges": [], - "originalKey": "0d407e92-e9e7-48aa-9c9e-1c21a9b5fd8f", - "showInput": false - }, - "source": [ - "acc_tracer is a custom fx tracer that maps nodes whose targets are PyTorch operators\n", - "to acc ops." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "code_folding": [], - "collapsed": false, - "customInput": null, - "customOutput": null, - "executionStartTime": 1656367480626, - "executionStopTime": 1656367482881, - "hidden_ranges": [], - "originalKey": "a1d9c8c2-8ec7-425a-8518-6f7e53ab1e67", - "requestMsgId": "ee2da608-5f1c-4f63-9927-544717e84e8a", - "showInput": true - }, - "outputs": [], - "source": [ - "traced = acc_tracer.trace(model, inputs)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "code_folding": [], - "customInput": null, - "hidden_ranges": [], - "originalKey": "246613eb-14b5-488e-9aae-35306fc99db1", - "showInput": false - }, - "source": [ - "Splitter will split the model into several submodules. The name of submodules will\n", - "be either `run_on_acc_{}` or `run_on_gpu_{}`. Submodules named `run_on_acc_{}` can\n", - "be fully lowered to TensorRT via fx2trt while submodules named `run_on_gpu_{}` has\n", - "unsupported ops and can't be lowered by fx2trt. We can still run `run_on_gpu_{}`\n", - "submodules on GPU if ops there have cuda implementation.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false, - "customInput": null, - "customOutput": null, - "executionStartTime": 1656367487073, - "executionStopTime": 1656367487154, - "originalKey": "1103c70a-3766-4d89-ad2f-cdcb1c3891e0", - "requestMsgId": "feb888ea-ef9c-4577-b0c6-cf95bc1dd25e", - "showInput": true - }, - "outputs": [], - "source": [ - "splitter = TRTSplitter(traced, inputs)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "code_folding": [], - "customInput": null, - "hidden_ranges": [], - "originalKey": "3d65e07e-57ed-47d5-adb9-4685c69c9c6b", - "showInput": false - }, - "source": [ - "Preview functionality allows us to see what are the supported ops and unsupported\n", - "ops. We can optionally the dot graph which will color supported ops and unsupported\n", - "ops differently." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "customInput": null, - "customOutput": null, - "executionStartTime": 1656367489373, - "executionStopTime": 1656367489556, - "originalKey": "6aaed2d5-61b7-438e-a72a-63f91d0709e2", - "requestMsgId": "2948c2f8-854b-4bc2-b399-321469da320c", - "showInput": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Supported node types in the model:\n", - "acc_ops.linear: ((), {'input': torch.float32, 'weight': torch.float32, 'bias': torch.float32})\n", - "acc_ops.relu: ((), {'input': torch.float32})\n", - "\n", - "Unsupported node types in the model:\n", - "acc_ops.linalg_norm: ((), {'input': torch.float32})\n", - "\n" - ] - }, - { - "data": { - "text/plain": [ - "\"\\nSupported node types in the model:\\nacc_ops.linear: ((), {'input': torch.float32, 'weight': torch.float32, 'bias': torch.float32})\\nacc_ops.relu: ((), {'input': torch.float32})\\n\\nUnsupported node types in the model:\\nacc_ops.linalg_norm: ((), {'input': torch.float32})\\n\"" - ] - }, - "execution_count": 5, - "metadata": { - "bento_obj_id": "139812830161136" - }, - "output_type": "execute_result" - } - ], - "source": [ - "splitter.node_support_preview()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "customInput": null, - "originalKey": "8d8035ab-869e-4096-b8e1-3539a0cfe1af", - "showInput": false - }, - "source": [ - "After split, there are three submodules, _run_on_acc_0 and _run_on_gpu_1. " - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "code_folding": [], - "collapsed": false, - "customInput": null, - "customOutput": null, - "executionStartTime": 1656367495077, - "executionStopTime": 1656367495250, - "hidden_ranges": [], - "originalKey": "80e03730-955a-4cc8-b071-7f92a2cff3df", - "requestMsgId": "2ca46574-7176-4699-a809-2a2e2d5ffda0", - "showInput": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Got 2 acc subgraphs and 1 non-acc subgraphs\n", - "graph():\n", - " %x : [#users=1] = placeholder[target=x]\n", - " %_run_on_acc_0 : [#users=1] = call_module[target=_run_on_acc_0](args = (%x,), kwargs = {})\n", - " %_run_on_gpu_1 : [#users=1] = call_module[target=_run_on_gpu_1](args = (%_run_on_acc_0,), kwargs = {})\n", - " %_run_on_acc_2 : [#users=1] = call_module[target=_run_on_acc_2](args = (%_run_on_gpu_1,), kwargs = {})\n", - " return _run_on_acc_2\n" - ] - } - ], - "source": [ - "split_mod = splitter()\n", - "print(split_mod.graph)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false, - "customInput": null, - "customOutput": null, - "executionStartTime": 1656367496353, - "executionStopTime": 1656367496452, - "originalKey": "9ce75161-978e-468e-9989-ecdbc9af0d5b", - "requestMsgId": "0370de27-39ec-4be0-826b-9aec90df1155", - "showInput": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "graph():\n", - " %x : [#users=1] = placeholder[target=x]\n", - " %linear_weight : [#users=1] = get_attr[target=linear.weight]\n", - " %linear_bias : [#users=1] = get_attr[target=linear.bias]\n", - " %linear_1 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.linear](args = (), kwargs = {input: %x, weight: %linear_weight, bias: %linear_bias})\n", - " %relu_2 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.relu](args = (), kwargs = {input: %linear_1, inplace: False})\n", - " return relu_2\n", - "graph():\n", - " %relu_2 : [#users=1] = placeholder[target=relu_2]\n", - " %linalg_norm_1 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.linalg_norm](args = (), kwargs = {input: %relu_2, ord: 2, dim: 1, keepdim: False})\n", - " return linalg_norm_1\n", - "graph():\n", - " %linalg_norm_1 : [#users=1] = placeholder[target=linalg_norm_1]\n", - " %relu_3 : [#users=1] = call_function[target=torch_tensorrt.fx.tracer.acc_tracer.acc_ops.relu](args = (), kwargs = {input: %linalg_norm_1, inplace: False})\n", - " return relu_3\n" - ] - } - ], - "source": [ - "print(split_mod._run_on_acc_0.graph)\n", - "print(split_mod._run_on_gpu_1.graph)\n", - "print(split_mod._run_on_acc_2.graph)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "code_folding": [], - "customInput": null, - "hidden_ranges": [], - "originalKey": "7a6857bc-fedd-4847-ba17-a5d114de34f3", - "showInput": false - }, - "source": [ - "The `split_mod` contains the child modules supported by TRT or eager gpu. We can iterate them to transform the module into TRT engine." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "code_folding": [], - "collapsed": false, - "customInput": null, - "customOutput": null, - "executionStartTime": 1656367502837, - "executionStopTime": 1656367510024, - "hidden_ranges": [], - "originalKey": "174fd2eb-a864-49cf-a204-6d24a8e2849d", - "requestMsgId": "cf7fdfe4-e781-47c8-9a9a-85b5664c10f7", - "showInput": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I0627 150503.073 fx2trt.py:190] Run Module elapsed time: 0:00:00.014965\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I0627 150504.996 fx2trt.py:241] Build TRT engine elapsed time: 0:00:01.922029\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I0627 150505.026 fx2trt.py:190] Run Module elapsed time: 0:00:00.000302\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "I0627 150509.953 fx2trt.py:241] Build TRT engine elapsed time: 0:00:04.925192\n" - ] - } - ], - "source": [ - "def get_submod_inputs(mod, submod, inputs):\n", - " acc_inputs = None\n", - "\n", - " def get_input(self, inputs):\n", - " nonlocal acc_inputs\n", - " acc_inputs = inputs\n", - "\n", - " handle = submod.register_forward_pre_hook(get_input)\n", - " mod(*inputs)\n", - " handle.remove()\n", - " return acc_inputs\n", - "\n", - "# Since the model is splitted into three segments. We need to lower each TRT eligible segment.\n", - "# If we know the model can be fully lowered, we can skip the splitter part.\n", - "for name, _ in split_mod.named_children():\n", - " if \"_run_on_acc\" in name:\n", - " submod = getattr(split_mod, name)\n", - " # Get submodule inputs for fx2trt\n", - " acc_inputs = get_submod_inputs(split_mod, submod, inputs)\n", - "\n", - " # fx2trt replacement\n", - " interp = TRTInterpreter(\n", - " submod,\n", - " InputTensorSpec.from_tensors(acc_inputs),\n", - " explicit_batch_dimension=True,\n", - " )\n", - " r = interp.run(lower_precision=LowerPrecision.FP32)\n", - " trt_mod = TRTModule(*r)\n", - " setattr(split_mod, name, trt_mod)\n", - "\n", - "lowered_model_output = split_mod(*inputs)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "code_folding": [], - "customInput": null, - "hidden_ranges": [], - "originalKey": "f1db3e1e-3a70-4735-a403-baa557b0f8a6", - "showInput": false - }, - "source": [ - "Model can be saved by torch.save and loaded with torch.load. Then we can compare the results with eager mode inference. " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false, - "customInput": null, - "customOutput": null, - "executionStartTime": 1656367515833, - "executionStopTime": 1656367516184, - "originalKey": "a7c4fa0f-cac6-4959-8fa6-13b3455137d3", - "requestMsgId": "f0c264ac-2bda-4c8e-a236-e2bd475e601e", - "showInput": true - }, - "outputs": [], - "source": [ - "torch.save(split_mod, \"trt.pt\")\n", - "reload_trt_mod = torch.load(\"trt.pt\")\n", - "reload_model_output = reload_trt_mod(*inputs)\n", - "\n", - "# Make sure the results match\n", - "regular_model_output = model(*inputs)\n", - "torch.testing.assert_close(\n", - " reload_model_output, regular_model_output, atol=3e-3, rtol=1e-2\n", - ")" - ] - } - ], - "metadata": { - "bento_stylesheets": { - "bento/extensions/flow/main.css": true, - "bento/extensions/kernel_selector/main.css": true, - "bento/extensions/kernel_ui/main.css": true, - "bento/extensions/new_kernel/main.css": true, - "bento/extensions/system_usage/main.css": true, - "bento/extensions/theme/main.css": true - }, - "dataExplorerConfig": {}, - "kernelspec": { - "display_name": "accelerators", - "language": "python", - "metadata": { - "cinder_runtime": false, - "fbpkg_supported": true, - "is_prebuilt": true, - "kernel_name": "bento_kernel_accelerators", - "nightly_builds": true - }, - "name": "bento_kernel_accelerators" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3" - }, - "last_base_url": "https://devgpu005.ftw6.facebook.com:8093/", - "last_kernel_id": "a08a7dfc-0fcc-4486-a2d5-604483260888", - "last_msg_id": "3f4cd9a4-65001843cf56aec954e05889_80", - "last_server_session_id": "42b65868-6af0-4f04-bf2f-b7e2511f23dd", - "outputWidgetContext": {} - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docs/_notebooks/lenet-getting-started.html b/docs/_notebooks/lenet-getting-started.html index 16ce55d61d..27012a117b 100644 --- a/docs/_notebooks/lenet-getting-started.html +++ b/docs/_notebooks/lenet-getting-started.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        @@ -618,7 +618,7 @@ -

        2f280e0eb74d46ecafdf6432a54d6ea6

        +

        e35ce4ca215c4513810fb9d533909cc9

        Torch-TensorRT Getting Started - LeNet

        @@ -641,9 +641,7 @@

        ContentCreating TorchScript modules

      • Compiling with Torch-TensorRT

      • -
        -

        ## 1. Requirements

        -
        +

        ## 1. Requirements

        Follow the steps in notebooks/README to prepare a Docker container, within which you can run this notebook.

        [1]:
        @@ -746,9 +744,7 @@ 

        Content @@ -1037,9 +1033,7 @@

        Scripting

        TorchScript traced model

        diff --git a/docs/_notebooks/ssd-object-detection-demo.html b/docs/_notebooks/ssd-object-detection-demo.html index 8e7ad225a9..ad0fcb17bb 100644 --- a/docs/_notebooks/ssd-object-detection-demo.html +++ b/docs/_notebooks/ssd-object-detection-demo.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        @@ -618,7 +618,7 @@

        -

        3185e4b1941b4216b8d84f22f38f5cf7

        +

        aa77691fd7754170ac652a03d651d0b9

        Object Detection with Torch-TensorRT (SSD)


        @@ -647,9 +647,7 @@

        ContentsConclusion


        -
        -

        ## 1. Requirements

        -
        +

        ## 1. Requirements

        Follow the steps in notebooks/README to prepare a Docker container, within which you can run this demo notebook.

        In addition to that, run the following cell to obtain additional libraries specific to this demo.

        @@ -1082,9 +1078,7 @@

        Benchmark utility -
        -

        ## 3. Creating TorchScript modules

        -
        +

        ## 3. Creating TorchScript modules

        To compile with Torch-TensorRT, the model must first be in TorchScript. TorchScript is a programming language included in PyTorch which removes the Python dependency normal PyTorch models have. This conversion is done via a JIT compiler which given a PyTorch Module will generate an equivalent TorchScript Module. There are two paths that can be used to generate TorchScript: Tracing and Scripting. - Tracing follows execution of PyTorch generating ops in TorchScript corresponding to what it sees. - Scripting does an analysis of the Python code and generates TorchScript, this allows the resulting graph to include control flow which tracing cannot do.

        Tracing however due to its simplicity is more likely to compile successfully with Torch-TensorRT (though both systems are supported).

        @@ -1140,9 +1134,7 @@

        Benchmark utility -
        -

        ## 4. Compiling with Torch-TensorRT TorchScript modules behave just like normal PyTorch modules and are intercompatible. From TorchScript we can now compile a TensorRT based module. This module will still be implemented in TorchScript but all the computation will be done in TensorRT.

        -
        +

        ## 4. Compiling with Torch-TensorRT TorchScript modules behave just like normal PyTorch modules and are intercompatible. From TorchScript we can now compile a TensorRT based module. This module will still be implemented in TorchScript but all the computation will be done in TensorRT.

        [15]:
         
        @@ -1181,9 +1173,7 @@

        Benchmark utility -
        -

        ## 5. Running Inference

        -
        +

        ## 5. Running Inference

        Next, we run object detection

        [16]:
        diff --git a/docs/_notebooks/vgg-qat.html b/docs/_notebooks/vgg-qat.html
        index 588e574d5c..6e29fe90a0 100644
        --- a/docs/_notebooks/vgg-qat.html
        +++ b/docs/_notebooks/vgg-qat.html
        @@ -199,7 +199,7 @@
                       
                       
                         
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        @@ -618,7 +618,7 @@
        -

        f4642ae2930e4f81bafc0d2cea4c2431

        +

        ea58b17a1b2146f390fb14f89011e298

        Deploying Quantization Aware Trained models in INT8 using Torch-TensorRT

        @@ -635,9 +635,7 @@

        OverviewInference using Torch-TensorRT

      • References

      • -
        -

        ## 1. Requirements Please install the required dependencies and import these libraries accordingly

        -
        +

        ## 1. Requirements Please install the required dependencies and import these libraries accordingly

        [ ]:
         
        @@ -685,12 +683,8 @@

        Overview

        -

        -
        -

        ## 3. Training a baseline VGG16 model We train VGG16 on CIFAR10 dataset. Define training and testing datasets and dataloaders. This will download the CIFAR 10 data in your data directory. Data preprocessing is performed using torchvision transforms.

        -
        +

        ## 2. VGG16 Overview ### Very Deep Convolutional Networks for Large-Scale Image Recognition VGG is one of the earliest family of image classification networks that first used small (3x3) convolution filters and achieved significant improvements on ImageNet recognition challenge. The network architecture looks as follows 0f5a0c4917974040a2d4b6035bb1c98a

        +

        ## 3. Training a baseline VGG16 model We train VGG16 on CIFAR10 dataset. Define training and testing datasets and dataloaders. This will download the CIFAR 10 data in your data directory. Data preprocessing is performed using torchvision transforms.

        [2]:
         
        @@ -986,9 +980,7 @@

        Overviewquant_modules.initialize() will ensure quantized version of modules will be called instead of original modules. For example, when you define a model with convolution, linear, pooling layers, QuantConv2d, QuantLinear and QuantPooling will be called. QuantConv2d basically wraps quantizer nodes around inputs and weights of regular Conv2d. Please refer to all the quantized modules in pytorch-quantization toolkit for more information. A QuantConv2d is represented in pytorch-quantization toolkit as follows.

        def forward(self, input):
        @@ -1046,9 +1038,7 @@ 

        Overviewmax, histogram and entropy. We use max calibration technique as it is simple and effective.

        [10]:
        @@ -1276,9 +1266,7 @@ 

        Overviewmax, clamp, round and mul ops.

        # amax is absolute maximum value for an input
        @@ -1328,10 +1316,8 @@ 

        Overviewhttps://pytorch.org/docs/stable/jit.html. Setting quant_nn.TensorQuantizer.use_fb_fake_quant = True enables the QAT model to use torch.fake_quantize_per_tensor_affine and torch.fake_quantize_per_channel_affine operators instead of tensor_quant function to export quantization operators. In torchscript, they

        -

        -

        are represented as aten::fake_quantize_per_tensor_affine and aten::fake_quantize_per_channel_affine.

        +

        ## 7. Export to Torchscript Export the model to Torch script. Trace the model and convert it into torchscript for deployment. To learn more about Torchscript, please refer to https://pytorch.org/docs/stable/jit.html. Setting quant_nn.TensorQuantizer.use_fb_fake_quant = True enables the QAT model to use torch.fake_quantize_per_tensor_affine and torch.fake_quantize_per_channel_affine operators instead of tensor_quant function to export quantization operators. In torchscript, they +are represented as aten::fake_quantize_per_tensor_affine and aten::fake_quantize_per_channel_affine.

        -

        torch_tensorrt.logging.set_reportable_log_level(torch_tensorrt.logging.Level.Debug). For example, QuantConv2d layer from pytorch_quantization toolkit is represented as follows in Torchscript

        +

        ## 8. Inference using Torch-TensorRT In this phase, we run the exported torchscript graph of VGG QAT using Torch-TensorRT. Torch-TensorRT is a Pytorch-TensorRT compiler which converts Torchscript graphs into TensorRT. TensorRT 8.0 supports inference of quantization aware trained models and introduces new APIs; QuantizeLayer and DequantizeLayer. We can observe the entire VGG QAT graph quantization nodes from the debug log of Torch-TensorRT. To enable debug logging, you can set +torch_tensorrt.logging.set_reportable_log_level(torch_tensorrt.logging.Level.Debug). For example, QuantConv2d layer from pytorch_quantization toolkit is represented as follows in Torchscript

        %quant_input : Tensor = aten::fake_quantize_per_tensor_affine(%x, %636, %637, %638, %639)
         %quant_weight : Tensor = aten::fake_quantize_per_channel_affine(%394, %640, %641, %637, %638, %639)
         %input.2 : Tensor = aten::_convolution(%quant_input, %quant_weight, %395, %687, %688, %689, %643, %690, %642, %643, %643, %644, %644)
        @@ -1639,9 +1623,7 @@ 

        Performance benchmarking`_. - -* **Step 2: Build TensorRT engine** -There are `two different modes `_ for how TensorRT handles batch dimension, explicit batch dimension and implicit batch dimension. This mode was used by early versions of TensorRT, and is now deprecated but continues to be supported for backwards compatibility. In explicit batch mode, all dimensions are explicit and can be dynamic, that is their length can change at execution time. Many new features, such as dynamic shapes and loops, are available only in this mode. User can still choose to use implicit batch mode when they set ``explicit_batch_dimension=False`` in ``lower_to_trt()``. We do not recommend to use it since it will lack of support in future TensorRT versions. - -Explicit batch is the default mode and it must be set for dynamic shape. For most of vision task, user can choose to enable ``dynamic_batch`` in ``lower_to_trt()`` if they want to get the similar effects as implicit mode where only batch dimension changes. It has some requirements: -1. Shapes of inputs, outputs and activations are fixed except batch dimension. -2. Inputs, outputs and activations have batch dimension as the major dimension. -3. All the operators in the model do not modify batch dimension (permute, transpose, split, etc.) or compute over batch dimension (sum, softmax, etc.). - -For examples of the last path, if we have a 3D tensor t shaped as (batch, sequence, dimension), operations such as torch.transpose(0, 2). If any of these three are not satisfied, we’ll need to specify InputTensorSpec as inputs with dynamic range. - -.. code-block:: shell - - import deeplearning.trt.fx2trt.converter.converters - from torch.fx.experimental.fx2trt.fx2trt import InputTensorSpec, TRTInterpreter - - # InputTensorSpec is a dataclass we use to store input information. - # There're two ways we can build input_specs. - # Option 1, build it manually. - input_specs = [ - InputTensorSpec(shape=(1, 2, 3), dtype=torch.float32), - InputTensorSpec(shape=(1, 4, 5), dtype=torch.float32), - ] - # Option 2, build it using sample_inputs where user provide a sample - inputs = [ - torch.rand((1,2,3), dtype=torch.float32), - torch.rand((1,4,5), dtype=torch.float32), - ] - input_specs = InputTensorSpec.from_tensors(inputs) - - # IMPORTANT: If dynamic shape is needed, we need to build it slightly differently. - input_specs = [ - InputTensorSpec( - shape=(-1, 2, 3), - dtype=torch.float32, - # Currently we only support one set of dynamic range. User may set other dimensions but it is not promised to work for any models - # (min_shape, optimize_target_shape, max_shape) - # For more information refer to fx/input_tensor_spec.py - shape_ranges = [ - ((1, 2, 3), (4, 2, 3), (100, 2, 3)), - ], - ), - InputTensorSpec(shape=(1, 4, 5), dtype=torch.float32), - ] - - # Build a TRT interpreter. Set explicit_batch_dimension accordingly. - interpreter = TRTInterpreter( - acc_mod, input_specs, explicit_batch_dimension=True/False - ) - - # The output of TRTInterpreter run() is wrapped as TRTInterpreterResult. - # The TRTInterpreterResult contains required parameter to build TRTModule, - # and other informational output from TRTInterpreter run. - class TRTInterpreterResult(NamedTuple): - engine: Any - input_names: Sequence[str] - output_names: Sequence[str] - serialized_cache: bytearray - - #max_batch_size: set accordingly for maximum batch size you will use. - #max_workspace_size: set to the maximum size we can afford for temporary buffer - #lower_precision: the precision model layers are running on (TensorRT will choose the best perforamnce precision). - #sparse_weights: allow the builder to examine weights and use optimized functions when weights have suitable sparsity - #force_fp32_output: force output to be fp32 - #strict_type_constraints: Usually we should set it to False unless we want to control the precision of certain layer for numeric #reasons. - #algorithm_selector: set up algorithm selection for certain layer - #timing_cache: enable timing cache for TensorRT - #profiling_verbosity: TensorRT logging level - trt_interpreter_result = interpreter.run( - max_batch_size=64, - max_workspace_size=1 << 25, - sparse_weights=False, - force_fp32_output=False, - strict_type_constraints=False, - algorithm_selector=None, - timing_cache=None, - profiling_verbosity=None, - ) - - -*Common Errors:* - -RuntimeError: Conversion of function xxx not currently supported! -- This means we don’t have the support for this xxx operator. Please refer to section “How to add a missing op” below for further instructions. - -* **Step 3: Run the model** -One way is using TRTModule, which is basically a PyTorch nn.Module. - -.. code-block:: shell - - from torch_tensorrt.fx import TRTModule - mod = TRTModule( - trt_interpreter_result.engine, - trt_interpreter_result.input_names, - trt_interpreter_result.output_names) - # Just like all other PyTorch modules - outputs = mod(*inputs) - torch.save(mod, "trt.pt") - reload_trt_mod = torch.load("trt.pt") - reload_model_output = reload_trt_mod(*inputs) - -So far, we give a detailed explanation of major steps in convterting a PyTorch model into TensorRT engine. Users are welcome to refer to the source code for some parameters explanations. In the converting scheme, there are two important actions in it. One is acc tracer which helps us to convert a PyTorch model to acc graph. The other is FX path converter which helps to convert the acc graph's operation to corresponding TensorRT operation and build up the TensoRT engine for it. - -Acc Tracer ---------- - -Acc tracer is a custom FX symbolic tracer. It does a couple more things compare to the vanilla FX symbolic tracer. We mainly depend on it to convert PyTorch ops or builtin ops to acc ops. There are two main purposes for fx2trt to use acc ops: - -1. there’re many ops that do similar things in PyTorch ops and builtin ops such like torch.add, builtin.add and torch.Tensor.add. Using acc tracer, we normalize these three ops to a single acc_ops.add. This helps reduce the number of converters we need to write. -2. acc ops only have kwargs which makes writing converter easier as we don’t need to add additional logic to find arguments in args and kwargs. - -FX2TRT --------- -After symbolic tracing, we have the graph representation of a PyTorch model. fx2trt leverages the power of fx.Interpreter. fx.Interpreter goes through the whole graph node by node and calls the function that node represents. fx2trt overrides the original behavior of calling the function with invoking corresponding converts for each node. Each converter function adds corresponding TensorRT layer(s). - -Below is an example of a converter function. The decorator is used to register this converter function with the corresponding node. In this example, we register this converter to a fx node whose target is acc_ops.sigmoid. - -.. code-block:: shell - - @tensorrt_converter(acc_ops.sigmoid) - def acc_ops_sigmoid(network, target, args, kwargs, name): - """ - network: TensorRT network. We'll be adding layers to it. - - The rest arguments are attributes of fx node. - """ - input_val = kwargs['input'] - - if not isinstance(input_val, trt.tensorrt.ITensor): - raise RuntimeError(f'Sigmoid received input {input_val} that is not part ' - 'of the TensorRT region!') - - layer = network.add_activation(input=input_val, type=trt.ActivationType.SIGMOID) - layer.name = name - return layer.get_output(0) - -How to Add a Missing Op -**************** - -You can actually add it wherever you want just need to remember import the file so that all acc ops and mapper will be registered before tracing with acc_tracer. - -* **Step 1. Add a new acc op** - -TODO: Need to explain more on the logistic of acc op like when we want to break down an op and when we want to reuse other ops. - -In `acc tracer `_, we convert nodes in the graph to acc ops if there’s a mapping registered for the node to an acc op. - -In order to make the conversion to acc ops to happen, there’re two things required. One is that there should be an acc op function defined and the other is there should be a mapping registered. - -Defining an acc op is simple, we first just need a function and register the function as an acc op via this decorator `acc_normalizer.py `_. e.g. the following code adds an acc op named foo() which adds two given inputs. - -.. code-block:: shell - - # NOTE: all acc ops should only take kwargs as inputs, therefore we need the "*" - # at the beginning. - @register_acc_op - def foo(*, input, other, alpha): - return input + alpha * other - -There’re two ways to register a mapping. One is `register_acc_op_mapping() `_. Let’s register a mapping from torch.add to foo() we just created above. We need to add decorator register_acc_op_mapping to it. - -.. code-block:: shell - - this_arg_is_optional = True - - @register_acc_op_mapping( - op_and_target=("call_function", torch.add), - arg_replacement_tuples=[ - ("input", "input"), - ("other", "other"), - ("alpha", "alpha", this_arg_is_optional), - ], - ) - @register_acc_op - def foo(*, input, other, alpha=1.0): - return input + alpha * other - -``op_and_target`` determines which node will trigger this mapping. op and target are the attributes of FX node. In acc_normalization when we see a node with the same op and target as set in the ``op_and_target``, we will trigger the mapping. Since we want to map from ``torch.add``, then op would be call_function and target would be ``torch.add``. ``arg_replacement_tuples`` determines how we construct kwargs for new acc op node using args and kwargs from original node. Each tuple in ``arg_replacement_tuples`` represents one argument mapping rule. It contains two or three elements. The third element is a boolean variable that determines whether this kwarg is optional in *original node*. We only need to specify the third element if it’s True. The first element is the argument name in original node which will be used as the acc op node’s argument whose name is the second element in the tuple. The sequence of the tuples does matter because the position of the tuple determines where the argument is in original node’s args. We use this information to map args from original node to kwargs in acc op node. -We don’t have to specify arg_replacement_tuples if none of the followings are true. - -1. kwargs of original nodes and acc op nodes have different name. -2. there’re optional arguments. - -The other way to register a mapping is through `register_custom_acc_mapper_fn() `_. This one is designed to reduce the redundant op registration as it allows you to use a function to map to one or more existing acc ops throught some combinations. In the function, you can do basically whatever you want. Let’s use an example to explain how it works. - -.. code-block:: shell - - @register_acc_op - def foo(*, input, other, alpha=1.0): - return input + alpha * other - - @register_custom_acc_mapper_fn( - op_and_target=("call_function", torch.add), - arg_replacement_tuples=[ - ("input", "input"), - ("other", "other"), - ("alpha", "alpha", this_arg_is_optional), - ], - ) - def custom_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node: - """ - `node` is original node, which is a call_function node with target - being torch.add. - """ - alpha = 1 - if "alpha" in node.kwargs: - alpha = node.kwargs["alpha"] - foo_kwargs = {"input": node["input"], "other": node["other"], "alpha": alpha} - with node.graph.inserting_before(node): - foo_node = node.graph.call_function(foo, kwargs=foo_kwargs) - foo_node.meta = node.meta.copy() - return foo_node - - -In the custom mapper function, we construct an acc op node and return it. The node we returns here would take over all the children nodes of original nodes `acc_normalizer.py `_. - -The last step would be *adding unit test* for the new acc op or mapper function we added. The place to add the unit test is here `test_acc_tracer.py `_. - -* **Step 2. Add a new fx2trt converter** - -All the developed converters for acc ops are all in `acc_op_converter.py `_. It could give you a good example of how the converter is added. - -Essentially, the converter is the mapping mechanism that maps the acc ops to a TensorRT layer. If we are able to find all the TensorRT layers we need we can get start to add a converter for the node using `TensorRT APIs `_. - -.. code-block:: shell - - @tensorrt_converter(acc_ops.sigmoid) - def acc_ops_sigmoid(network, target, args, kwargs, name): - """ - network: TensorRT network. We'll be adding layers to it. - - The rest arguments are attributes of fx node. - """ - input_val = kwargs['input'] - - if not isinstance(input_val, trt.tensorrt.ITensor): - raise RuntimeError(f'Sigmoid received input {input_val} that is not part ' - 'of the TensorRT region!') - - layer = network.add_activation(input=input_val, type=trt.ActivationType.SIGMOID) - layer.name = name - return layer.get_output(0) - -We need to use ``tensorrt_converter`` decorator to register the converter. The argument for the decorator is the target of the fx node that we need to convert. In the converter, we can find the inputs to the fx node in kwargs. As in the example, the original node is `acc_ops.sigmoid` which only has one argument “input” in acc_ops.py. We get the input and check if it’s a TensorRT tensor. After that, we add a sigmoid layer to TensorRT network and return the output of the layer. The output we returned will be passed to the children nodes of acc_ops.sigmoid by fx.Interpreter. - -**What if we can not find corresponding layers in TensorRT that do the same thing as the node.** - -In this case, we would need to do a bit more work. TensorRT provides plugins which serves as custom layers. *We have not implement this feature yet. We will update once it is enabled*. - -Last step would be adding the unit test for the new converter we added. User could add corresponding unit test in this `folder `_. diff --git a/docs/contributors/conversion.html b/docs/contributors/conversion.html index 22e91ace05..79e58ac7ea 100644 --- a/docs/contributors/conversion.html +++ b/docs/contributors/conversion.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/contributors/lowering.html b/docs/contributors/lowering.html index b21b1a64ea..2fab6272d7 100644 --- a/docs/contributors/lowering.html +++ b/docs/contributors/lowering.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/contributors/partitioning.html b/docs/contributors/partitioning.html index 2e6d5dc08d..bc6779ca03 100644 --- a/docs/contributors/partitioning.html +++ b/docs/contributors/partitioning.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/contributors/phases.html b/docs/contributors/phases.html index df77dfdd5b..e669062975 100644 --- a/docs/contributors/phases.html +++ b/docs/contributors/phases.html @@ -197,7 +197,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/contributors/runtime.html b/docs/contributors/runtime.html index 20019af73d..4e08b66384 100644 --- a/docs/contributors/runtime.html +++ b/docs/contributors/runtime.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/contributors/system_overview.html b/docs/contributors/system_overview.html index e103093f2a..32ecb37e00 100644 --- a/docs/contributors/system_overview.html +++ b/docs/contributors/system_overview.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/contributors/useful_links.html b/docs/contributors/useful_links.html index 6ca5012842..9d4dad487e 100644 --- a/docs/contributors/useful_links.html +++ b/docs/contributors/useful_links.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/contributors/writing_converters.html b/docs/contributors/writing_converters.html index 4601ecd006..8bb88e41f6 100644 --- a/docs/contributors/writing_converters.html +++ b/docs/contributors/writing_converters.html @@ -199,7 +199,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        diff --git a/docs/genindex.html b/docs/genindex.html index 7428831f21..bc175152ae 100644 --- a/docs/genindex.html +++ b/docs/genindex.html @@ -196,7 +196,7 @@
        - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
        @@ -348,7 +348,16 @@

        Index

        - D + _ + | A + | C + | D + | E + | F + | G + | I + | L + | M | P | R | S @@ -357,14 +366,197 @@

        Index

        | X
        +

        _

        +

        + +
        + +

        A

        + + +
        + +

        C

        + + + +
        +

        D

        + +
        + +

        E

        + + + +
        + +

        F

        + +
        +

        G

        + + + +
        + +

        I

        + + + +
        + +

        L

        + + + +
        + +

        M

        + + +
        +

        P

          @@ -381,6 +573,8 @@

          P

          R

          @@ -398,6 +592,20 @@

          R

          S

          + @@ -406,6 +614,38 @@

          S

          T

          + -
          • torch_tensorrt::ptq::Int8CacheCalibrator (C++ class)
          • torch_tensorrt::ptq::Int8CacheCalibrator::getBatch (C++ function) @@ -638,6 +878,14 @@

            T

            W

            + diff --git a/docs/index.html b/docs/index.html index 4ab408acff..3543a93f12 100644 --- a/docs/index.html +++ b/docs/index.html @@ -198,7 +198,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/indices/supported_ops.html b/docs/indices/supported_ops.html index 0e995072a6..43b24f615e 100644 --- a/docs/indices/supported_ops.html +++ b/docs/indices/supported_ops.html @@ -198,7 +198,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/objects.inv b/docs/objects.inv index cb2e300169ce111d3293d5cc64cd4819574f03a7..9c36d6179ba890625baf75997822ddace49c05a6 100644 GIT binary patch literal 24856 zcmZ^KV{j%wvuui zdPs>>94)QvJ&COB-OcP>9h|+0+|8U_tQ_o#SYSwr6rCNc%}iW*h*TY%O)TkE&Fozq zoRwAot*HOE6%Ub}k&CODGZ7Ut0}BI_5fiPsxtXakCl~cU8&yj)B4;x@BP)B;e-;kr zM6Q-rE=1;5wq`{Cq=|!_qqCWdiIMvWiBvetYQT-n_0>%Z9Rf?R={=Cp zSkkKcZY2?v$4@7yBOVyu8=?n}?+=J!wq-a+MD;3O&0zs@{2_UM^Rw-(;4Hl1`ve@` zA02|gd|)JJy!kghepkF}uC9+;>Hw|WL64vES%1%WXOD-g;oV^X;8i=(FA{Fs&C&9s z{D_2>MGgvn+f{T~B>o`0_Bx=qucxOAIW;hrr~yRhjg)Z<Ru$h!CutP@4fE&ros* zaBzA0J&m9A^Z^j;-jhF2BPih!o*pl4e1826~I??n}Zv z^Xxk5kdTr!4-ABA^$p}ZelNQCC|@VNeFX&ZO+~T#v5H`9 z>)YZC*R#0I=&bWT=0Fm=BA+=j<>rs1$2qGvY#gfyyBG@&w?BVFq7(8C=I}uee){&) z7j=bIzIP@O_j0sN7N24-f_iZ7g*4nz1;N_u5BN?bi-AYW1rcdv6hc6yfVet@E`=~C(GZDX&PXE*xAyX=xYkrj$E?`TSdcNfei9V;QP$({Sh0qr zPz#=~zs%dp;h`OO!=|IvL}O^%{by0MYM-ZQaJ`t)9~~4uoxw0*nC~42ruf6)+hqS# z>#%zEZaK)6ls$G!gtY&OGFP7KK6k|#GQ7fk^k>5d_(+h9-UCUhYK_OVh(_~v;6Ah_ z(!gY+5hVHK0_W6D5lg8)#LX+;K8bzNuGI?Uf;@6v7!77xDAxYdreT_T0P8Qu&nlEI zYNjN?6apPJCsWX75X{<(> zGq4X3Y;uAQwi3RZ>_Fk_uc!I+TMcT2%@q9|fEu{lUsH*oU4D9tS+ON@4aQ#V;-!v# zGjb~gUO3fsgZAPYRbQ2`T$JBc91qT8pLc^MOJ6!@mGvbUuUh>;=p(}4>NO6+?_Vnr z2{F#ft4Wt!|1`epO^{ST95@em0qYO_a4aelprO5=3Hk6iJx!kf705zk?7c`gfJbpb zQ1o6FDS)-&$-G4fl>uuR;@IjNoAC}(BZS3x2&i@IlPx%t1M|&rKr@D1w5vjPmBS5_ zYWLl5bY*mu!;k1ahij+S10ybon7JdIb6}Vk^y}=r#6Bj3>o{N&g0^-J_)Aax--^lTw3&aZrX4El_V%q3``IC0mN@WWq6Jjz9^zWUS}ja!K#&%5tLzw;Y^*TMIl z9jtj&pLi(!E*S@<41DWmf6foL+)p#F3VQ?Tn{B4N$B*~6f|!*rWevuA%m+TUovpDn;$Pevzl&K)gSrnBVdW(3h%0Kcw=zVW0T;Zg2;+CCFr0 zjh$6N5XrG9pGmKkRCjkXdW?fkjlcqbo!kOm*N=eB4#NWV_k97*bh!vA3{X!8m$#>YWx#Lt0Y@C6 z(1xEI!0qYZQ_GuaM&Re*vO2oCQzk7kYKbS)y!y2dJ}m^^H5~hKaurVgA)wHKQ1wt- zUa@j}u?e=oGZ5mP^4+lV{ZZvAlv$clC4d}C?=6`6v6sDRH!z#qBO?dtJRHgSM;$O7 z@pE{8j0u)Uw1#wch+`1-g>T~pJ=ucjE|Za^7l#lOIM0O>>GlYa==idpWJZG@Zni(Z zd_N-h*WA&wPn^mfL*KOj;paKg1fp~Rm>s4N{{lP~1ObJKEheP8C2x||kr3i2k@oQ& z`nYuesfCveN2w?Ye#1m4mKZ^$QII|HvhV}~9u)YvNH|#d9B2rT5v~r^Gw3)c2wGr*J z*M#yVnxBwcy~!_Fpn`jF%@N`|uQHA#BnDr?X@mlrdz&w7$Zm0|xWce|8IbGGx3idW zvbd)T%y8au#%l11#`~(n#RreHz!{R3Oq4^MmTI>*odA=JrKD#THY0-3(zZIG@6t9Z z-^=Wji(|;d;ffN>N&}Kko`U_p$e4;ezIY z+oOO(zt-yg5&m$k(d91LmD(xu<-tdGeF-jhDS`aPnWujIU6+CNZQTA53odwHjbxk( ztis1Es*ycHJ#iI>5I46o^HQm^4@>aLKS+#(3S|j7%G>p(=V1!$#>&NA6 z{`uO3nn~4^3zKT*lk1P)U9klWzh+W%ZuG5_eFr`oouguN(eGSDYHF5$M;#2B4~(lj zAgbuQrBP&q-}uG*bm8O+^{T2rfb$)B$!0zz;eU8Io;H0zNjEklCI&fhC&lRP3M1hX z#oBIz#iMp{I4hw6C*2vAZ^NHdxqbWN+fuX{7ie^WL(M1sq;~z1`}2*4q4@i#4_(|m zlD{URk3eL;%{J6-_(2a;co!xV16{TkepIcQTf>$0`R4kx>Ms$;uoWt2anny$Y{SW8 zy=_>M-Os!!%p!Q6U^_Y(rq?%^MB!)NyP0KG#4{XF(yeizFj^QfSzcj;^qWPOzoBN| zZos?T{#5^8`rA>BZV0;$sd(UYeha2JjpG9nFD>K*=l&tZNB2q?+`pPeD+%>7ma3C= zWDU0<8C@r)&ev|@G>se4L>2)uyF4YIU(%~~F%1=Um!EG+0QeH_yl1oMqSwBwrtdj8 zCbx_673SQ&JsAYJHHX7gs3gu_W1j2Y%w`?v(BYS(#Rp!vaJt7?#f!{^U1Kzo2>!W^ z{8zrFnIjE?W*A9%>etJSMcSIse=P z>~I}uvPw8XGFW}W6Q6%k#IHlVig8Aaf0vKE9*cbjnr1DOyaFrFk29S$LFel-@Hn+- zeDLw;E$%R4I}358K| ze>Rxlgt0uI1)X+h3NZ=4{LdS%*8~rDzGkv_2O3SCZYHsk`U|%=$7=q3dtDD=eaB=5 zbJC1b{4pkN0L4G|N5hFX83ZDpehma|z$|1!T3@COY@t=P0R+=5dg+kb7n)M%x49qL zTtr>A`;LMcDIGkS=BH5h{L7K5TG2iyob2Y=Tro}XwDi%8$0JD?o7}KM%f)P-KmWjU zj7`EZ_u2no+p#DKzE-f!T3S5#X@|utDGhoNFrNJaxa}FkI01f5~~TW<5T ziCTIZp>+g-JCPYdwBzdfjc58yX0)Zb)zZh)rvG?UdHx!Iz^ARN-J2?}N!f?<-W5douY53-aw3XYgauo} zY?>C3t5?VY-4C8QOqLg})u>|*qK+8mZyn|}N^>~++Fiy%`P%DB_JNib%_?#flgCO^ zH;@yE+RtN0Be7x?d#oPgP_OIw6tfo1b#=0=m$Lotp`lDo&1<`5+KMYKBY)QmtU6Zi zOv7~6(ya^IzvOxgGrBO8yWTAUn_)a_<-wI{IbCuyIC9XZJYG4q;Kn znP1!L00C^VuNRw-}<3tOmuu1Sy#w<7DfvGuPl6drXfdGm~U zmT@XkoTWJnbfHZm~(L< z*(<2?=kDKtJfC0ZESUch06w~5##)3ajbX)6i`g)Y0oSs!OB*@{h<36d`rpRMKaCX@ zEdp_D=bgh~3UZf?#N_?S57s)-UCu1B&2Oy>HxsRkIsW6)(j9Rr;>?>`BMImp%h;TC z2SHcwRVe~izQ9&w?9V5E61Epa978RPz`B^Z)XP56PA_?bMOxa}1u25ERH>*2lg)J> z59XJ<;x;Iqq5de7d&a8N&u`w$a;Qba{yRdu_oo)W2lPawlnWmbC}( z1C^F{hA5W&drth;j~c!}$Q!GSF_O%wOzWTe1%|O`l=__}g`$ytvX`)Q>(U}MAe`Ou z2}p`YQR|-RBkcV;WA7jPiGp)%Q8$ajw9YH2-8P2P1Jz?GN@3;>{2@x7(48xmJgHt&BylRWU}B&SUFaCUnj+0Exd~6+QdUB)vix)hYpbj4;`(wp-@abmk2ZN`nCH{heUgV;pH9&D};EbKpZRo)f!_3qsa(c1i>r0 zO}pyPD3~*&(N4Q=aQD`&O|Yu?S5Im*qLTBL=EYl(cwOO5Fv%>xL(eSncHT_|V5Q)d zq))6QP+N~RE3PW)v0$-GIEa7?bR;hPaw8&5;`VrXz)B}szPKzYm-i;hNz%G(w3DDH ztm3dqjBnIpZZ(N&=Eo|H`4Kp^LY4K2c-}Zdd$)~h#w*c^_EOBfrq(x0IdCxZA4X~I zwk{5Y80AN1V`ACHXo+hqWlAILkXG`cGA_bgv!CR|aXR2K#%J7Sw6!f7UaqQiXYPhs zR9!>iRO|j)Ix|zx586p!uIQ!kL*zp=Km*JbPW1`A5>%Xw(v8!H7vaWHoO*ygJykoo zU-x_a^CzKT^>tf#r$;bCdjH^UTg43ezQ}z4z#Wn5^u5URP-o)pb=|wQ*6fgDKGETh zGxBHf0^sjcTykrW@<)C2nrn_*(r%{D`=j0>W_eL1U9cQhkW4+xnRc;R=F;yVAAh0d zuEPc53wC1%^Y7wW2&H*`gi2QcrJKrgnRl_4Dz@id-Q+}72wI$+$g$ebrQ4#~P!l=+ zm0nS06$qN#Lqp8az+-#ss*SeE{__s|N4z9unE!Nk>+=ba zH&few(XD96bA4vt=l^9MDY508l(l)3UK2RefXvdq2~c;thhDwcwT`w*9e}F}cqC({ zKIr%IOR!zY3-B)1wsc1# zlLh|TRxr6F`}%UN+f`JAYVYMMJhh8A3zja6cdXW^+gG(pIbK&E_E{wxRQ?&>at^np z>P%aJ$Wk44xsKpvAg@)gz0qd3d61(R=t3`0CIxnX)bM>0HrGHq9}qt%(J@#4UAOl+ z*M^g8vjwqu7_N>+r)lWc*YK{Vt;M}wdIc&enJhF{+!rsfm^`JbN*Z$e6cyaAnw#Wh zGi0|0SByH!GAF62Fh5%%xa=^qEurBwtD6GlZsgUp+8<&2RT#ki$?f6#$MEXxS4MYt z#K+ACs2AXBb@%HfBj=$|n!Kia=_7hn$Zyn&LMbn0obUEGHE^N<#bMy2O;NO{p@NDnn1New+(ChtA>_JhA@iqG*nH5$0D1WbqpViie)WETY4Z+)PCG{iW z=YjI!0Ypq+3(ijGV9x&>(Wxfe;3wC?U zCgS}}T{?aXR_t=glxI(h8=I)F!j1*)heP_#kFMFzbYP8L@$6wRP33&QMNol-lH~C0 z{p`+R@q31qlo~`97mS3Y$xRbwlnXU!v9P0_|5hez{8xu2DW7eI++4U{^s)aM`f7|S zv=RMC)1le5W=5^$yw}kqmC@6jPThOeZ=C>I@_yqnZyjaGwOMDJ5v3j^`dW3*+;7sa zb`mVcb;g`&+7Au-UkSPqu77|&n82{E>Ig0nUX{)v;+NkZq=T?&muN*Q8b8e?Nw2o1 zPtbGm+*8UA_|_fBN0+TvT32mC4po8<|DOI2LUMU~JFR!NS5MppniZ!_FB5M}TlF~3 z7z{zfLO4Nl%i6v7PG#;?z*sK;_>L*mo7#b7oq5TesAp=d%K^#KN#b(~e~!&*x3gpOtt}HgfEPv|*E+1u; z!NxElZKsI|qCR&G6M>`|E)n-GHsKs}{7}uH&!!;AZqd72@jq z?oB|d(70fDoO3ZQh7O@N1vLn@K!=$M(ANE7!9|l&BE%OhrII@>{lus^jQ6whm_k*$ z;hep)_!S;yrSK8HD*mD8k7@|#7W~R$+zUuGAVG;CaM@v7&__LK9+8Ab$1KKV_&oSW z4TN+JNZS9zT@jd$RJNg#^;VF&axVK=EL+Vpt_I&kQcO*;L_$KzMIR6f(&|$rvMD+F)c1uFf@2Bt2%l8-Q-c0OSb?SSjL&`bJ zbI``U2e=1>BaTr}k;9lBSJ#opi;A2{N3yErjc=?O513t*?E2piv@SQgI+SXAf0yc8 z6$dAzPb&#UPFXDNe0U_0pmxXuWBwqg0=1a}-2`2(8J8n(vj#HHGbG<&;WDL(BDvcQZTStc7GFM?f1JsPb|uw_j)p?#w=d&^(Qox9xF{@6wb zMV7ucDZXwz7T$pThU@|!9vH?LU_hu@a3@(F3nKWt)MuJlRLDpyNC7N(%t80q?uazp z-jkr{HKC!1CtiZlG2L5WjWaCw2YrN&wN@i>xweElx&KqOMe>r39yBWx&a!7AEd2^{ z&>jIA?R4a1Ja;9_e8l!oc zl}>-IJwN`#`A67)JGnw4*krr?2tUn&hvYR<3*Hqb3rWoDNR;YM5CTV@8*xli8_6(C z$m@Nts9xyTJA>d-1XA3ja(o?_JRS)tVUX*fyPq$ z-vF4b1h+R7|8~d$q$_zsDOt*I{)-pUz*+&$71% za34IL(UZ-aLYJ{vCo5ku>sG8+7kaB-N6Ys|zGSHqoF0Pl%u25LHQKHQ z{>rMn@%}g%BGz+oG5qY|CY_&1mp5|ZEAaFz%&P6?r~3{t-%C51dqLKBl9UPQFj<`{ zYXS!`?$}p<)bp*jr(Ddr*tFT$jM*Bx94#e|2&Nd8Hc=k9j99&EA;>Pmu<#>ICZUNY z{y#w1;8bv_en&(m*!!71HHYB&s?@}c=jh4XyLm=v_08zvpRCD=!?a0ly!gW%f9mh3 zm!dx8bm&mKn3=C`$Kxh1w$5leiV%%}fYCm!>hp_ACOGZ>c!d*gwZ-2c;pk(5+Zzhw zQS%lFkDmU-EkT<@&+ zX1QyVD4t1-F*Xx0la^Z-H7_KL%@43!?}=USAer23guw`x^x&8xi#9L=d406V_u)I^!(tZ|^Wc`)l-SM*L_ zY+2erZv!HoDogivhbZl^7#f&gi5-g+fVkt4|12=c5{fc51r_a$MPR+PJN=`bs6Xg{ z{djP@mJ_QsMqw-WHaBvJy#K!M)+}#XO-V4Crtq_SQ|sa0#AkcjGBQ>IfPyEt;a-!D zw(_lz&O)6`z1Wnikj24r5JDDIUx7nn%P>?j>N6owk7&oeSSsE?9w%o@v!iQG-~Bux z1X<$@g3(!OH%KJwX+jJ_j@KlA+PE^$8PcRGkvKDi&ytwg) zXsQ+{UZ`@;Sr0Q(-IAFC+M|q?{WdiUW`Z&edYgQVeO{ukW29CY8~7hp>l=y+Wxqf^ zLl|FR;**NVl9%G>R|XfPzmUR3$lR3XIhnmrY@X8F+O-{Csi%jOs@&WZlUM5*^jiry zh<>Y0@SuHUZvri9h@ZejhU=GN_Ns@X_D3zwI;;bC=WA4ojZ(6^K`Il>kCre$?QaXQ71{Hx2q&88iQQ^+ zu;35c=4-~`bjKT$0S_H#qFVsf3s~vxGLWe7#_Ib^h7K!QJIks4_6s<&hK7~Y-X2?e zq!oX*TfpWE*lnIjr9CXH1Wmq}A2b?G_|&5-{L^VyG&AQrWkLSXP3iGxjOXTVv+UMf zIw^3Y-mmge1_sfyfTwn~8%}rqLE|{dz+3G7JU^cUU=9HW+yQ36l1hYQV!vQ< zyy;J%PP-0>XsEYLa}i9&)=4#Q)K;bHeVU;i965SVpM_o`+tG9M#c5Qms!V;_$BwN1 z3~d0;pWV^yRGay=PKu%v+lB#`!|V5o`oWRO&IoirduW1+QPZg}BW1d#d3QS7Rk^}$ zHdz&`>yRF-$STE=G6Y*OU(%_Cazi*%!~ZAp|q(Hfgrc{(4v z4PrNS*}ub6FecI7xe7oq*>mU!@+$)7TagNRN|?0WyL3-Tge+z`R=IVAAO$12lxW4v*E^odw@9Dng?P{}ZW!hIp{cIwSkDM>7iSOR7 zqGE!L9AY~U=+{DSz4<5M>|jnDkA?sA0;JSzFnN7bNgD|DIg~J=ouQ55$JhNr)6fW? zWdE5^lAX8;EPuB06>cl`Lg9F^>JVr%=Pq*M%_LZudSsL@;W{>u)v`A!D{uua&>T() zXv`?*!H(rm^-J%r$66u^AGa=lBM(l3x6hmpn(-)=SSbJbeMvWXFO-h1z}I&%idsQ~ zs}@D6;Yqm?ID$&)U|k}vpjEetx^bqP+DMq4_aKXEee&qt%GnC@4eFiNNuf&T3A}&$ zN#9f(3H(BXO}WaXf2%jFJW?2*6RTpKS@Y;;(}B!fdcbiMigPPh4{S%~mTCOe6znTF zok6aX&P0H3LE7D*#a$yrNDJAfrml&*LnE1KGhKHhnS;&@lV@6wFV5)-rA`!!>GT~= zsjhU+N3qxoAkOgroncN#a6LRhGVKRt5R+wto_pji$bBQwWn&VzJ()N&X#K|0RzfA z-~3@fzKEU!k#eI=%BU0FF9+1hokSOq^jcEoCfksIGdcfD4xMaLYqrHpO*X+}j5l7d zll==t%?hKqE6CJZZG(qY=`Rn--ri!2YN1XN9%^}kZaRvUnjLYoPBk+whYncD(#XAN z$7D4EhDdX$2u^Zz4aQ9P}x37;l`6mh2LV;Nx*z1de z+$AD2EMUc-zF;);$W|hpmDRpY7FZ}m7&%0l)GBPVS(qr&)#?`=bq`tBaR6l4^XTmj z(jq~1dmevGRhecYyf%jWuO6%mT|)`|UsH6I0?C9TZf;Z}mKBA4mW4OP5GD#96F4wD zy9~9+u<%p3&1u7hzcd+zGsn)87>3HKDI2bxc)Pt~a%kLP>eH^UNtz{I#k-bEZ&0j5 zGq(3bK&5~d`a>0%i30O$+}rGAkf+zf2wxQ9w8~oL{SLmBxv5F0UpMQ;8De zs*tO5VdXaBU1Sa55Esc~uChY`iR#$>w`}diiUrzSsa9JYa$vHL(aY;t0cm3QWn{Dg zkrP|J&WT}dGoG+Hv*zS^WSQR6dFb>W?)?Wk$#UCc{Q^ONpU;5recQH?eN*C}S_vHi ztLI7zoZh5-=5W@waW33@o46S}eY^56`KucD$!6;}x~sy8TEUX=FPt+4GdyMGc)_JJ zQ@QY4_Nf9>M|=D|38A1|G|P%Wnj{HUD_oLVvLzUjS|XH%wB3ZX(UumOH{L58QFzPM z`RLxY_p7B^8zr*__CPdpgNzt3BJT`F{h4AmFY2iiEBw9`5%10UD&N}1bsWFhqiO5s z7p5gS9Sb`{iFsz}!Oya=KHFYCxe}{kp{C$PZ}#Z|rge3gNk7~W5+$8_w&aO8wpell z0Aeaie}i_Q*>-9d;lyyokCPW?ca>r@T5U23P|3iYDU> zKL;ukjD3KnVokdTD`U-lgdPy!jQUnK&eXbz{ml6oX!$gw)uoZcSh)snB^CuIZj-pV z7U~wmyFl6onLSFr?q-c5UQ3Foy5}OT3o%w= zD;E1g(S~Tm^Wdi;Sw0;!ic?Xx?1%A;(P@Pqm)#es| ziE}h&-i6x4YpOh{Xm*savfGx!CvYuk?l_H3W0X6&b#Fw4@SqH9S_btC@ZlT@$=;tT z67F{kHLdk1yf-MhQ=X%@%HTJk|6q0b!<28cN9o z5XNlqQ#kcBGT$N?az4|FiA{X;(5CQ zuLt7`(M25y7l@_o?Y9}!-SoGirS0Xn!Dajewt;2Kt8F36mVUVhA{Pv|i6-UsyANPp zS8SKPc`V{LL3~ombGo=nvxV%UI&`N#w9M+xjJAegyx41nM_)=<|BC<6dxPpH1GTTq ziT~(kyhg8N7_HtKPg~*>+}k(!CJQ;8@#FLvB+{v>w_4JUi@-Xr0H5$S*+kJ{$;dS| zadX!TNy6~4P7pQsDZXegyRhJan87U{+4RGfzO@$pSUL(A2knNbPi49`}nz2Aa>X&kzz z_W}Ux+lNM?G0#D4#))i(-%C%Q*FF2|SJz@@w^L$YDH8K%35hYpZz!J0auUz1M#hE* zmbVy%W4AN%(uGZlA}zHdY!%Db2GTehRVf?K3Q$e+g}ha^D-V6QIog?{HHOVgS2M_j z#L{hs%PH8}zlRY87mnm{!|c>eu>weuu5@kPR_(N;)p3|P7B{cZrX3k~o3Bo7#hs(z zH_21d`pL!x4{YA4+9HlAkKufnLl@0~nzDCS)|*o-bZsJ&Bl>pvxW<^18nO{@pk?io zV^g;(4=dLFG~=v2h2smt@ln;Fk(!`JO4PM28fG|F%|OUDB*G8RfgI+fwb&PQ>dylc zFvq2M=`fz&nRdYXb}Uu~$~Wl*(w!$+BS;mdZLMM>__G9qJmOg(bNCoKt{x|}H<+(7 zP^hx{`pIT(2oLS(7pYC((VIb4agz}1;67dkewz_=GR)tUpJbi-ks38TtCFu`lE=rD z8XG*rtbq&D({!>?2EIdwW=j&ENu^e2P=4PvepE{kqmr=NVd>4_7s*02lzqa}BLT-& zTa@V>RQlq!YC8>BuS`C&gO}2pvT5O+6gQZEeKckJ^y$f98YM=+`5PjHrCn#3R~%X= zwvwZKboHw(PIhaDKyq9QV%C)S-lB9LmK{n1lNvf`X6Xf~-*`WEX(5hQRYaI5MymS& zDm&@Cq3zSxW+*JQV*SmKBn(>YHsdg*Ub5q;!^5rG>KvxswWTdQNfd9aLQ4h{iOA9K z$@oEb$7g2B85)~|igKC!vwy6~!-~Rs@-NOj$mC!~5-|yZ1}9HoLns%{sFXOw;s9+@ zT@=#6;S=|y{Os|_G2m4|C250xS?@s<(IQ1T%@&5x7!F#wl|oi#La1kE#*k>*x|@oh zM_JKP47^zdkHK?1n|W$OSdA&i7ul|;jGD5tlrN(kd3oafM;D?@6G9Oc(oy@$(w4nh zaWOJmNVXP_yMSK?v=e?Qy?9P;E_LcO!nf?nRhX7i)G!W(>1mys?6gy@t9hy$c|lD1 z=n^FeQDJmM(MxF(`d(WM!k1{YGq-@@*4K480Rr@*Yz5joluI!A&zNyG;%0RvTl8qe zoC1E730Q*OAbKf*v|o+SR+b{lDZCSB#mPZ=j$O2@Epxh6STXw{UyAUGc~ULqE7M8o zbVIFdN)N-amuf-k@zdV%1erOA`ko(By)78D5=BybGQ=ogaFnbd61yyktT}%a*8oO>gHA6iac>Kqxl~Tfk7RbofmXKA9X* z%q*tjN+=&9nCHvdW$VDo$6l2ySqHYi{8uzBhzO^Now@8Hmv>4Xk9JOxs8b4 zyo4V544RZdy#+*9Y)2zdV86@9!|90a&MAcqA*;Q90exK@=jJ_io8a2NJ$V!o>^ z+x!*+KuYJb`?Z%o`^lN`)a5$#iz0AsV1S&O|BNkn3mUfl;sL!dpGJ5F+v0ahJXF=?W9gNUGzKAar;Gf`@z_oGOSw_6#~}yo@!_Qd13lk^PbJS@;Oicxe*OMcg|rbGH%`^(<42wPDw{5Xds}NbjgO zT?}V|<8IUtv%Q&WfR_4a><1>=2jqip&OE^;5oD=KicsD=LCMWEk$l&-ZZxZHR>+4y zvr_K?<-nm^KZ~+GH=|N9H;A%}Js1r>XJ5m@iLKUIy9&?ki*!!QqS-f23C=vB`V_LZ zcEc*OKqJc%ouXw(H9`BU2OHx1>;?4d*#6tw&&#jw%lXr1RmOs@%8;AJ5*tm8&2myZ zl#nh0arjQ9e56Cg+sOhPJ_ptwcqZ)!>LrJdOMV{mxdewt;5f;Hh72 z$#{m`_Mi?hN>nqyX6s^vlM^dU8y`qK2v4k9PTXI)mSK zKAGhcu5LLs_59GTZSr55J8^#SP`O;`dX#9<1MaVcVym`5z$IKuid(JLSWB0sTMc8v zTwBKhW~^It9ysR3dEZvqR`#0Dv4?Tob#>%94#TNMyPO3_I` zlMGt_1-z*ezzz)nL3@zfl&B($OV<69LN<@-D#HikN&C-8S!O{&@Y1c5=+2K8G~yOr z5n?#fXKxa?D93!zSfHtq^CQwMMVO~<&hN6?u)x#?b(m#IgSF_6;gipuJcf_Q{2=MP z4lCh+?(tl^??a}ejFMUuVCZ=oZ4%jm;i22W@-7y4?x%lc8HMJLZ6 zbw}h$vM^>PNeQcNgUP~)a)N!+7>Mm1TwW7vMI3|95XwWIRxwO|Z_^6w%* z3&sIS*^<|2nB3r{>@@aa2g1uovo}mOuzJ;m!FdP%ZF^9xG z$R$y{(6HhIUSkkA)Z(#yx67_JLiFzq0qn zYTv`ypeNFa7@d6@LZKmh%PH_<`P;YtI$@O5k2_@NSf z>cuiYi7Lolh)@?%A*K(_{tmuS70Af#W>du$`5mu^C1;Va=SiP{_@D04k0Wb-2SFIx zxR$UYO9`)Mz&u}oP8{7WPQ@S|j1Z_r6SEOh&a^UGzmZay$7H3D&Na-g@VAUm65w6}G;HrfYxl*ou3DCWh)@ z$ypv7o%?wJ9?e|wXBrL#hg}{J)*0))J_yMd2Aln}=E1^;1PIa(bDj4Cd>NrmwZ_XX zhWZ+R`>b|9-HBF+r=@l#v@CdY8zY04;PCEFh?ECQPsu)8{aLf27HZQSBD=diKct;Mu>#3KUbn37NTMD}>S;Q}QHVYzIIO zO|ET75yiT*poh!cUx6Fy^VHsGyUH*!=hG%4mRJszN!yb{2MqV2t+6;R11DJZyf_TDnqaB};Hlld$92CAp ziEn}=Sj|mBxXJ~`ti0lw7FKo0-D6>x=Ohh`l|zisqD%O+pTa;3Efvz;o+paq4a<@* zq=iGw+AG;PdC0-+{c8A3;p9LTLrSrTg=y^i%a!Zu8fywNyENKK{Lauc$IpCubyvQ; zJqPp1`k6*fv*x9q8F7dY{noy%Jx$}N;S4&rlt=Z0&$kn)7Kn}NYreEQ^<@W_=d^7< zW$yDU;EZeftn}@K|07^JQeeAxRbND)qR%vA{6F-*fVqJ9t;ti8z6B7d=k7$;fM?RVVB*cr~Y_nj3z(Z&SVq~pg8 zD;tf3@ml*EAi>#6oY0`i%tUblS<23kJxI8ugnvJEQsuJ|^b5l%&LF}hG>)f_i+}t= z0qd1EbZu1aT=4v|1{cd};EiNi>J6X8I(`ha?!lsSw_D^_NCJOrDkc`qY`5lSCyBC; z*c4A{c@b=S-@3(25o>iB&4dF%tEheRkv96x)VTvl9Z3>e`-rPsftSbtC{aEd9^_#4JhQ^XigjU~mn<>i{sZCh7c-1=>Xa!RNha?ms zlq}$xKyq=5l;6KYFTjsY{<=$iX8}m5(P?EvX_cuzEalo4$xAn z>aK9g?#pgCIi?OY>48Sr=H@plM-ZyJ?Sfy4_=~UvZ5g!R^HbVbgt5jx zV)ew?!2kF|6Rtg{tNhh3x!a_~{Qf6aS46m?KMt2o!}pE6I;F8xfLyEn8_9Ulm+;dy zazdG+>Th6%)4eJLFHgR~r;Voq!%&{nb)m_(+$A+Vf=;goBg>~xGMy3^kxHoBQG9_1fL;+s&=#89I zm|_%hhR--}AbMn?_=or3XJ1UGn)9(Qsj_41-bu4i8P~I!AyNdesd|HC2tjRlblBtA zr?gK^8)hKrT;S+zSTxl^)7c@?`LXG`fu{*Tr?cSFmjh2?gHGfjrtJot#|IuMLQdEX zy-W;0QU)J!8vx7=!IOsI@S1~Ankk*N;p;d@Ei;qe1kH<2nI_)(le$*JDe+FFDIbgB zxcEonlrF{aggj$m@~6VM2(Ga|xifwoJ!e>F+*xOO)UdyCfY5tn9*Rjf5_~hHWRCbdvuM*I&9Km*4gWptx-x3X`>oNf|EN%D9I>GD6MA^9#^p&y) zS?zpi+h1q|p3|a@_~~#p&_bG3H^rug3P3~ZcBJH>79dFR);^OQ@^-enHEQ#+o#FDT z(l#$_DOFW~=zF*5v^B%_6@dB0Au?S{HTbqz@?;1XZGAgV<8o(wb)1QpO8T+;8A2&` zcvD56w^KTRgX+#}h$^{Ki) z%dTe-4s*|tu7e|enJW)tj@1Rxu`*!~obS5k-*@qlQIUfhpRi=^3!85`SIZWL7rMH{ z_&~)oR*-qx-XG>U3+VmW5d@Ohz}2zadgcZHD3>_Bx`}1~ckYS|`Z2?#FE|yrjkLV9 z9GaNrIJQ2p{tn0X5mW4YEO2pk_?5aAfbK}WB9NQQP#T8`bBpc>KtDdQ}oqHxfo9nxKcNJ6{EoXIAr#DSI9jo#lffw)Qyo}UL z7v_!l0G*SPnG?$kvfL1C$pJHq^dGsslcBAl0u+UlkMs7KRVeME+OjxBoIoh) zW+pkn4i$(O;nredT>3algnbF)lCv(|ORuZ|Yyh04vZkm+?~fJGcl3X(h2y<8F3Z&O zLCBq6dl+xCO_Zf+n0Ct#f#;L{EOXwaHFZD#WJ>!;{@S>?SmM(E#kYf2QvSjTYcb4U zxuQ&Vz8c2|vNAiukRfulWz3@_2jjA1mnQ$)%?@Tl(h7-aVSgl0FRjRkPk)xq0$uXp zyOENogUZc-aO0Mja&Wa}D0#nmi{rPHou5W78c&qZWP7O)+F<4ihs%79eM&o1EUnW+ zn5Fhq9LJ^_y9E32CsGO#SD zgnTq?blG;az1}>ccx1iBF3=;pJ#MfV7U<7iFGjd5t+n@hMVR<2m9j7~DbT--_1xEg z*Dz4)8^)-lHyh_3;F;tigV%Ltt(kAb-j11f|c}?Zcg}r zY$p(1aYWlqa0<75NOJZn*C?1~o8A`1_&-agh0UxHUaORY9#M~qO$S<~exKjdb1Q8( z9$A5@<`AsOMjOgm3sOF_4d66=-uQH{ajKN$^KIo^f`ht3?0-MuN z`S{QCr?*rz*w1@9<9GRbzj#1rYNV+LA3(<*r61O!jl;RWnk5Q7%H}ftjd+e$Tdp5^ zY&8y|mb&7&b>0-Mp$+y_Fq|^eUX~uIqdQ)D?2=#HxmUd`8eLiKHFMSH-pvcrmP}w} zpGkS~3BztiN@P2le~d9yz6mqR;?8rVTrv?wRaK{bac^bO{q?ZLhmNi_QLC&i|fM@Sv$XEo?cviwOGq{B;KC5 zbzUN=k4#}elLXt#!NrC*Sw0Nndy?JF_ z|9*Z*{v8~)GL!mI9(PscL{v0;{=USoX1_nA=PJd%!X3Ge^V0B z|E46Q_($kGTHdFZZ-K(x7d|0(3eu8m(IQY0ch;Gf4EqmA?q#S{FfgsPF)DtM&O2CS8sUkBpY0JT8h1Vc4BYe5(E0AK11^NiB;d=gH0J3$0E*N z){n28?T4VOc55%FoRsbU9vTaR;S$#D>FIC)`fq22YMml4uAB@Ad#FRh;#G7QWk=*z zOQ%DS7y}Eq23>|L&LSG3e3V!UkxFRG26ntnRVX*_IX3B_`S3Qa-_zyk0WTz=&SI@0 z{Ttp9Py7t`ago_4LIYoZW(>`aR=xyqEt^s(Yk&&qm??qNhEvO4q-X5V?CkSt+zAv_1*G zE3#U&gjrP#B!<%);{1psR7^gn03st=sQ$$+v)kh>Ogm=L+HjO9C1HLmJit#M&3*JE zyuz|)%dUTl4I~HDbWujPDLVX6iP4-P?T}M=4K;>U4=gcoCbJK^6xE*1OBQpDL5-f! zN_H^jwz=BCwEM-{boU6-ya46xDVl^vaVCk?nLODoVo@k;b_{ujI({@=v~9ENmu9A%>=1*Hbgob&CaXi#IkI@vz- z+V~rHh4i=Q~ zZ`Qj!W85P5K31`JFX#LIhxdMS{O2$I=%{djmL}@nZ^m{lKJN{GpJhT~*f>i4=i-=t z0dW@gqd;Q>4;xX$a_=!`@EEyBq~YPl@UP&KpsXVLy;)TRXzd?-3J+8Qu z!hfdP{M_TGPWrgLaf!dF$rnJgVaw+hf)5k$ms!pQqTwV(gj#CfduSofjyFjA>+P3B zL?n$2x*2KMix=#rx>*T7A`>jiI~~perQ9H>>n|qG!&UaMgnMc;ib;{5;JieezR}Ui zmhnG}JTl)N*bNKez&J(zi@_}I#~Q#-v7|%{9quMRyAAoU4aTE8A1}I zU?7ixX1|b$D2(Kjwk-PWdpck~Z9K>k_-Tnq4#|;N_nF~~)>WIYP-$|w)$bd9{oR!% z-{Q-0pdvu^=9 z+x(hO-jl=I{T4bBYAe_L$c>zE8v+*e9q|0>-*fvsK&_a(L{LFnn1r)25k#wQVow6q zcDd$_8*oMDxwQs!o?!d-+y z71S%I=T&<0?LDOsdJ-2HcC$jHpPKnxb3lli)7FseR$kXg z!aY+qfKoi_OIOtM@V->uY)6;um^)O)nppN3#89}y`K@B0b2!Ncafq^o)z50t#i8_z ziyT=a`7RlmiCY(Up{1aeuhW(*JmI%g<+;bKT)|C;ujp3i!o$usXx>TF)APvFYB11W zwb#vN*mgM(NK}~kz4_@d3+_ozVe&|`ZUjAR_3iA0IUl$br)>ZDSV1J~-{l{Jk2CCB zFf(LJvrN*q$=41&Nb!6^KdLU93V^nhY=%e@l^o&&>EAL*u$*8ls2Af=Ho4h^AOe>D zc|{FUU6(!7CzL9B=q)j6WMm!X{#zz!vF0LXx!V=RGUc}ti4P>TCzxG01g^Y2UP_~a za={yRl-j`j>q-!$qD@2TR1A~{d*w?QfI%2Xp7w{yg$HBMC5ykez*wZDnBM}cLKp$< z02WG~%(Bz>?<*7*$efg)z7x5R1m3ifnQ@Xx^9`VU_=jZ)GqRmcQ6yT!V8#VPi#@qv zB?({z*@rlqHvqMn0YRJ&E&BYj&Vj2%6dqhC1M62o&ISWv`Mxrff9Vu)7g`0?thr}1 zd!lBJ-L_-Gg-vdfjg-O{@hHCZ8kHTVL2S06_^Y_5=0!u zmwym|V+Z0mBz>FJ!!AX)+@Iyeg?E*vYAwxi8;2@R+tAq5j$VPihIkBMsK zh?sDlsO2e%{brk~6}UiogAT4D4DpJ?huEkx=ZH1)Yw$GnjUrM>K*Qx*4$OTJ#ah(? z0}QsSEWQtYxmyFn-+>J*9a1&%q!Fyaw#Kb1G&Wi3-zZ1bp8Y<9evRNH?iN82Kb$8s z2<`C40BJx6F5waGR%@-T50OFGOQcx%dA4uC%3_Esd_E7AxF z_}0b<8)8$W5N;v`#l!U$W5q~t*I}uU$Jxi^$FayGdy3rnIt#L@4eFoe4ydh|9x^-T zJ;Wx&8o8g5B6xx4ygQH?sM_l5q;3NFHRr&;^LXI#iX`0_q&QXW<$G16*1OLp;-ra# z00^QAZ${mcWs7=79~*?0V2weyGWJWdQ;(Gi(+{VCW^CnV;`54Vt`k7Y0`By`lwyU6=r%v>IlKxZ^)@_ z5Wx=evniot3jQ{Ebr=e-1B7Xg{Y_7ZzKw?se(;`2oMSMG{cwty<#YrRE8!{?^UiSz zLg8zcwu#`WrC?1?0oAey;@X);YsQ{HKXpuTI5mxks9k_&2LUmzd9)8Y$Uepe=(cZS zi?bKz5vx1nvyPpQD1B}ZqY24K`HTqD<#%AEec%A|lIWp`YxA%(ABHD=M=UiZ-tWud zyq*rWtHNbK{9s5NwI#bBb`w%r@~fg9v|=m6lj%}y01&%lA3Q1`l7em?(G2f(6!8`@ zu{c0&+9*TdO-cc`bPgauD6EE^v`4WT22x8NKA-BZ+JL|3?i-K~Lhj}YvPw5o03@sS z9UvM*;G?PycB-)ezi-%Ri#LC;I`#?33d?3IyjP;%MNzOu)ItK~%L{-JXs+y-#rF3J zngxujGE{HSBp%imxU;O$gXkzSvBup85A!JVNm9-YJ|!~ZD%ZII5>nnJsw0z2bnp>y zoIQ-B1oZ^ZpK-Nmc&$zx#dhyhlbUH}qW~*~E{vITi(&Gd0izva2T!B>QC`-hrJ?$e zPW2N1yyQ?>H(hN^Fg;}=8ZEDa#VCzJV6KWtEVgsuYEIWZsp-iiN<~a|-_qD@GJ=R> zBJJ@>V5_K@NL%DqsUmW}qe$L@e$FpP!gj_ZL;ih#k4Yy=_MzlKNE)%$qa-z|^Ngby z6zfE;vIth&IZZ7TuFT?6!7_38g{?8P6Lj+Lt}>`&_}Yc}h~vrLZX)=2}B zyMA$HzwESm2YlOm<~1F&9_E*Z**Uw=bUG-0bXS;lU=@iVZ)>`<} zVO76C=#(XSK2W#jaMY?Z)f#i_L_L|@dt91W?=a>9Kt;MOUUI0M@f@jSc9T{;V6{lf>g+-DDmRpX(#=_a1etVYn`_`vWTTN$-olRV>`4nXC4s}a1ut~+9s zbcbRm;vn<7l)ZC`n93ublXfn-5a6=gc<1#)z>AFZ)y^S~ag*;$*$(u8$y^USQP$!_ zG@cR7RYTX!{#4jawd>Ps%WjLeH2W|s5C=Of8PXvKnL0-B@PVj8@L12MQg3v6%^!u#ZZzH)hv`vv1Fzt zgi3cL4s21(YO%9g7ketIT}NM0@$#zFugvQTgK*E60n+l#yT6Ri^}h?Ifv~ zV_Tokasz367-NW|nI@}nl=Tc|&~ACkxXGnDzykUZvJLp#IEgSl9oEQ z&q=@0Qh@3WLXf(FtjolB{rg|SA;Xt~!CLf{1k?MC@xip+j4Lf*Fu|r4S+WjVR{?S9 z0Op|lCq|!a<6INwDRI9ku2qluCptjZ_9`P3jLDM-x!pLB|HKC|To252(XkCOT?j%jJ#G5QK$N#s|3on;;r%8F!L%4tv7{YT=9^=e(xo}0dERKdwdHKFtcVzM z)v@05AxXC(Ui(f;OwoX`acCLU4ri>5#uuWf^{IOnOFO9DYU@KcUx-_?9kcnM#r^ZQ z!9PcrCI_Fy)kV}c;bT1GSS!th2uE9PPB}K)ONyTst)ZnlWYgm=SeG5x#5jDio55qI zBQJg{`mI-gUi-5D)NCYXnSRrVlcvHgHqkXla42*I8qoCSxUrXGYTRPj>ht<1?+q`z znbVPsc`z3HE35ued3<+*eg6bMX*gI41P+8pJWPQMa0)8uh$G~qGxFfsM4GUoxy_#f zdmlLk!7hq?5%=GRfV$(oj^j&_8KuBbVthb6sivHw$W*$lGv}4m2d*yfvodbqwBgvD(LBUmS2`7T`Kd!(D~1* z;B2)|$vV9pcUkO1F4}yv5OY7W`%|_adMve$d~h?LAUZXbm!YsOru=Z?I4AvR%jkW* z>*(_i(=CP`R+Ya_xj&y8e^GW6-QF+96(7}nf%qIKy0T#GD7t3qM%A0_G;Hme(=XR@ySo2-x?uhjcyp3d94_&t2fEzPp4=dVjk_yuMbk<=kJnvllW1N` z-$47%SrdmOMKt)*D$Xw2H^^RfVfMd^{A!bKY7L&b+F7j`@6TfJLDVlvEGfK%ZWcN7 z=s0>A*)1ecZjzgPVZL6N{b!wTr_WaXn}(eyiYO~xF*DPVQns$(6J<=I*z^Mv9BUPt zOJm(|Pcrgn`rf9;i9+jl0cpZBRb5meFK%xLJ{?nJDzq<5XF$nWT3`Gc(6MwWmcQ<@ zN=&HGmMv&b9nCAh`UQSdC4?% zqkO^rqzqkNS8wS7_Z?um?Z|q1Y9T*>uFK_la>-6mNDgV(Y)Qcbu+%9lAj4Klq^`Zn z9s-qJY!7|b?(wLpWK&7TM}(!N3?=H?!5nPsyxoo2HZK=o(@@Qgs}KQ#7Q}>p`bnnj zMeVQc;BLHnap7kZ2t0KwVI39^J%BuOTfV;`8Y}2LS{A3{NQpKulIeay@OK-7vp8o-?~Tet$U2rBOZPv!X%7Y0jGpY1GSWRdynk)jx57n@)0}B z)GdF}T&T*lHa3@hz5H%>?T-fR2;(xde|M77Q_iq-xB zeIDX4qeo_@k@17ETJKHXO*S(^hJ?P3hTM58V{MfXXG3-B7pp!kcEnAlthewi|sNk1wH@PuxUE{y+$ifXO0NzX zF7EA1vRpvY^DZjep`qAG{Wc%{5X;n;1*hfu{_(} zE;yEg$440DPm54FklT)H)2MHI0xdAhFcEHnPgeX5rKFqkRd@vo#1Th9;W`9W?{7r@ z$ix)6nF$Usb+<=+#%GHUbP}G@0rHe0(;JWQAS08&2qTyv#rciTZEg3%BuPM8Pm zn9$GQ0*zvR^*AR;QcWI$sdH777QyZ=Wd)Ko^3&-qWm8BF5w=!lFioYR|0IrE;w*6O zFxdpxTLIO-5kh0}oBB}axWYt2d0tqP(GJ0w*`;@6v0R4N=-&}qyx5puku-t2;^1X- zgpxGNYzxH$Buly`BY1L#4TgS4e`>Kob{DfZ&w&PA%>E7_q4og4nFSk0EBUXdl*2gU950cW?akZy5PK8&;viqb3?iy3T& z+u*Bmk{pIJ0XEnuCUg+9} zKgFp6<}a7Ju6y~!*ACX&5I;REQ+$fPHzZ0>BtxaOr`=ycro^f!>0YsFJ^PVVzxtzE{7r^jaCm4jIH&YzV|*$L_Ko&L*8Iu7S?g zpO2>fBcnRC9ow?n0;Bww{8aV)EDQMeL6aB(hci2SbEz_?x}yBPdX#C`&zcd>^~L>s zx#!>(EX&NK1!cl8$vfL_C5ggaoxs~HcDBBFK^ge)TFTF>LYe2JIwm)-pOEuN&)Pl~ z`bGC*y!~%a*vCT2yD2lEK%aT?W=i>K^7hl`i7%Eu&ent#_4w8-(COs)DCF_={McEq zc4)P2wuCuQ&TxfGxDdmYL#Wz!vW7%p!X{9PteUH# z`_IMEg4oT<+LhSC+RmK#ztPmu-pR$>)z#dL*xl9I!IId=&f0_#&TI3y=fdTXyOr^^ zFE1Evmqo?>xgm+`_JGZoGRN97)zh4Jr?t9EDTli-7SF!bT!un**6k;2En_X43I~Lo zBIy9~uY{_mlzX`ZvTdy+0|-1882k&8C$3;%kXO&LynUEfHIBZ-4GcmtWNzf6*FT{d zd8_wfIFLtsB$K(&P>{cGy|%<4)F5F`4{GXD4^ppX0cRH@~}l!)uGcp3bhmZ&JEh&a3`#M(2oQm8lm6q_A-qgfw|@vI6^q zI>+S^(7A>nTT%;FG${FsE3pHVzhqMn4D}M*S0muQ>S&g4n$mW5#AsXdtU+h537dK5 zUQiqiYmO-8lo7&UVDLWU;)JCT+Mtw$@GNT61HFz|kY8VbPEN9O-*Jy=2E_rS>r=#5F1_pcW1H z$%zc?0)zfgIvUMnh^ZR=qB>e!0wX6Hh@1jN(EjJ=+m{Q^o@k-%ICU8qL?|@&zu!8#J)Fu{ zk(Fv8^8ibHEu5aZu~+PR8!o8>>+S;~;p%-HqC@pMN}sgQaL0^BoyLR#5=mCyZ9f^C z{O~?4U;exa4k=+Od{&p9_u^}0i2PD5+d=zJz=J?}K>s6>#1sL9s-Z1Gld`Y&b^mQi zjkF=zb^{nH)dhm$c>zq3CiF#_ca}t&_}WStO34W^fKTO78w%B}%P`kK5o(m(7l`7iVEcyAjd%(Bf+gZ^Z?xdB48+Wj?h?2<~ zfIG0`>uY?}9A*?!Aki7aDZo(U`J)P442!u-`G*p;%U=g5WR;r5$1ocJ-$=F`F?zhQ zYbE6Y?GN&-(@IdB$9Sr7=ghxssX9P(L_G!6ME;d#HEN--#->NNBPMa`p69rGNDp*ke8w?5G}nr z@{ptQqpd;)VzCm>gxf2B^TKFFk6DQb^<#)H@XPMnoJ@UsYf2Ox7>p31k;8bBHIB4zFf>2K=;{N7z$S6Ih|u$|Dgwd_Bwn360)i$c2DbyuzZGw*`d*i4J*p%;^V{puf%xTm zFz(2GRIZa$-<2t6THKYmcTWr ze6RMW9h)};^z*-W{jh((91sK+kgvKHYaI7``W=C#J`DG;3`z>D5Pu#qI%p|7&u7_09i(CY1^Y1Hu#fpk3qVq2dtQ z>NA%f!9mmCU*+B}TM{Kjvs%|Ll@_RwZ^|z9j?zy^(1c-HQ8$%SM)i^l#wnT$s9)&R z3f5(i$5_?takq&t9YwR4Z=9RVM4 zzdoxVnqI7@i&w(P$gb7smgg9shd2Eg8=#bNGi@6S9$wL6J|O&XLl>Ln4lsn7uw)+F zbsP>t#5myxk3nDJ4LM-!ZHcQ{7jLRb{e(FF@=?DBje+19f3L;?pTrHo2LYC6KAVka zZn^@^geQydxN$@r=UK#gVB^^V0!z|T3vtFfrl5pYXFuHfEq|e--gRCYh@tf!sWprv z+~Xm&Hy6zwnz9NN*r|Y4D2#ZvVtJZ@ze3yR3zx^{M*>b&L8gC`E;ai_^~?uZ_(Fry z65H@aNM-#RizJBf+iE6xqPH^^f}w6!`1=Z@E%;%`r&u0Si22X&?G>AWaBfa$L5tT> zFeLSOim|^Tb{;ZrU+lmXf`&t%j2+|&)&(47)7Tq_j+h+aZgNmwSGW7~Ew|>KUy0mV z=|xkZ<>_g79S5x*kq-7gwKH;6KL$=aEC<@t`}TUQ%^j4$2>Y;qe*N!Y>9T^O9|D6| zb^XV~+0)hEwfXt@1VnehMGJF;tviQlEoC|_+pI;#VoIXTlwlu=F}o9o=!VeFj>IQTdvUPqD$3?;xaA!C-00gG>9X_W)V;~{Rw$HkULESmWS zlybkVeRAsnhZzel^VhsT@Gl;T`-bE9P>#HE?!X$U@yNW!M_MnS(OjSF6^_|x8?6t6g>r-TYrD`l#~;cT zhNaTX&DpXi(#Iq#TZW3{g`+U%^t;d}5B^pT--LJry`A|T>R?5qUbQI#IEQ$rUfen( zR4CQBhu-T-dL<$bC?fjHFKRtk-5eR}Ec4QMc}D}*$65E>uobiX%Lb+%y+1GCaGEIn zg4){$r5)|PDQhTHww{)dAW#jqf?jlrhNNDkN7u8jh0BA2K!<4v&BA!t<^qmV=?n9Z zl7TB{t{)QGr`sdxlPkFv7H~`J`Df2*SuXj(6`cWwP23Ncg0sj3{#EoRRJZUYa2Bj9 z{#&NpMyqea_g8g9xkqM&PU=-z$cSw-%-N>d+hUA&-j9ddT#%uo<0pPTEbVI@ItM^a z`rfiE!7I=WgP|C4btM-MNSaF#f?*aS*6GEcD(E0@-`7-#CD3!vZtHBY^Zm@5m9zo! zPdw_87%pF(g0SKa2AKOEDY_&-Q2DCB<8?Ueh!~QQ&-~sT8d?`}^dUC0%Jo1I2UQIQ|4Ha*x2-vVpOj}`Ny!M;1}#;Fi8+*YZ-BlHXHw(p^NV*~(e7BVo*h0RkL-uWT`Q~qi-vx_IPSv(TQ|aI zS-3Z-;ba}LFb>vljeNZUyix*kszS_J!+sWWN8XgHtAkc>e8%Z~7@^`akdo}O{gY15 z*l6pAEmPD(p!|`wxi|b#J|c2oRoWPvG*pM`RAu!`r;aG2^`@C9 zfX(B+J|J56F11eNf-%YTH^v+bK#K19*7&W-gzz{(qVeEL6_WF_vA=@AFmawf$$-Xa z2fEH}YT|T#Dhl1C(OhKqJEfCD^5rABN)OApzOU-!#P~5b2`B$?L_qAyf6e?W7su#w zF}~fD+rP(`hgrWjQjJ7>_caQq{mEq3f&xY&d#v~n8Z3xZUqa-thD4S!kAq0*;;;rpecJTJh-sZB+ssrI+8AkBCVtNbI-S*T(p3Nfw8fdfvj#skn;tod^>aQFnTf1QfMfs^r`jG4-Vqw-{Y#N7VWvDQ} zjQ-iFF9f8GJ*)ghHu;-3bwDX4mK$Jo-+VNZ?a+}ql8qsxxasPRK|BUR(x_r(Dm0AQ zLhQsWiVR8kqXgihvl!=d!$&sZBZNrs0Tl`A&I3S|018zP)72yAwrHKfG34%=TkrsK zO6q+hbmlNXxO{p`Sl^=mLZpSZG}U~NwLAJHCz{g2t3MH7Y`=QuS)6{;|5-h48@RBG zDaJAJ+WBVNG%E?XRI<(*m_7Jth9fFYig}>doyL5;s2Rn)x44xL3GF==o@4Vr;)ZfZ z<`h7OaxgN*rOgX*b#0bDMb1!2+ueOn z3+wgBtH+v1ElcvojU8a?v)@Oi4LNy{PpX;KxvoqZRdVvjE)`;yxtERJR-^fXIN3K& z`A(Hd($YQ3leB)}$zj?T$!h-iOpH#_;F}YS-Ti)`?7{wroQ363s6vq;`5{KlPkw!*saSRKEEN!vO*`PW$@F?nwG_dUGt?r@lR)91I`AUeAiWTVtYlfZ299&2A@Z}< zxH3|2Wg@XeS5)E>Tf5z?(b={8T$?k;Fp}DFsxo=mmUghd%U71*>E?b$)b-3=JNOvC zGqaebdQFo8kY6Bct8!gh7OGZ>b%=o!P)E>KPQ_K87WlIWT?hIZ!2X1*ELCdrD^Z51 zG=i=stk%nHI?d}r6icQv-vYvkA^>O5BKi?B!fyNk?C@bWo6ZZ=S0C2ai0u^*NLbo-AYi*@W1VmF;nfR zJvn`^<@aR5aSOXNAG_>3-*Ml~8d2V1i;ZPP@^duolE@$Qhh~(r9s?hFZb(7BdG11S z!==XznNRfEgN55Q);^TTO#>Dc(GdE3TqF+CgWO9+hNp~4&tb|n!lqNv%of{w1j!tp zxbcGMcjQwJH#dEb4+Hn*a4UM-iR`M~fQu7}oEzG#(Tqa?KRf8$5S9e)AGDibf~Xg_ z+;Cog2Nt&x7=p|_l<9n^>}}xB`P-AYYyltczgK!BLqz@}wgb>anw(m|#!tSpo7vPF zR3>4_#C~nGp;ol0+dt}=Cil-t*N&mRN_O6{1-N~k-nEu{*;%~}bx9&8jWr|0q1Y%R z`6t4qT*kx8*Ivs$_6ctV==FVIHsku?j5Du#B&Je|JDk(NzfiFV*$E1;jTvG~u1-Pl4_>^x$noVW|RmC}*!kj{zecJQh)9qB@9EmgWH}D(z8Fn0G z8dg-CYBz`bA-|UW6}xk7Op5WBF=Z(;6dwe)9DL7rI+t20FU)v}Dsm{~yree-Juw{S zVu7)^KdTxJxxVJvFl9inJsdq*?gW&DDEr7KKI|Cpw`;qYpfEd7Z z$ljWJhDHZ6-zE?tfQAb8`{bi82&4c6TXRZOmdL@x;8+#e=06@a)R?=Ue`qGaDmt1H zv^3mDCMr4w zH~h-Pic_*E<+*5OEQtyw^-xw)Xf1=SW^kg;VUjc{hCMC;Y*I3IZB~Ss-&HMbiVh4{ zR}UkB0UdZqj{&~EK|k7cD_hwqiXT_CC2_0YJ`ncdEnGYVQZ|mX@9MOD)S~`Hq$wyo z-REHc3t>%3Q2xRu-U=Tk>z7J9(aSUOy*OB1-K}#Rg)ms!Et05zrYu%d@TIFNZs{Ww z*$TQ+kR5B>%nlY@nf&jD`4uqc;)r#f{}+5SZl})%S(321s!iSk`1%?-F*($ShfHr_ zA=S*S$HeeBD&gqYesY7o8(&E%h9_=DM+tf-o}!`4T9|94^@i=usNWHZ)>nJW9#3Q|vs*GSxT&h}FmIa!4liBAsNpe^I@gAhymD zfRX7C;-7vD>~O5X1!T_Lsn3p|MO(R~f?iK6wV*k5og-o0wF9HzOx^W$?>5Kv*Le|N z!bbbb;IWF`h{pG;#GM;S-W;(!xz@OvW~|eHg#YnGX^_XV z1S4=~E_XN7_i}&@&lg+Ea*HFW7^(eL!r?;7w5j)PdFvSsWfBcrZ@~|aF#Zs1KwxrW z2q~%)F%T;28rVr~$A1Rb7eSvXKC)+@kM(`oc@)&`#+Z;)FhjI-2E&4wO^25)S7~?7 z?$hG{6LWhzGx7Lwa(4B;JDZx(c-Reu-6YFc_Kh=^PHrpKTlDSid-Zy{6+-{jPQeqr z6MWK)SvRr3fW=>~aeA#f-~m}grhRkDsn)O@@vL$|0KHzQ#l)jrZ-b*$xtUi}M;KL~ z(@bA~B=9z;#L!d0kF;QYZ;or9y^1B*sgHkme^6cX7G>=I#$CLSFF8<0|LBr!_>qXx zJq5FyTH3uO`&QY;<8?Q7NS)bqz(IA55Pm|q^@@>4wo>c_>?frilO}Gv6#UocBR0i~ zLeLWnUN?Tr`%&8yhzG|^h+&W;cH!6#=~s9MchH!C@w#IdNLwH$6o%kZq=(5zltuLf zk>u|bJqFTzoElIT4J~s1SWhG4*rpny4=5>-nlt}gUPB$+h^?~9Jf!BZY7e0m!@tg# zy@l!uV(lyh7^Qx)j6;?@c0DuYeT*w1kv_LhB95gkgg-hmF}oln9N+99!u{3=mEm+B z_$mifMN{%5SwI57ZO7(OR8W=+7UmHb`-3Dw7ZOB95$BBNRE61>Yt@A!kZzfMYdmJl z-ff8cgBU9?PeB~j;Zgq#P9U^xZ-~yqG6Ii*JQHY)Yndbv9hPOk}=w zlD#%RzEE%IfEIZE>}j(?^OOe7qQEv7W^HWdi%1>{0VQE^s*SGti+>0*tW)mPq~b5? zs#}Xb6*3Fb#G>WHWctT9t~(FZlr?JoIiXq2!ZBgif*W5X=ccnfPgr$A)8crYs7za$ zW+#wA$zf-ZHR`!anbOXtzqHIc6kQa8!7hB*8M*Nn8+jV602VD@ykZ#KELoJL7mr~b zO(p}^giZ1^xy_##NtfAT#qOeqgr=~ZhYB&W3;uKKF_vSPS+QB!LtZ3~9bH{J^ovaU zr{&i7=FMu+%!W#DY|tTC`Y~3TUoh?!3JF9Yd%vVl!_t}_PR*##_z!xol_iTEP8P`X zz@F+PCdqdQOJEl@I-@o4CXMi?;{M7VU2@bhsVvnNf{vN~5=U>*`on5GH53Qmh=NTi z86;&dZGgKz4qA9T-!I(T#B}!Gp>pf-D*c`v2-#mV_~I`NH{j~m_Zaw6s}&U2E{^56 zV@_mVkUUc{7Z}TKwpLM>Hz`rA(gfw^$k9!pvEll5T>-*D@hniFPX6Ftpe4c`I-acR z*rboRkK%G=nl)nqdwsrr1uC?Lq#;Wc_7**ZO+UXW}xsE0OfrwdRxA3)LO03Nn46KGsPT@mVSMAR8s6gn58c4A zB$=!6d-5q}joE*DgZC?A3lKT@wYC$qu9RB0wZTxVNM8%+#D#SF9{(m+Vk&Fw%F4kc zDygHou^y_c-o039uL5-Y5a?enuN%+@X!uq1bbsCkho}1qd6sE2h8SdKDQ;beXY0f6 z^^D7jZ?jiEd&KPVK}Q%QFJ)Xf3w zdwH?pV;Fy39o2sS==7&&ipSBKZL40L+(D%b8QpLN*SYh}Ee$S6Y@AweoO*AZ>TKW- z()TnHEE>1lT^>L{v40|Gf~<2B4}0*#5I=zh2k-VaCO1Yo>i5a!zOS+l5tmcl!R-SGCqg53n8U#V5F0-!B zvrd?A!$0*di^m@;KpZR!AM8i4lONhutVnJQMk`{9NYcSw2t|;#gnxHW;|*4MO2NzR zn6a94RY;#-gIPMOq2j`~9ni~r>qw{Bm1&RDQzrAF<&jf5tXy`pze6cvZb}fcn=J

            kL#G>G8L8CmNwqU4i66Uw%wArIYKjg z*pmDrV$p}A`6U+WbgCL(G~cK%#B9HJw)4t|)5aC>-H}}J6vJA@&go}Ll^`g!WWBw9 z4i8cn5Y66UcerUW{LE+>ZN1r*RhRm2v~LCpJDv7?hu&{FY+p27l}HTh;}a&^ zuHXpZR2UeDcVn`>J38^td}Yc~=5%R&UPQuXju9aHG&%}^Tv!~tu_RbiH0AW6$(CO} zO?9hn=5shG?CCDLCxDT3WLu`{cjuonn~hwYfA%U-XZwZ22@XAeeg)2pL&s3Y2%tft zOsm7En!@SBV$R);sjA$T4ciMVe_&g>rO>8Xnq+Wku3CKKkoJ%DkPkXc`;7Qjtn(|o z^R($~Wz3Iqne2Ndm&@H7&PZD#saeF@tROVU^OyWiYLZ0VziDN$%VPSlN!~ztsMhe1 zv#Zxkv`4Ajgj|)%v%y%!NU1b1^1Ut996(|5jXZJ_gKuGTQ{@Y-LzYok2HM8}o;JIS z?Q2)J{3olNd{#PHsYlMWF!$OBHHjaq6U?d4Ie=hAwNX_V$VeUQ<#iFtu~$!_<|;w+ zODNX`kGElb`(L(Wntpp(iDIW}bghG1wxM<^=)B8-mLlmr6+Sqf58(>~y((nil`Ptf z?-olW#XVj1Kg;EuS3%bG8c!1Kx=ciCx8|Jj2ch{!IESpU-~18`-3k*eN;DmqjB7Jk z6u$-o(^M{ST4u%1RM!N5si{a_muM!y{M*Ym_r+NawIu@U-AE#EK7p>JB5{`mcY`#( z8LRKvt}1NzHFan;&_llargfjlmN)&Au^OV&mTn;Tcb6r_rnSMWS*|}-= zZ%JpJ$?WuFvXb0Br)t?p^kP#NR%UY#gA}SscA7lUK))>UTVYqTbPv6I@GT4xWT&}5 z(>{ka_VFeJx%#*X!hu$TDisAwxOb_uJK^VoKz$6NmhX}!9Sf0o<4nja`%JjX zB6Cc3Me2n$H%89;VWkCH!Xj6OKD@+=9SpRO{UZrhsNNK%u;^?B45h4c|G5_Q0@h*@ zIs+c6NCXqvaoJCo-w0iOxHwYLE0kwIL@x%I=&9eN5;7KQj?m(W!alLRp8Z)q{7yZl zd+S%Jtg)4;uj!2R8SQ7;XYA-dfE_0lqyvTY)(;3YtJ$>&zjnY77oq2TG-l*QL(OvY z;^)507g%y-EUB`-6S^mR_pFM(L8fNa+Zg&tL^q<9Z2lM)I$ai(v08rk1)6Od8E#w9 z8E9?I_W^s9*w;wLF{k>w4AyNV2mcdRGW*Jck-YM=^FgobbO<(Kb>{8~3>0U(gCI2P zULvkY?srHP5NrrsM^o_bwJco;zuN9ymcL_=uMmnnpW8%udPR# z1+EGmSFKiZW$N9{Jlz~ek;wr3Cuer+xCbfkGMyQ|#*h_DM_5OMB0?L^*s@cHY}u+4 zU6I_7!6*txj(k0$J-R!#=~vTlzpUe_oLXt@I7aj0&ITRsntmd9=+=*#2F-SiIOg;; zgNu01mtku6q#if)9d_pbow~%v)f6ooKQ8WHlj3&FkIo!PHCo&ia&u4fkHTuVzbfO$ znfI2)uXJhWsmrj}edW09vokiw=mHp26{}$`C=I9#{M>u!s6of%_{Z=_VoiA?JiIqB44gX-l&n> z|5OoZwP*C((1V)|WHmy0zvc5z}yh>fIed;K3$GUUo zET{oT1VGfW%~+^8($X>ot|3IV(_0Io23?D$9v#aQTGx9JNY725R)JV5Ek2lLe>6jP zl9(g~vF0~yB{F$dq@Km9>O3T1?9rDo5t;$&mX~KxItC);7o{2|g~sltt1hQ*u-TB} z7ZLpT675gtu#CFfvjMx8Wl=qY)yF=P>oqEVi4N@6J)x-k$Jd_a!hmuNiBj_JXSoK) z`bPy+8`>|EOyy>M!Lb{s;TzY2NX5Q^^p%`%{Mud23R2_rFYvhlwQ;~2%BLtAisFr6 zkZr)J_L>VT?1E(kzR*Rs_$96?xa)I3d_Z=QISniGt;@im}Kf#Dhhg? zyw=Yh?5vpo2f|+}iAEyF3$I&sg%X=Cbsp)~(jROf>(K(sM@ZGl;8F{{0m^#L;8XCJ zn|@JXgC$37PHBqzK9;tD;^;-33oB zX@<+x3NWpD&++Y_*(}xH=Y0l zvqx7ZU-Y81mn%6I*Oe?W7f0=k`e;0eNY}g$cq(I257)e^8MbBc&+Ymze*V?Un~?OM zu*we>wr?tZ_Q|QoZ({P;IwU|-)MsOsHn28w4L2}%G=1gu!l7iVm2va;>>LZtz(;AA zpkt49*631a&@fK%jI2_gRaGr&(g!b;PEo6lH9ZT5Dp#7>_ufR-+n*JD#`Ch}D`7&x zua_yluPR{%)n?Hsh|ngv)h7f`q|~r7sOrlYcLQ#G0atFHbEi=kISQ=LK)U^HpTBq_ zo$dn%Dx&vIf2$^WULm*iZYshm#~)qd&t^N!an$lXbzGcuo26^38)GO0tgt1yO~85I z67Mw>iv)EU6MMPH6W!vp@laagboC&rV)e5}UI=IT7xcxqU=E{Sd;9b)-2h# zz-X`fVHDDFx4LcEO6G#c%!9(E7vN}`oOq$vXQ(%!HyBv?pf@RW%^v$#dH&Tk|4iVA zZBuvapll?*E>ZSOk%wlSN7N-FuD#i&{gBQ5e4k&FJZ0w_e@-udL14w>y-F|nj3C?{ zo+#x9$`bfURynK2Cfgv{wnw}uBrur^uqZnL^9d1XCsxGQ;3y1s_6fA(9jb?5X zoRiN%T<{ttGW^FRRGNE1$Z%2JMyUyzpH`WdUis}!mym8v>lClflyVki^G9FJT3NL< zcbdkr7$bdYLG#@DXcQ;k%DrIPIbP|0p!ahIl5#-OM4%j6@cUgGg;ODss_S)Fae7CbSQ=(Smcp#Lk)>qAc0 z=_ErK`9)-f2OU|#?J`Zjdw}a>smlnm`2!d52TS)|w6Q&!S_dhF1_#|BR}h;{L@zFE4Xw?d-9F0i?bin|>RMJw&fT^b^+96?OL#Wh^ zml=J*%|pq0>o{i2{+|nD9bt2gXS8XO2A8HDYSym1(&<#w&|9KZfh~$LvM{4xAyf;EEzSJ;{Lfxy#Lp>~~$X>DkCli{s*OW8m z{@s!NRds(FE12pzckKV~ewWQV9ra#SG#1T23t+ z=GDoZpb&wsDMN@k!jHbS&$^AKxFVLQb#C(tEykK|54cm@d(d$Vd6irx186W=TVfAL z(G_t@y$=(x9DDQj(z_+%Zk6;gJ}FDq9AB;qXH zX5$NoLRqz-VS!MEO{zB5_4n+n79_^2uWUE+89 z5#G}F9uv-jD$}NsCz0-Mrd~TS%sQH{@>lYX%qguJ))lF{VX33bN{w~OGG6kdV+kqS ze^~hyewoV)0cO^lkR6+t-?QomIkQ$)sgk{aCbyY>{rRs7wCIZb}IU9 z*mng&|G{w?UHL@GcFHTP?=C(0CY>1!xJL05I3HxB+@#lx;_AJs#1^vTmv-yg)rT&< zQb^4+LCab)Uk9`fS*5;4Fv`V)DE789nU1}U8%>s!y1cYshe_Tm>4B45F7daVa`U|< zu=c8Jb`jsS?|0-r+w@%bE9Uw4iX{=|S?m&`%sNb3Qwl}298^={fU6$+7(8`7Gr&Pc*lYl7;9c-8hCv0R|Bm?Zt7+%v>#qT!K@ z0>B(ej721H@y@0+v@onY=WJ(=UIA7-9qR@pF{v6$GOIs-$lOsZW!w>1Vw*;89g!h; zuXdOcpU~M~>3; zn`TlAcWF}16IQiY+u8%`roN@m;h|IoCF-sDld(|pZ+D-UKGQ~x2Bu!n!Pm28G{iG$ z>@G1TdH#K=_V+Re3C+aS(L-T^NRCtI6x;HweiSxvFZW9sRyk9;wJc>SF`d4!lwId; zCuUM3NGop2B@Q!V3kl$MH(r+RgBukeh@w3KW@p-HK;DabGu(t2IQ9<_L-|fGXFgr0 zcX4aMtGZ*UOH$m#c%@BFI9{<>@wR`r7$-xXYY|MkRj3l0c%hMf{QBDXoLq8P9b-gh z8Q!2ssXBFarDJ6x>GIg-c*4UoJ0mRn&5n>EuS-(1w5Dk0lTr0`anY4t@bt=m+q?AP z_*}y7-WH>4XE7%qCyb+zV{?JMaom$DaGSDRh3n{6{GwG`B`M-L<0zxtS1~CMi ztrwRD;FgY0{}jzn+IK4Y3j~@#)YBM(zSwG&Hqoq4yoh^qGR2-(n~Akdwx%*jtyT4FD^^!C z1m$RMc?$f#v9hh6JXZ+a%wZZ4`T45S@@6{M=W%$R+vws2tR(AiR4bw=xDh02O%TQ6 z-g>&9>iDDzB1LXbT4vKkr*@B(P^vqpO3<)7|LHaXP1~NWrVNZOOVv`4tTwA|G=v}1 zWLtG|XtqMQusB?0sROzqEQPfPFvQpnk#fODa8Y-eNa>0O9R+*<6(se>mPyM+SJlUz zT{R+Yv$asQBD!ku<+M5LY)NGJhQ78rqz^d)(&M2ISJawcM}>lV<~{Aako$&|obIGE zmo~V9>5bo21OnAjy;}XxnL7K$2!~xzB;&K+{a5cx-g>HFd}Zh^k=?$cJavCBM~A)gKh!hGk^u?T4RzsJK*YtJP&82|ubR{;fnuS|S0m{xl}Vvt%0_4^d5nylPwT22Ut)P~Y~KX66CO_BTQ^afjH zw#t62iAIcZdC!%LT@9FR@-`mlqFxnqPG8gD;?&YYAxGvN5h-|{I5Lq_BiC)XDQ;@# zMA_z|;YKu#D89NaeG%b=R#1oI$kdagenQt-Ommn1^Qyth{~kzu7Z>MrWPcaA?YKn< zc<>7z^`VR0hNOl>myZ7-GQ89h&WVJXKn7l8XvCXUg45oiHi)B#f3QnnY)?f6ieT(k zSsa#-b_!S!HI?N4sElY~IY^+a0ERIzAkGX#KlT+#KTtLPhLiutO_{t$dGz*ToCNB71KQA{K-yjU*47J8tveO&)@uG2c?1WSRRmEf&Pn znw{_Sb<-pih*%g2)!$qYiI)1J4$`O0SQ^rI?p`x~RKf4K4M$n@`w;pY%=IboF$3SnSHrbJ;fm3tpZi{_u@^+uKd@Nh@WHBvPjva8aC6}}LwZaT;e|kV zrkG~QIK52NexuB%VEfAw`5OBKO(gUhBm`RgP|KDIP!2*?=6tfH=D<3ZI*bu*@Xq{| z-RyUYk(#RG zl4>727a@PV!c_AZ0zKwdA7Ro$iF?SD&dHS!u}$NKP=#NEzPtVzpGy3ao$H8bQ~i6Q zk~7TKm_ziUt3tyf4Ssoxz8W2+1oEYvQ#j){OB*IlgjhL!-Qy)~{46o%$-RVe>|55$ zxM=EvTu8kjVHU;$(kACM#{@*X;rIslxybC`4$n< zOCo?jBb=(XA4D!O7C)gGLt)0u@IMmb_y!WyjYUXl%A!dMYnr^k2VyUO60M=&py&r} zFsbSAlfLE+So8wJ@8OsNSTV zZ+Uuz>iiXNH0B$ebKFGm(?Io2lW1PsNU_X;)FEc% zT|974+t5wY@VQ|0hN1n9tUX}W5DZsi1X8oGtvO|9f zy}0mcH4=+>S5(Zi5QRi=AS(4xfC0@r92oackZ#vC;sJlgQ&ay0d5$ORu;z6p&moye z7{_+H_b`>LOG)iLZre3%HR5lLfK$}0|IKSJDn5$3b;vQf)TT{wP%8zXLWNe?K&R$`WBprI^;(P#E0HMlmXpO;h4$3m|_1KC~;K| z6hmdqex@hCPwNK@|81PqoJR&*gA|DIi#-+(xFrO#;vQ!b8wlBN5dST?Zg(583yVsh z(H`4V>C|R*CDYQXEJ^vD8tZzFbpm%>D>mOy*DD)F&cxw!;@NvEB5)7hbmtZ4Y4C7r z2TuoK+_jxiP7upk$LM>(J_&meNllK?unyA>u}%d%I1k)zgoN;dYqq*N;UjuU>Px}m zO9Ap#=|4D*Jwb|Wj?C!#1XIpAiU^iFSs;ur3m?C`a^0IF(75woxGw+&=!);W{%O4I zx@kU`7}C(f)DJknPg28&qEP)a9VAhqQK0&(OkdVuZ2H6_DNPhgt%bVfye=zYW)D5R z6bd7ZG-0+=a~*OdqIGb`tow%5aY|U=nrd+AC0-}%*Uv%E>E|kkRF4`vAM*W)J#X`c z3$c40ZhGip5AP18(S_m*)Z1cw6N@Ej2urS$j!((1CH1&3cyDKR=u!d z|Iozxf~V|%k<6+34!AZeua=|EGp6zjheHJvuLn5(Edh%``{^bA>};p1`s&n2rP#22 z#~zXK!NcDjp13b%>CAzv@@Vz!YTJaqYekn<1Pv%<{A!H61&-I;(C+kxN5NyT=um-I zjY!}BSe6d{m`|MqVq}f>lFcAq*yGS_{3oP33S#KVJig)J!hNw`vk&kFx%FtZ&kINZ z%N}9W-RC6#E3Lcyz*u?zQAGJ}RL;5Iw((zg%4Dvlq86IF=EvRP-Wz1AlF*&ik?mEw zf_Md70$T)2A2`0&5DJ|U?R|TH#@iXr z6~fjg)CcAaZ?y^2UinLI&V2D;>;K-0;0Dt+ionvM91;8Orb_c)H7aet65BezLArF} z7fzQ3JnL0lgV?*aOM8`)@VnC!*`NKd)KGB>3~G*_s8@$+*SBX51eG=gA#fNAlEZEN+1On+j=ChifvW-pxcmYG&^;h^#^*sUtc6UYZ7_ zHooIM2NOD;H$^>9aPIH$-GaMI^zLS_?ZkRkk;hJ)*IVj%}Vj{;%ZWo>-v(0>dEAF<`U-6G<+fpgwTIwR^jU zMFUcqVo!lWs7d__P|`X`{GY0BX}$1%Fj_qQ({r<(7ozqw_`l{hs~XZuVRs#`gfxn} z6lwteg4{DDzCA8Qa#1JTd>zf-X}GWfrm1v^lXisn*TMO;8E& z%1tDEW+mwv0}J-t&CxiEX^*ZUggPw{$b?SX$J+{|*XvauUX7P*mbxj$BydK3h(^c~e~@zClkmMOh{CW*ZX~*V=1<6wCv`A1~hDMseYJ z`mRvp6jRYyBwg6&->VlM+<_nnL%OT>^9L=GBHiECt`D@$JM;f5~XK1d5N2BZe;ISF5wcfYD|=)VuD!y&a#M<%ooki75+O6PGV`m?_xHzd{P%i1 z-mkyUVlLM~Z+o_{#3`Ww=4Lx_&jh8Q$&`0g_+lb)_zSw-b7O6AWy)6R{i`qTJWf5D zI!w-rY{8NeMp+=8Q@ams_M6L|Y}q9V;|B)|bKb`8Lzk_#9fZ5o`Wa1BrFmZ^iiYS< zinlbEBco0dBcdGdev*P)kck-Hws-Lyc(N3^PkAUPYSL#}no=vDr?3Mw*O^}Cbtx$UVfBC+mR zLohvx5W^#raqlLHWt7gk#^7e^)9}Syis_G4ude;HYIhrooFW=7I$w0Nd3{2E6L(LG zV3F7hgS&ASD;ee3=g#*x%Y0A2E?w8g87PePi(b#AVQ5w${@fY5X!DAdMC6b#^73of zEXhofRU4&q0*rSvCuYh4!NyavuwZi27At*alLQg)`NDNLuB;Dt&K|MVW!GC}Q(l2F5Ds@I+ga{1kj>%z{jI4gNUc z@|gynqeEhNWI6LcHeoi2U4bQzxfvTnLwiF|!Ma8STN(EF7DMMJ z=fO4S4pS-K)^XXCbd7|PxSe!)dcIr-bhqPW3C#`j4abU7UFMNJzjoULy_NrX&D>;3 z3#DgKOJuoD`PnIB)o`zv3&4pBA%r+;YFv?=Q!nZ}V)~JOYaxXImAH|7V-sA)@;}7l z8YKf$B-(Rr`@EBMkpiP&LL!6mR^Y*uA^{Ms3R4)io zDBZaKtJJ5?z};pox{>GIm@(0Ni;nRumsEM=FylMhxcc;=F9^c9gZ- z_Cd&5T=ACOXyeRHdmC~rX@*Z>{o}pAZFAV~iu5~TefJ3aGgl!Z(>*x2x(WqoF)L4F z$<&gebA_?XxlEW1P317TsXQ>-)^i3LJATO%;*Z@PeX8iimz!S^@CXC1Ny88eaC#(A zQkameM6sikf62_fc=}v!h4dj}?LCL48p%i8BQp6%B6MD9Mz@EcNIp6)a9uo~o%lpp zl)O-G=sV;cy=k-Aq(D*0Z!{@ZAUz2kS!Y9sg%ux8R{nx@*WivufdG7=@|(oPR4DS% zO6ZFfY1ESuIijl#63MD-bR8azqtSzG(VO8l-Fu}}zLhmPc=CLB>)Zx1^YhgqZ)6O6 z6EOBJp|*N5AhUf?0kPXyQGLzh;e(By8d4wUOHGT|@sL5|N^Viv#+h9OcM{!gQOiZ74qKk8b^nFPNq~q2s^7Jd$OZJDKS>!=dW*#8Nq=a+ zyGHC@w^i~!nbh?KzofbPbx<{;T5&!n^Do)e=Tuv|cuwli{e-2V-Lin?l78rb? zdiJcQF*@^XCFQ8``s8=v)&Y95hlych;96K?dARCl-Gx-AQmN0XB5TjZh1^$^U;0eCgTCge zlJEVEG}~dJ7MxD&{{@;!;QwMg(a;CSUoGEcKF3$vhsAjoc-y;%B!w4BFB(LKAAED| z(-%{eha@o%*Ihgqlh$XJ=>B9PXh|2Z*P|r7K{l)(dr3qz>F}CBalWlL07HitoaI zfY|hj_!4Tcv>oY;mRh>Ini|F^0WQJH3naBKg^BYEv>QoZxgql9sc5@MreoKkflXmu z)HP10MWoy50J3U2jlO8S&vpHN2y_~PgE|U+lSdnYn>5(KNaL<2w9B8LPJe9iilXyi zZy1U_0~8DbKfaorqBY$>YPTL4NXb*D*C(0)>Edt8B3cJe-8VHZI!^2LfuP1UMB%{bdk(=T!0- zEF0FHG>7irpNB`?9W4>q8zi9Xe>gd7YakE|4qbc#RG%SG1hdTICZsX|5k~=TXXWea z?biT=?18DcAskRgL6$CKc4FJNmd(0|AxWSa<_8p{JRIGK z4gfq2LjvszN4z%#0Y-$#plR#zsP{j}$(rAiYzTv~@`7Cg&btr7+=al*)h* z7UzI~b-uVZ{MF>@%?#dImeh1`)4WzZP4gHAZwE%J28iZbg2dReBSP&OE! zxo&C{u_bIRMH#jQOx6_*M1f7Pu6l+ZE2dR?Z!3M8qY?Jf0;SPBXKB z9h)i*qU9)84kU+|> z*1wiqE-65dw}}tc7O(dQY^`B-5d+54Dyw~4>F(&FE|>kWT$8?hWH6SyDl;_ZTb5w^ z>L}6)yxwdh7`jJNHz1FYDB2%msfrnE=}MQOT!k=L%OjOP5gnA@Ds&L-jr!H}2+q0JM+q+Gw zd4N^nG;F#`_iDx=ogQ=wm7r7xd+!vjlB^nrBK-*(6kF9?L|6i`_j-Gx@^%merZFi~ z&tG-`CF!PxLV+Cji+0&Z1qsV=8RBp55LFK!ZiSPp3oWXp7p(y zzdyik1ld5xi6*{)Zo#HYSQ4ZrB@fe*Q_pxFVOQfIbum2BfEd{0UcPLge|85V07K+6 z{++~g=|h)MdaH77A&AtQv`pb|i+hLlq2!kj5MscE#a(J)ZvV;^B9!aGgyp`&*-WAK`yu4Q=I&W`TQ#z;h#ZpHz ztIl%l0#9t~sbaBVf~M@kw}cE5MpohR_|z{hJxe_xxx!>}gu! z3&KIQYf$d@0_Hg=z&k;>+j@Sr-cRa4@~hoI+;Tyv4#zo}mif;c>u-en?~#VZ%6M{A zf$|8*b(J3TOi7t7#Z0?$O|wPn+SsWq_}fdz>_3}NTW|IkafPTipIeM0RTYY}4QHq_ ziicS4HUBavn#i2}5?R?c;$}-^3*9_RRb{fA#M!CKEqqyAk}n21%ig4}rykA2{N%K1 zs`S}rw}DOxRZN+MEJS`0OlOW^gl+NP$TZgFttp9>IP>SrNOYa9uQr#3-_)#FX2*-n zCf*fdc1$jni3Y7Q=TOH@SGut>=8Gf^CF%AUXPcUfCjA}0)ZPR_@ghP@5hjMx`G99$ zNdb_Xz1}EGZBf6nYzWq)c@4PL_aOHl;nyL}hQz~=$R4i4slXDZ z?G%aQb>2GP5m*4c%P`1^EG%0l+r0Ij1zd;xuQV4{YN^gJ70O6rukm24`6oAGZ_6K+ zXXlgyjcV`fi2jobOP_ihvt`ichq@L{+C6`zmatMjIL{BAP90r?qWVv+#|U%lm<@24 z`pR0og53BgU+!s9_2tjpRL+NaDwSvjs&9tycoLZn4>rj&3(}tF`!%j;#qkbl!g==)8X(Gj!YpAQLSn``IKa2D%E73HkgwwTI z;mz`^JYo$i)Lv{t^)R;;O^t0^Ao&UO3M~EJ98=}EKJ@T9YyvXbJHCDQ zL2#G{RqLrX>%T+ zR{7Emma*|qm0@X@645?u3dfFrc+jMgOlG+w=z4E}bm3tEj6q}x;31#DLE&dW31Q;p zE=h*R)Q}sju(L=96YeCBm|}W*vnW*B$(5&Kauc~xl=4mb@gI+(9Zm>8Of*M-Nw7h= zR9=G_`c@Sw4ymA^!s-w-H#+(T7cUs^^)xR5Jn(0iBqCz;fbRJagcJliAOrAC9dW}x z!X=|&Wc0GMF$R53hG4LpN7TI&jyLg3RJ@(XP_8A;aUL{(7}IRmqu9S}ExHqeIeYn~ z!b#&uDd^CBhWA&EqF1ATfBaT>gMQmu{K4FA+xeurhn9sz z>UapX*4UvvcwlLWic>Js7EB-M){DHE`co1FM{Ep(j{J`&BS>OO`qJZT3 zM*H)7OM! z%i#&>OXrmktp;MFk?y>x?79qQsWx{?)h)U=S(pVComkliWnG;-;4QOCSQyw?Js=N?gBXSaE}ZELx2F23X9unT)k_lxJ)x-Bqv z+fMcC=Z{r1Z&o8Bj)VZ?^X^s=S$@^oc3)XtY{XcyuoKI%_*IYVQ|->S=P zwb|Rb0t}ga?PZ!Lrzt5K_RcF6#cj7eYeoF^tlpcXPE@}Ql&ex&zV{p-T0AO%+qEm0 z(9DW_Vw#aPw!*7Q!;3?D3vz+_TKUUPgkmA(Lek=H97R4MVRM4C`kQwkc+$uaG6HoN zqcOs)@Ev%sMh6ppLI8Xr$Px~zK(R&l5;x*2S4&5G^qYp9GTItG!a0r7qHaXRTkBZk zw;T%5m>=pRKsInYwP>F+W~i0toh)LXx|-6TkHu4%Xjf&2Tef6=j1@FTmdg1q|;J%fZZ&MAMdKhZ&cr~M@LkAGm_*erURE_0ILsOm1z zdRWD`VMrUyjsh(3V$`*T;SnWa_9d}VvlNzpUj?h9J*^gh)8{Q2e{t;S9(6~1%<0FC zOWwM(i}qWvO5cPV3QOl&b_~+4q}IFiF@Q5j;D_`ZT7X~X z`-%<4JibIPBerF4x~@K$11WHD*WfYsp7;pO$)!hZ>t?`Xh4S3hwgw|^#Y1hke7w6N zEG+A*Aci%ni@qzBbpZ^lg7Aj^H>fDtkddz|D4Jl~g&U zOqTETJHkb#&^%jMrPyFw6z@JdP(fQ+7po~TWXGnRIR->zh3k9ax-_i!&&2yfK8o-hO*Qi@Wx*68ds6PU0 zlF?hueheZV@aqn_K^odv9Tc;51R^d0cS>=nG+6mur8v9*qJa4#oJz@UNp0Q8@PW{U zcHaM*B*;NhSow04DlQ1M=@x>&j#F1zO#h*gb}HQ2SOZ}xsNC7*7N5Q5rgGmOZ}8=g z#e#a-yGI8{q1l_j;o^$Kv)uO_QGc=>i+yhu-T#)NrGM|4@8^V#1a%<}X>RFqIDaL- zmZe*-|9dcHN?t0P2O_@a-CJLLNS(LL?3|$gWE0l+X!3QWTjY1UtQR}zrUJSr=NG3e zWum(w?E!7Mb$rJS%GFJOoS2qeee>{FAHO9H0*O~PGsOqbcj~SzS_fRNI8x*ny7<|I zx5%tagni2lmhbE9*g9UnK}wxUtQu7wX2qMn2!9wqCYm;hKW6iPS!DzCy&U%DQf=F{NyCo|otehiJHDZEcgkvA&4(sT z&A!Y9todxba(&~o9H0Y!Ly_Mlq%*TsAFE<_(PRU9S0rfUfBf2(KEV=lvPb9m?%RQ4 zCd#~9A8m{4NqsG|cuZ+yI27+I@#e@Y z-tUf;3i|tLq+Nuwgdx*Qo{6uyg)R7tf%)|=d)e0eL;Np78td()bj1!aIN&YD;QajC MS63tp<7b}#3wo6;!T - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78) @@ -353,6 +353,207 @@

            torch_tensorrt.logging

            +
            +
            +class torch_tensorrt.logging.Level(value)[source]
            +

            Bases: enum.Enum

            +

            Enum to set the minimum required logging level to print a message to stdout

            +
            +
            +Debug = <LogLevel.DEBUG: 4>
            +
            + +
            +
            +Error = <LogLevel.ERROR: 1>
            +
            + +
            +
            +Graph = <LogLevel.GRAPH: 5>
            +
            + +
            +
            +Info = <LogLevel.INFO: 3>
            +
            + +
            +
            +InternalError = <LogLevel.INTERNAL_ERROR: 0>
            +
            + +
            +
            +Warning = <LogLevel.WARNING: 2>
            +
            + +
            + +
            +
            +class torch_tensorrt.logging.debug[source]
            +

            Bases: object

            +

            Context-manager to display full debug information through the logger

            +

            Example:

            +
            +
            with torch_tensorrt.logging.debug():

            model_trt = torch_tensorrt.compile(model, **spec)

            +
            +
            +
            + +
            +
            +class torch_tensorrt.logging.errors[source]
            +

            Bases: object

            +

            Context-manager to limit displayed log messages to just errors and above

            +

            Example:

            +
            +
            with torch_tensorrt.logging.errors():

            outputs = model_torchtrt(inputs)

            +
            +
            +
            + +
            +
            +torch_tensorrt.logging.get_is_colored_output_on() bool[source]
            +

            Get if colored output is enabled for logging

            +
            +
            Returns
            +

            If colored output is one

            +
            +
            Return type
            +

            bool

            +
            +
            +
            + +
            +
            +torch_tensorrt.logging.get_logging_prefix() str[source]
            +

            Get the prefix set for logging messages

            +
            +
            Returns
            +

            Prefix used for logger

            +
            +
            Return type
            +

            str

            +
            +
            +
            + +
            +
            +torch_tensorrt.logging.get_reportable_log_level() torch_tensorrt.logging.Level[source]
            +

            Get the level required for a message to be printed in the log

            +
            +
            Returns
            +

            The enum representing the level required to print

            +
            +
            Return type
            +

            torch_tensorrt.logging.Level

            +
            +
            +
            + +
            +
            +class torch_tensorrt.logging.graphs[source]
            +

            Bases: object

            +

            Context-manager to display the results of intermediate lowering passes +as well as full debug information through the logger

            +

            Example:

            +
            +
            with torch_tensorrt.logging.graphs():

            model_trt = torch_tensorrt.compile(model, **spec)

            +
            +
            +
            + +
            +
            +class torch_tensorrt.logging.info[source]
            +

            Bases: object

            +

            Context-manager to display all info and greater severity messages

            +

            Example:

            +
            +
            with torch_tensorrt.logging.info():

            model_trt = torch_tensorrt.compile(model, **spec)

            +
            +
            +
            + +
            +
            +class torch_tensorrt.logging.internal_errors[source]
            +

            Bases: object

            +

            Context-manager to limit displayed log messages to just internal errors

            +

            Example:

            +
            +
            with torch_tensorrt.logging.internal_errors():

            outputs = model_torchtrt(inputs)

            +
            +
            +
            + +
            +
            +torch_tensorrt.logging.log(level: torch_tensorrt.logging.Level, msg: str)[source]
            +

            Add a new message to the log

            +

            Adds a new message to the log at a specified level. The message +will only get printed out if Level > reportable_log_level

            +
            +
            Parameters
            +
            +
            +
            +
            + +
            +
            +torch_tensorrt.logging.set_is_colored_output_on(colored_output_on: bool)[source]
            +

            Enable or disable color in the log output

            +
            +
            Parameters
            +

            colored_output_on (bool) – If colored output should be enabled or not

            +
            +
            +
            + +
            +
            +torch_tensorrt.logging.set_logging_prefix(prefix: str)[source]
            +

            Set the prefix used when logging messages

            +
            +
            Parameters
            +

            prefix (str) – Prefix to use for logging messages

            +
            +
            +
            + +
            +
            +torch_tensorrt.logging.set_reportable_log_level(level: torch_tensorrt.logging.Level)[source]
            +

            Set the level required for a message to be printed to the log

            +
            +
            Parameters
            +

            level (torch_tensorrt.logging.Level) – The enum representing the level required to print

            +
            +
            +
            + +
            +
            +class torch_tensorrt.logging.warnings[source]
            +

            Bases: object

            +

            Context-manager to limit displayed log messages to just warnings and above

            +

            Example:

            +
            +
            with torch_tensorrt.logging.warnings():

            model_trt = torch_tensorrt.compile(model, **spec)

            +
            +
            +
            +
            diff --git a/docs/py_api/ptq.html b/docs/py_api/ptq.html index 0a06f36bff..b01d1294ff 100644 --- a/docs/py_api/ptq.html +++ b/docs/py_api/ptq.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            @@ -353,11 +353,121 @@

            torch_tensorrt.ptq

            +
            +
            +class torch_tensorrt.ptq.CacheCalibrator(*args, **kwargs)[source]
            +

            Bases: object

            +

            Constructs a calibrator class in TensorRT which directly uses pre-existing cache file for calibration. +:param cache_file: path to cache file. +:param algo_type: choice of calibration algorithm.

            +
            + +
            +
            +class torch_tensorrt.ptq.CalibrationAlgo(value)[source]
            +

            Bases: enum.Enum

            +

            An enumeration.

            +
            +
            +ENTROPY_CALIBRATION = <CalibrationAlgo.ENTROPY_CALIBRATION: 1>
            +
            + +
            +
            +ENTROPY_CALIBRATION_2 = <CalibrationAlgo.ENTROPY_CALIBRATION_2: 2>
            +
            + +
            +
            +LEGACY_CALIBRATION = <CalibrationAlgo.LEGACY_CALIBRATION: 0>
            +
            + +
            +
            +MINMAX_CALIBRATION = <CalibrationAlgo.MINMAX_CALIBRATION: 3>
            +
            + +
            + +
            +
            +class torch_tensorrt.ptq.DataLoaderCalibrator(*args, **kwargs)[source]
            +

            Bases: object

            +

            Constructs a calibrator class in TensorRT and uses pytorch dataloader to load/preproces +data which is passed during calibration. +:param dataloader: an instance of pytorch dataloader which iterates through a given dataset. +:param algo_type: choice of calibration algorithm. +:param cache_file: path to cache file. +:param use_cache: flag which enables usage of pre-existing cache. +:param device: device on which calibration data is copied to.

            +
            + +
            +
            +torch_tensorrt.ptq.get_batch(self, names)[source]
            +
            + +
            +
            +torch_tensorrt.ptq.get_batch_size(self)[source]
            +
            + +
            +
            +torch_tensorrt.ptq.get_cache_mode_batch(self)[source]
            +
            + +
            +
            +torch_tensorrt.ptq.read_calibration_cache(self)[source]
            +
            + +
            +
            +torch_tensorrt.ptq.write_calibration_cache(self, cache)[source]
            +
            +

            Classes

            +
            +
            +class torch_tensorrt.ptq.DataLoaderCalibrator(*args, **kwargs)[source]
            +

            Constructs a calibrator class in TensorRT and uses pytorch dataloader to load/preproces +data which is passed during calibration. +:param dataloader: an instance of pytorch dataloader which iterates through a given dataset. +:param algo_type: choice of calibration algorithm. +:param cache_file: path to cache file. +:param use_cache: flag which enables usage of pre-existing cache. +:param device: device on which calibration data is copied to.

            +
            +
            +__init__(**kwargs)[source]
            +
            + +
            + +
            +
            +class torch_tensorrt.ptq.CacheCalibrator(*args, **kwargs)[source]
            +

            Constructs a calibrator class in TensorRT which directly uses pre-existing cache file for calibration. +:param cache_file: path to cache file. +:param algo_type: choice of calibration algorithm.

            +
            +
            +__init__(**kwargs)[source]
            +
            + +
            +

            Enums

            +
            +
            +class torch_tensorrt.ptq.CalibrationAlgo(value)[source]
            +

            An enumeration.

            +
            +
            diff --git a/docs/py_api/torch_tensorrt.html b/docs/py_api/torch_tensorrt.html index 7bf4918d7c..91ded448bc 100644 --- a/docs/py_api/torch_tensorrt.html +++ b/docs/py_api/torch_tensorrt.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            @@ -351,14 +351,350 @@

            torch_tensorrt

            -
            +

            Functions

            +
            +
            +torch_tensorrt.set_device(gpu_id)[source]
            +
            + +
            +
            +torch_tensorrt.compile(module: typing.Any, ir='default', inputs=[], enabled_precisions={<dtype.float: 0>}, **kwargs)[source]
            +

            Compile a PyTorch module for NVIDIA GPUs using TensorRT

            +

            Takes a existing PyTorch module and a set of settings to configure the compiler +and using the path specified in ir lower and compile the module to TensorRT +returning a PyTorch Module back

            +

            Converts specifically the forward method of a Module

            +
            +
            Parameters
            +

            module (Union(torch.nn.Module,torch.jit.ScriptModule) – Source module

            +
            +
            Keyword Arguments
            +
              +
            • inputs (List[Union(torch_tensorrt.Input, torch.Tensor)]) –

              Required List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using +torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum +to select device type.

              +
              input=[
              +    torch_tensorrt.Input((1, 3, 224, 224)), # Static NCHW input shape for input #1
              +    torch_tensorrt.Input(
              +        min_shape=(1, 224, 224, 3),
              +        opt_shape=(1, 512, 512, 3),
              +        max_shape=(1, 1024, 1024, 3),
              +        dtype=torch.int32
              +        format=torch.channel_last
              +    ), # Dynamic input shape for input #2
              +    torch.randn((1, 3, 224, 244)) # Use an example tensor and let torch_tensorrt infer settings
              +]
              +
              +
              +

            • +
            • enabled_precision (Set(Union(torch.dpython:type, torch_tensorrt.dpython:type))) – The set of datatypes that TensorRT can use when selecting kernels

            • +
            • ir (str) – The requested strategy to compile. (Options: default - Let Torch-TensorRT decide, ts - TorchScript with scripting path)

            • +
            • **kwargs – Additional settings for the specific requested strategy (See submodules for more info)

            • +
            +
            +
            Returns
            +

            Compiled Module, when run it will execute via TensorRT

            +
            +
            Return type
            +

            torch.nn.Module

            +
            +
            +
            + +
            +
            +torch_tensorrt.convert_method_to_trt_engine(module: typing.Any, method_name: str, ir='default', inputs=[], enabled_precisions={<dtype.float: 0>}, **kwargs)[source]
            +

            Convert a TorchScript module method to a serialized TensorRT engine

            +

            Converts a specified method of a module to a serialized TensorRT engine given a dictionary of conversion settings

            +
            +
            Parameters
            +

            module (Union(torch.nn.Module,torch.jit.ScriptModule) – Source module

            +
            +
            Keyword Arguments
            +
              +
            • inputs (List[Union(torch_tensorrt.Input, torch.Tensor)]) –

              Required List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using +torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum +to select device type.

              +
              input=[
              +    torch_tensorrt.Input((1, 3, 224, 224)), # Static NCHW input shape for input #1
              +    torch_tensorrt.Input(
              +        min_shape=(1, 224, 224, 3),
              +        opt_shape=(1, 512, 512, 3),
              +        max_shape=(1, 1024, 1024, 3),
              +        dtype=torch.int32
              +        format=torch.channel_last
              +    ), # Dynamic input shape for input #2
              +    torch.randn((1, 3, 224, 244)) # Use an example tensor and let torch_tensorrt infer settings
              +]
              +
              +
              +

            • +
            • enabled_precision (Set(Union(torch.dpython:type, torch_tensorrt.dpython:type))) – The set of datatypes that TensorRT can use when selecting kernels

            • +
            • ir (str) – The requested strategy to compile. (Options: default - Let Torch-TensorRT decide, ts - TorchScript with scripting path)

            • +
            • **kwargs – Additional settings for the specific requested strategy (See submodules for more info)

            • +
            +
            +
            Returns
            +

            Serialized TensorRT engine, can either be saved to a file or deserialized via TensorRT APIs

            +
            +
            Return type
            +

            bytes

            +
            +
            +
            + +
            +
            +torch_tensorrt.get_build_info() str[source]
            +

            Returns a string containing the build information of torch_tensorrt distribution

            +
            +
            Returns
            +

            String containing the build information for torch_tensorrt distribution

            +
            +
            Return type
            +

            str

            +
            +
            +
            + +
            +
            +torch_tensorrt.dump_build_info()[source]
            +

            Prints build information about the torch_tensorrt distribution to stdout

            +
            +

            Classes

            +
            +
            +class torch_tensorrt.Input(*args, **kwargs)[source]
            +

            Defines an input to a module in terms of expected shape, data type and tensor format.

            +
            +
            Variables
            +
              +
            • shape_mode (torch_tensorrt.Input._ShapeMode) – Is input statically or dynamically shaped

            • +
            • shape (Tuple or Dict) –

              Either a single Tuple or a dict of tuples defining the input shape. +Static shaped inputs will have a single tuple. Dynamic inputs will have a dict of the form +``{

              +
              +

              ”min_shape”: Tuple, +“opt_shape”: Tuple, +“max_shape”: Tuple

              +
              +

              }``

              +

            • +
            • dtype (torch_tensorrt.dpython:type) – The expected data type of the input tensor (default: torch_tensorrt.dtype.float32)

            • +
            • format (torch_tensorrt.TensorFormat) – The expected format of the input tensor (default: torch_tensorrt.TensorFormat.NCHW)

            • +
            +
            +
            +
            +
            +__init__(*args, **kwargs)[source]
            +

            __init__ Method for torch_tensorrt.Input

            +

            Input accepts one of a few construction patterns

            +
            +
            Parameters
            +

            shape (Tuple or List, optional) – Static shape of input tensor

            +
            +
            Keyword Arguments
            +
              +
            • shape (Tuple or List, optional) – Static shape of input tensor

            • +
            • min_shape (Tuple or List, optional) – Min size of input tensor’s shape range +Note: All three of min_shape, opt_shape, max_shape must be provided, there must be no positional arguments, shape must not be defined and implictly this sets Input’s shape_mode to DYNAMIC

            • +
            • opt_shape (Tuple or List, optional) – Opt size of input tensor’s shape range +Note: All three of min_shape, opt_shape, max_shape must be provided, there must be no positional arguments, shape must not be defined and implictly this sets Input’s shape_mode to DYNAMIC

            • +
            • max_shape (Tuple or List, optional) – Max size of input tensor’s shape range +Note: All three of min_shape, opt_shape, max_shape must be provided, there must be no positional arguments, shape must not be defined and implictly this sets Input’s shape_mode to DYNAMIC

            • +
            • dtype (torch.dpython:type or torch_tensorrt.dpython:type) – Expected data type for input tensor (default: torch_tensorrt.dtype.float32)

            • +
            • format (torch.memory_format or torch_tensorrt.TensorFormat) – The expected format of the input tensor (default: torch_tensorrt.TensorFormat.NCHW)

            • +
            +
            +
            +

            Examples

            +
              +
            • Input([1,3,32,32], dtype=torch.float32, format=torch.channel_last)

            • +
            • Input(shape=(1,3,32,32), dtype=torch_tensorrt.dtype.int32, format=torch_tensorrt.TensorFormat.NCHW)

            • +
            • Input(min_shape=(1,3,32,32), opt_shape=[2,3,32,32], max_shape=(3,3,32,32)) #Implicitly dtype=torch_tensorrt.dtype.float32, format=torch_tensorrt.TensorFormat.NCHW

            • +
            +
            + +
            +
            +dtype = <dtype.unknown: 5>
            +

            torch_tensorrt.dtype.float32)

            +
            +
            Type
            +

            The expected data type of the input tensor (default

            +
            +
            +
            + +
            +
            +format = <TensorFormat.contiguous: 0>
            +

            torch_tensorrt.TensorFormat.NCHW)

            +
            +
            Type
            +

            The expected format of the input tensor (default

            +
            +
            +
            + +
            +
            +shape = None
            +

            Either a single Tuple or a dict of tuples defining the input shape. Static shaped inputs will have a single tuple. Dynamic inputs will have a dict of the form { "min_shape": Tuple, "opt_shape": Tuple, "max_shape": Tuple }

            +
            +
            Type
            +

            (Tuple or Dict)

            +
            +
            +
            + +
            +
            +shape_mode = None
            +

            Is input statically or dynamically shaped

            +
            +
            Type
            +

            (torch_tensorrt.Input._ShapeMode)

            +
            +
            +
            + +
            + +
            +
            +class torch_tensorrt.Device(*args, **kwargs)[source]
            +

            Defines a device that can be used to specify target devices for engines

            +
            +
            Variables
            +
              +
            • device_type (torch_tensorrt.DeviceType) – Target device type (GPU or DLA). Set implicitly based on if dla_core is specified.

            • +
            • gpu_id (python:int) – Device ID for target GPU

            • +
            • dla_core (python:int) – Core ID for target DLA core

            • +
            • allow_gpu_fallback (bool) – Whether falling back to GPU if DLA cannot support an op should be allowed

            • +
            +
            +
            +
            +
            +__init__(*args, **kwargs)[source]
            +

            __init__ Method for torch_tensorrt.Device

            +

            Device accepts one of a few construction patterns

            +
            +
            Parameters
            +

            spec (str) – String with device spec e.g. “dla:0” for dla, core_id 0

            +
            +
            Keyword Arguments
            +
              +
            • gpu_id (python:int) – ID of target GPU (will get overrided if dla_core is specified to the GPU managing DLA). If specified, no positional arguments should be provided

            • +
            • dla_core (python:int) – ID of target DLA core. If specified, no positional arguments should be provided.

            • +
            • allow_gpu_fallback (bool) – Allow TensorRT to schedule operations on GPU if they are not supported on DLA (ignored if device type is not DLA)

            • +
            +
            +
            +

            Examples

            +
              +
            • Device(“gpu:1”)

            • +
            • Device(“cuda:1”)

            • +
            • Device(“dla:0”, allow_gpu_fallback=True)

            • +
            • Device(gpu_id=0, dla_core=0, allow_gpu_fallback=True)

            • +
            • Device(dla_core=0, allow_gpu_fallback=True)

            • +
            • Device(gpu_id=1)

            • +
            +
            + +
            +
            +allow_gpu_fallback = False
            +

            (bool) Whether falling back to GPU if DLA cannot support an op should be allowed

            +
            + +
            +
            +device_type = None
            +

            Target device type (GPU or DLA). Set implicitly based on if dla_core is specified.

            +
            +
            Type
            +

            (torch_tensorrt.DeviceType)

            +
            +
            +
            + +
            +
            +dla_core = -1
            +

            (int) Core ID for target DLA core

            +
            + +
            +
            +gpu_id = -1
            +

            (int) Device ID for target GPU

            +
            + +
            +

            Enums

            +
            +
            +class torch_tensorrt.dtype
            +

            Enum to specifiy operating precision for engine execution

            +

            Members:

            +
            +

            float : 32 bit floating point number

            +

            float32 : 32 bit floating point number

            +

            half : 16 bit floating point number

            +

            float16 : 16 bit floating point number

            +

            int8 : 8 bit integer number

            +

            int32 : 32 bit integer number

            +

            bool : Boolean value

            +

            unknown : Unknown data type

            +
            +
            + +
            +
            +class torch_tensorrt.DeviceType
            +

            Enum to specify device kinds to build TensorRT engines for

            +

            Members:

            +
            +

            GPU : Specify using GPU to execute TensorRT Engine

            +

            DLA : Specify using DLA to execute TensorRT Engine (Jetson Only)

            +
            +
            + +
            +
            +class torch_tensorrt.EngineCapability
            +

            Enum to specify engine capability settings (selections of kernels to meet safety requirements)

            +

            Members:

            +
            +

            safe_gpu : Use safety GPU kernels only

            +

            safe_dla : Use safety DLA kernels only

            +

            default : Use default behavior

            +
            +
            + +
            +
            +class torch_tensorrt.TensorFormat
            +

            Enum to specifiy the memory layout of tensors

            +

            Members:

            +
            +

            contiguous : Contiguous memory layout (NCHW / Linear)

            +

            channels_last : Channels last memory layout (NHWC)

            +
            +
            +

            Submodules

            diff --git a/docs/py_api/ts.html b/docs/py_api/ts.html index f87429ebda..ce71414d68 100644 --- a/docs/py_api/ts.html +++ b/docs/py_api/ts.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            @@ -353,8 +353,231 @@

            torch_tensorrt.ts

            -
            +

            Functions

            +
            +
            +torch_tensorrt.ts.compile(module: torch.jit._script.ScriptModule, inputs=[], device=None, disable_tf32=False, sparse_weights=False, enabled_precisions={}, refit=False, debug=False, capability=<EngineCapability.default: 0>, num_min_timing_iters=2, num_avg_timing_iters=1, workspace_size=0, calibrator=None, truncate_long_and_double=False, require_full_compilation=False, min_block_size=3, torch_executed_ops=[], torch_executed_modules=[]) torch.jit._script.ScriptModule[source]
            +

            Compile a TorchScript module for NVIDIA GPUs using TensorRT

            +

            Takes a existing TorchScript module and a set of settings to configure the compiler +and will convert methods to JIT Graphs which call equivalent TensorRT engines

            +

            Converts specifically the forward method of a TorchScript Module

            +
            +
            Parameters
            +

            module (torch.jit.ScriptModule) – Source module, a result of tracing or scripting a PyTorch +torch.nn.Module

            +
            +
            Keyword Arguments
            +
              +
            • inputs (List[Union(torch_tensorrt.Input, torch.Tensor)]) –

              Required List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using +torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum +to select device type.

              +
              input=[
              +    torch_tensorrt.Input((1, 3, 224, 224)), # Static NCHW input shape for input #1
              +    torch_tensorrt.Input(
              +        min_shape=(1, 224, 224, 3),
              +        opt_shape=(1, 512, 512, 3),
              +        max_shape=(1, 1024, 1024, 3),
              +        dtype=torch.int32
              +        format=torch.channel_last
              +    ), # Dynamic input shape for input #2
              +    torch.randn((1, 3, 224, 244)) # Use an example tensor and let torch_tensorrt infer settings
              +]
              +
              +
              +

            • +
            • device (Union(torch_tensorrt.Device, torch.device, dict)) –

              Target device for TensorRT engines to run on

              +
              device=torch_tensorrt.Device("dla:1", allow_gpu_fallback=True)
              +
              +
              +

            • +
            • disable_tf32 (bool) – Force FP32 layers to use traditional as FP32 format vs the default behavior of rounding the inputs to 10-bit mantissas before multiplying, but accumulates the sum using 23-bit mantissas

            • +
            • sparse_weights (bool) – Enable sparsity for convolution and fully connected layers.

            • +
            • enabled_precision (Set(Union(torch.dpython:type, torch_tensorrt.dpython:type))) – The set of datatypes that TensorRT can use when selecting kernels

            • +
            • refit (bool) – Enable refitting

            • +
            • debug (bool) – Enable debuggable engine

            • +
            • capability (torch_tensorrt.EngineCapability) – Restrict kernel selection to safe gpu kernels or safe dla kernels

            • +
            • num_min_timing_iters (python:int) – Number of minimization timing iterations used to select kernels

            • +
            • num_avg_timing_iters (python:int) – Number of averaging timing iterations used to select kernels

            • +
            • workspace_size (python:int) – Maximum size of workspace given to TensorRT

            • +
            • truncate_long_and_double (bool) – Truncate weights provided in int64 or double (float64) to int32 and float32

            • +
            • calibrator (Union(torch_tensorrt._C.IInt8Calibrator, tensorrt.IInt8Calibrator)) – Calibrator object which will provide data to the PTQ system for INT8 Calibration

            • +
            • require_full_compilation (bool) – Require modules to be compiled end to end or return an error as opposed to returning a hybrid graph where operations that cannot be run in TensorRT are run in PyTorch

            • +
            • min_block_size (python:int) – The minimum number of contiguous TensorRT convertable operations in order to run a set of operations in TensorRT

            • +
            • torch_executed_ops (List[str]) – List of aten operators that must be run in PyTorch. An error will be thrown if this list is not empty but require_full_compilation is True

            • +
            • torch_executed_modules (List[str]) – List of modules that must be run in PyTorch. An error will be thrown if this list is not empty but require_full_compilation is True

            • +
            +
            +
            Returns
            +

            Compiled TorchScript Module, when run it will execute via TensorRT

            +
            +
            Return type
            +

            torch.jit.ScriptModule

            +
            +
            +
            + +
            +
            +torch_tensorrt.ts.convert_method_to_trt_engine(module: torch.jit._script.ScriptModule, method_name: str, inputs=[], device=None, disable_tf32=False, sparse_weights=False, enabled_precisions={}, refit=False, debug=False, capability=<EngineCapability.default: 0>, num_min_timing_iters=2, num_avg_timing_iters=1, workspace_size=0, truncate_long_and_double=False, calibrator=None) str[source]
            +

            Convert a TorchScript module method to a serialized TensorRT engine

            +

            Converts a specified method of a module to a serialized TensorRT engine given a dictionary of conversion settings

            +
            +
            Parameters
            +
              +
            • module (torch.jit.ScriptModule) – Source module, a result of tracing or scripting a PyTorch +torch.nn.Module

            • +
            • method_name (str) – Name of method to convert

            • +
            +
            +
            Keyword Arguments
            +
              +
            • inputs (List[Union(torch_tensorrt.Input, torch.Tensor)]) –

              Required List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using +torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum +to select device type.

              +
              input=[
              +    torch_tensorrt.Input((1, 3, 224, 224)), # Static NCHW input shape for input #1
              +    torch_tensorrt.Input(
              +        min_shape=(1, 224, 224, 3),
              +        opt_shape=(1, 512, 512, 3),
              +        max_shape=(1, 1024, 1024, 3),
              +        dtype=torch.int32
              +        format=torch.channel_last
              +    ), # Dynamic input shape for input #2
              +    torch.randn((1, 3, 224, 244)) # Use an example tensor and let torch_tensorrt infer settings
              +]
              +
              +
              +

            • +
            • device (Union(torch_tensorrt.Device, torch.device, dict)) –

              Target device for TensorRT engines to run on

              +
              device=torch_tensorrt.Device("dla:1", allow_gpu_fallback=True)
              +
              +
              +

            • +
            • disable_tf32 (bool) – Force FP32 layers to use traditional as FP32 format vs the default behavior of rounding the inputs to 10-bit mantissas before multiplying, but accumulates the sum using 23-bit mantissas

            • +
            • sparse_weights (bool) – Enable sparsity for convolution and fully connected layers.

            • +
            • enabled_precision (Set(Union(torch.dpython:type, torch_tensorrt.dpython:type))) – The set of datatypes that TensorRT can use when selecting kernels

            • +
            • refit (bool) – Enable refitting

            • +
            • debug (bool) – Enable debuggable engine

            • +
            • capability (torch_tensorrt.EngineCapability) – Restrict kernel selection to safe gpu kernels or safe dla kernels

            • +
            • num_min_timing_iters (python:int) – Number of minimization timing iterations used to select kernels

            • +
            • num_avg_timing_iters (python:int) – Number of averaging timing iterations used to select kernels

            • +
            • workspace_size (python:int) – Maximum size of workspace given to TensorRT

            • +
            • truncate_long_and_double (bool) – Truncate weights provided in int64 or double (float64) to int32 and float32

            • +
            • calibrator (Union(torch_tensorrt._C.IInt8Calibrator, tensorrt.IInt8Calibrator)) – Calibrator object which will provide data to the PTQ system for INT8 Calibration

            • +
            +
            +
            Returns
            +

            Serialized TensorRT engine, can either be saved to a file or deserialized via TensorRT APIs

            +
            +
            Return type
            +

            bytes

            +
            +
            +
            + +
            +
            +torch_tensorrt.ts.check_method_op_support(module: torch.jit._script.ScriptModule, method_name: str) bool[source]
            +

            Checks to see if a method is fully supported by torch_tensorrt

            +

            Checks if a method of a TorchScript module can be compiled by torch_tensorrt, if not, a list of operators +that are not supported are printed out and the function returns false, else true.

            +
            +
            Parameters
            +
              +
            • module (torch.jit.ScriptModule) – Source module, a result of tracing or scripting a PyTorch +torch.nn.Module

            • +
            • method_name (str) – Name of method to check

            • +
            +
            +
            Returns
            +

            True if supported Method

            +
            +
            Return type
            +

            bool

            +
            +
            +
            + +
            +
            +torch_tensorrt.ts.embed_engine_in_new_module(serialized_engine: bytes, device=None) torch.jit._script.ScriptModule[source]
            +

            Takes a pre-built serialized TensorRT engine and embeds it within a TorchScript module

            +

            Takes a pre-built serialied TensorRT engine (as bytes) and embeds it within a TorchScript module. +Registers the forward method to execute the TensorRT engine with the function signature:

            +
            +

            forward(Tensor[]) -> Tensor[]

            +
            +
            +
            TensorRT bindings must have names with the following format:
              +
            • [symbol].[index in input / output array]

            • +
            +

            ex. +- [x.0, x.1, x.2] -> [y.0]

            +
            +
            +

            Module can be save with engine embedded with torch.jit.save and moved / loaded according to torch_tensorrt portability rules

            +
            +
            Parameters
            +

            serialized_engine (bytes) – Serialized TensorRT engine from either torch_tensorrt or TensorRT APIs

            +
            +
            Keyword Arguments
            +

            device (Union(torch_tensorrt.Device, torch.device, dict)) – Target device to run engine on. Must be compatible with engine provided. Default: Current active device

            +
            +
            Returns
            +

            New TorchScript module with engine embedded

            +
            +
            Return type
            +

            torch.jit.ScriptModule

            +
            +
            +
            + +
            +
            +torch_tensorrt.ts.TensorRTCompileSpec(inputs=[], device=None, disable_tf32=False, sparse_weights=False, enabled_precisions={}, refit=False, debug=False, capability=<EngineCapability.default: 0>, num_min_timing_iters=2, num_avg_timing_iters=1, workspace_size=0, truncate_long_and_double=False, calibrator=None) <torch._C.ScriptClass object at 0x7f9f791ec5b0>[source]
            +

            Utility to create a formated spec dictionary for using the PyTorch TensorRT backend

            +
            +
            Keyword Arguments
            +
              +
            • inputs (List[Union(torch_tensorrt.Input, torch.Tensor)]) –

              Required List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using +torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum +to select device type.

              +
              input=[
              +    torch_tensorrt.Input((1, 3, 224, 224)), # Static NCHW input shape for input #1
              +    torch_tensorrt.Input(
              +        min_shape=(1, 224, 224, 3),
              +        opt_shape=(1, 512, 512, 3),
              +        max_shape=(1, 1024, 1024, 3),
              +        dtype=torch.int32
              +        format=torch.channel_last
              +    ), # Dynamic input shape for input #2
              +    torch.randn((1, 3, 224, 244)) # Use an example tensor and let torch_tensorrt infer settings
              +]
              +
              +
              +

            • +
            • device (Union(torch_tensorrt.Device, torch.device, dict)) –

              Target device for TensorRT engines to run on

              +
              device=torch_tensorrt.Device("dla:1", allow_gpu_fallback=True)
              +
              +
              +

            • +
            • disable_tf32 (bool) – Force FP32 layers to use traditional as FP32 format vs the default behavior of rounding the inputs to 10-bit mantissas before multiplying, but accumulates the sum using 23-bit mantissas

            • +
            • sparse_weights (bool) – Enable sparsity for convolution and fully connected layers.

            • +
            • enabled_precision (Set(Union(torch.dpython:type, torch_tensorrt.dpython:type))) – The set of datatypes that TensorRT can use when selecting kernels

            • +
            • refit (bool) – Enable refitting

            • +
            • debug (bool) – Enable debuggable engine

            • +
            • capability (torch_tensorrt.EngineCapability) – Restrict kernel selection to safe gpu kernels or safe dla kernels

            • +
            • num_min_timing_iters (python:int) – Number of minimization timing iterations used to select kernels

            • +
            • num_avg_timing_iters (python:int) – Number of averaging timing iterations used to select kernels

            • +
            • workspace_size (python:int) – Maximum size of workspace given to TensorRT

            • +
            • truncate_long_and_double (bool) – Truncate weights provided in int64 or double (float64) to int32 and float32

            • +
            • calibrator – Calibrator object which will provide data to the PTQ system for INT8 Calibration

            • +
            +
            +
            +
            +
            diff --git a/docs/search.html b/docs/search.html index 534fb042c5..0e2156cee8 100644 --- a/docs/search.html +++ b/docs/search.html @@ -196,7 +196,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/searchindex.js b/docs/searchindex.js index ebc9cccb17..9d9da03a0c 100644 --- a/docs/searchindex.js +++ b/docs/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["_cpp_api/classtorch__tensorrt_1_1DataType","_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType","_cpp_api/classtorch__tensorrt_1_1TensorFormat","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator","_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502","_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268","_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e","_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827","_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b","_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da","_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59","_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883","_cpp_api/dir_cpp","_cpp_api/dir_cpp_include","_cpp_api/dir_cpp_include_torch_tensorrt","_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558","_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb","_cpp_api/file_cpp_include_torch_tensorrt_logging.h","_cpp_api/file_cpp_include_torch_tensorrt_macros.h","_cpp_api/file_cpp_include_torch_tensorrt_ptq.h","_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h","_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3","_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650","_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a","_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2","_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8","_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5","_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc","_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039","_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa","_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797","_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9","_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef","_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528","_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384","_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1","_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2","_cpp_api/namespace_torch_tensorrt","_cpp_api/namespace_torch_tensorrt__logging","_cpp_api/namespace_torch_tensorrt__ptq","_cpp_api/namespace_torch_tensorrt__torchscript","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h","_cpp_api/structtorch__tensorrt_1_1Device","_cpp_api/structtorch__tensorrt_1_1Input","_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec","_cpp_api/torch_tensort_cpp","_cpp_api/unabridged_orphan","_notebooks/CitriNet-example","_notebooks/EfficientNet-example","_notebooks/Hugging-Face-BERT","_notebooks/Resnet50-example","_notebooks/dynamic-shapes","_notebooks/getting_started_with_fx_path_module","_notebooks/lenet-getting-started","_notebooks/ssd-object-detection-demo","_notebooks/vgg-qat","contributors/conversion","contributors/lowering","contributors/partitioning","contributors/phases","contributors/runtime","contributors/system_overview","contributors/useful_links","contributors/writing_converters","index","indices/supported_ops","py_api/logging","py_api/ptq","py_api/torch_tensorrt","py_api/ts","src/pytorch-sphinx-theme/docs/changelog","src/pytorch-sphinx-theme/docs/configuring","src/pytorch-sphinx-theme/docs/demo/api","src/pytorch-sphinx-theme/docs/demo/demo","src/pytorch-sphinx-theme/docs/demo/lists_tables","src/pytorch-sphinx-theme/docs/demo/long","src/pytorch-sphinx-theme/docs/demo/structure","src/pytorch-sphinx-theme/docs/index","src/pytorch-sphinx-theme/docs/installing","tutorials/creating_torchscript_module_in_python","tutorials/getting_started_with_cpp_api","tutorials/getting_started_with_fx_path","tutorials/getting_started_with_python_api","tutorials/installation","tutorials/ptq","tutorials/runtime","tutorials/serving_torch_tensorrt_with_triton","tutorials/torchtrtc","tutorials/use_from_pytorch","tutorials/using_dla"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,nbsphinx:4,sphinx:56},filenames:["_cpp_api/classtorch__tensorrt_1_1DataType.rst","_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.rst","_cpp_api/classtorch__tensorrt_1_1TensorFormat.rst","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.rst","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.rst","_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.rst","_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.rst","_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.rst","_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.rst","_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.rst","_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.rst","_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.rst","_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.rst","_cpp_api/dir_cpp.rst","_cpp_api/dir_cpp_include.rst","_cpp_api/dir_cpp_include_torch_tensorrt.rst","_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.rst","_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.rst","_cpp_api/file_cpp_include_torch_tensorrt_logging.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_macros.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst","_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.rst","_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.rst","_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.rst","_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.rst","_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.rst","_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.rst","_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.rst","_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.rst","_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.rst","_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.rst","_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.rst","_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.rst","_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.rst","_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.rst","_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.rst","_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.rst","_cpp_api/namespace_torch_tensorrt.rst","_cpp_api/namespace_torch_tensorrt__logging.rst","_cpp_api/namespace_torch_tensorrt__ptq.rst","_cpp_api/namespace_torch_tensorrt__torchscript.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst","_cpp_api/structtorch__tensorrt_1_1Device.rst","_cpp_api/structtorch__tensorrt_1_1Input.rst","_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.rst","_cpp_api/torch_tensort_cpp.rst","_cpp_api/unabridged_orphan.rst","_notebooks/CitriNet-example.ipynb","_notebooks/EfficientNet-example.ipynb","_notebooks/Hugging-Face-BERT.ipynb","_notebooks/Resnet50-example.ipynb","_notebooks/dynamic-shapes.ipynb","_notebooks/getting_started_with_fx_path_module.ipynb","_notebooks/lenet-getting-started.ipynb","_notebooks/ssd-object-detection-demo.ipynb","_notebooks/vgg-qat.ipynb","contributors/conversion.rst","contributors/lowering.rst","contributors/partitioning.rst","contributors/phases.rst","contributors/runtime.rst","contributors/system_overview.rst","contributors/useful_links.rst","contributors/writing_converters.rst","index.rst","indices/supported_ops.rst","py_api/logging.rst","py_api/ptq.rst","py_api/torch_tensorrt.rst","py_api/ts.rst","src/pytorch-sphinx-theme/docs/changelog.rst","src/pytorch-sphinx-theme/docs/configuring.rst","src/pytorch-sphinx-theme/docs/demo/api.rst","src/pytorch-sphinx-theme/docs/demo/demo.rst","src/pytorch-sphinx-theme/docs/demo/lists_tables.rst","src/pytorch-sphinx-theme/docs/demo/long.rst","src/pytorch-sphinx-theme/docs/demo/structure.rst","src/pytorch-sphinx-theme/docs/index.rst","src/pytorch-sphinx-theme/docs/installing.rst","tutorials/creating_torchscript_module_in_python.rst","tutorials/getting_started_with_cpp_api.rst","tutorials/getting_started_with_fx_path.rst","tutorials/getting_started_with_python_api.rst","tutorials/installation.rst","tutorials/ptq.rst","tutorials/runtime.rst","tutorials/serving_torch_tensorrt_with_triton.rst","tutorials/torchtrtc.rst","tutorials/use_from_pytorch.rst","tutorials/using_dla.rst"],objects:{"":[[5,0,1,"c.STR","STR"],[9,0,1,"c.TORCHTRT_API","TORCHTRT_API"],[11,0,1,"c.TORCHTRT_HIDDEN","TORCHTRT_HIDDEN"],[7,0,1,"c.TORCH_TENSORRT_MAJOR_VERSION","TORCH_TENSORRT_MAJOR_VERSION"],[8,0,1,"c.TORCH_TENSORRT_MINOR_VERSION","TORCH_TENSORRT_MINOR_VERSION"],[6,0,1,"c.TORCH_TENSORRT_PATCH_VERSION","TORCH_TENSORRT_PATCH_VERSION"],[12,0,1,"c.TORCH_TENSORRT_VERSION","TORCH_TENSORRT_VERSION"],[10,0,1,"c.XSTR","XSTR"],[0,1,1,"_CPPv4N14torch_tensorrt8DataTypeE","torch_tensorrt::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value","torch_tensorrt::DataType::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE","torch_tensorrt::DataType::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEv","torch_tensorrt::DataType::DataType"],[0,3,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value","torch_tensorrt::DataType::DataType::t"],[0,3,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE","torch_tensorrt::DataType::DataType::t"],[0,4,1,"_CPPv4N14torch_tensorrt8DataType5ValueE","torch_tensorrt::DataType::Value"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kBoolE","torch_tensorrt::DataType::Value::kBool"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kCharE","torch_tensorrt::DataType::Value::kChar"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value6kFloatE","torch_tensorrt::DataType::Value::kFloat"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kHalfE","torch_tensorrt::DataType::Value::kHalf"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value4kIntE","torch_tensorrt::DataType::Value::kInt"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE","torch_tensorrt::DataType::Value::kUnknown"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kBoolE","torch_tensorrt::DataType::kBool"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kCharE","torch_tensorrt::DataType::kChar"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value6kFloatE","torch_tensorrt::DataType::kFloat"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kHalfE","torch_tensorrt::DataType::kHalf"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value4kIntE","torch_tensorrt::DataType::kInt"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE","torch_tensorrt::DataType::kUnknown"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypecv5ValueEv","torch_tensorrt::DataType::operator Value"],[0,2,1,"_CPPv4N14torch_tensorrt8DataTypecvbEv","torch_tensorrt::DataType::operator bool"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeneE8DataType","torch_tensorrt::DataType::operator!="],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE","torch_tensorrt::DataType::operator!="],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeneE8DataType","torch_tensorrt::DataType::operator!=::other"],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE","torch_tensorrt::DataType::operator!=::other"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType","torch_tensorrt::DataType::operator=="],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE","torch_tensorrt::DataType::operator=="],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType","torch_tensorrt::DataType::operator==::other"],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE","torch_tensorrt::DataType::operator==::other"],[46,1,1,"_CPPv4N14torch_tensorrt6DeviceE","torch_tensorrt::Device"],[46,2,1,"_CPPv4N14torch_tensorrt6Device6DeviceEv","torch_tensorrt::Device::Device"],[1,1,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypeE","torch_tensorrt::Device::DeviceType"],[46,1,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypeE","torch_tensorrt::Device::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv","torch_tensorrt::Device::DeviceType::DeviceType"],[1,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType::t"],[1,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType::t"],[46,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType::t"],[46,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType::t"],[1,4,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE","torch_tensorrt::Device::DeviceType::Value"],[46,4,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE","torch_tensorrt::Device::DeviceType::Value"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::Value::kDLA"],[46,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::Value::kDLA"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::Value::kGPU"],[46,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::Value::kGPU"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::kDLA"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::kGPU"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv","torch_tensorrt::Device::DeviceType::operator Value"],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv","torch_tensorrt::Device::DeviceType::operator Value"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv","torch_tensorrt::Device::DeviceType::operator bool"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv","torch_tensorrt::Device::DeviceType::operator bool"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!="],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!="],[1,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!=::other"],[46,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!=::other"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator=="],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator=="],[1,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator==::other"],[46,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator==::other"],[46,6,1,"_CPPv4N14torch_tensorrt6Device18allow_gpu_fallbackE","torch_tensorrt::Device::allow_gpu_fallback"],[46,6,1,"_CPPv4N14torch_tensorrt6Device11device_typeE","torch_tensorrt::Device::device_type"],[46,6,1,"_CPPv4N14torch_tensorrt6Device8dla_coreE","torch_tensorrt::Device::dla_core"],[46,6,1,"_CPPv4N14torch_tensorrt6Device6gpu_idE","torch_tensorrt::Device::gpu_id"],[17,4,1,"_CPPv4N14torch_tensorrt16EngineCapabilityE","torch_tensorrt::EngineCapability"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability15kDLA_STANDALONEE","torch_tensorrt::EngineCapability::kDLA_STANDALONE"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability7kSAFETYE","torch_tensorrt::EngineCapability::kSAFETY"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability9kSTANDARDE","torch_tensorrt::EngineCapability::kSTANDARD"],[47,1,1,"_CPPv4N14torch_tensorrt5InputE","torch_tensorrt::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE","torch_tensorrt::Input::Input::tensor"],[47,6,1,"_CPPv4N14torch_tensorrt5Input5dtypeE","torch_tensorrt::Input::dtype"],[47,6,1,"_CPPv4N14torch_tensorrt5Input6formatE","torch_tensorrt::Input::format"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9max_shapeE","torch_tensorrt::Input::max_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9min_shapeE","torch_tensorrt::Input::min_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9opt_shapeE","torch_tensorrt::Input::opt_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input5shapeE","torch_tensorrt::Input::shape"],[2,1,1,"_CPPv4N14torch_tensorrt12TensorFormatE","torch_tensorrt::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value","torch_tensorrt::TensorFormat::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE","torch_tensorrt::TensorFormat::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEv","torch_tensorrt::TensorFormat::TensorFormat"],[2,3,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value","torch_tensorrt::TensorFormat::TensorFormat::t"],[2,3,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE","torch_tensorrt::TensorFormat::TensorFormat::t"],[2,4,1,"_CPPv4N14torch_tensorrt12TensorFormat5ValueE","torch_tensorrt::TensorFormat::Value"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE","torch_tensorrt::TensorFormat::Value::kChannelsLast"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE","torch_tensorrt::TensorFormat::Value::kContiguous"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE","torch_tensorrt::TensorFormat::Value::kUnknown"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE","torch_tensorrt::TensorFormat::kChannelsLast"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE","torch_tensorrt::TensorFormat::kContiguous"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE","torch_tensorrt::TensorFormat::kUnknown"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatcv5ValueEv","torch_tensorrt::TensorFormat::operator Value"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormatcvbEv","torch_tensorrt::TensorFormat::operator bool"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat","torch_tensorrt::TensorFormat::operator!="],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator!="],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat","torch_tensorrt::TensorFormat::operator!=::other"],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator!=::other"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat","torch_tensorrt::TensorFormat::operator=="],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator=="],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat","torch_tensorrt::TensorFormat::operator==::other"],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator==::other"],[36,2,1,"_CPPv4N14torch_tensorrt15dump_build_infoEv","torch_tensorrt::dump_build_info"],[34,2,1,"_CPPv4N14torch_tensorrt14get_build_infoEv","torch_tensorrt::get_build_info"],[16,4,1,"_CPPv4N14torch_tensorrt7logging5LevelE","torch_tensorrt::logging::Level"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE","torch_tensorrt::logging::Level::kDEBUG"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kERRORE","torch_tensorrt::logging::Level::kERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE","torch_tensorrt::logging::Level::kGRAPH"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level5kINFOE","torch_tensorrt::logging::Level::kINFO"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE","torch_tensorrt::logging::Level::kINTERNAL_ERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE","torch_tensorrt::logging::Level::kWARNING"],[24,2,1,"_CPPv4N14torch_tensorrt7logging24get_is_colored_output_onEv","torch_tensorrt::logging::get_is_colored_output_on"],[22,2,1,"_CPPv4N14torch_tensorrt7logging18get_logging_prefixEv","torch_tensorrt::logging::get_logging_prefix"],[23,2,1,"_CPPv4N14torch_tensorrt7logging24get_reportable_log_levelEv","torch_tensorrt::logging::get_reportable_log_level"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE","torch_tensorrt::logging::kDEBUG"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kERRORE","torch_tensorrt::logging::kERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE","torch_tensorrt::logging::kGRAPH"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level5kINFOE","torch_tensorrt::logging::kINFO"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE","torch_tensorrt::logging::kINTERNAL_ERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE","torch_tensorrt::logging::kWARNING"],[26,2,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log"],[26,3,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log::lvl"],[26,3,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log::msg"],[27,2,1,"_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb","torch_tensorrt::logging::set_is_colored_output_on"],[27,3,1,"_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb","torch_tensorrt::logging::set_is_colored_output_on::colored_output_on"],[28,2,1,"_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE","torch_tensorrt::logging::set_logging_prefix"],[28,3,1,"_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE","torch_tensorrt::logging::set_logging_prefix::prefix"],[25,2,1,"_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level","torch_tensorrt::logging::set_reportable_log_level"],[25,3,1,"_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level","torch_tensorrt::logging::set_reportable_log_level::lvl"],[3,1,1,"_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE","torch_tensorrt::ptq::Int8CacheCalibrator"],[3,7,1,"_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE","torch_tensorrt::ptq::Int8CacheCalibrator::Algorithm"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE","torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE","torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator::cache_file_path"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::bindings"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::names"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::nbBindings"],[3,2,1,"_CPPv4NK14torch_tensorrt3ptq19Int8CacheCalibrator12getBatchSizeEv","torch_tensorrt::ptq::Int8CacheCalibrator::getBatchSize"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibratorcvPN8nvinfer115IInt8CalibratorEEv","torch_tensorrt::ptq::Int8CacheCalibrator::operator nvinfer1::IInt8Calibrator*"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache::length"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::cache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::length"],[4,1,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator"],[4,7,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator::Algorithm"],[4,7,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator::DataLoaderUniquePtr"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::cache_file_path"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::dataloader"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::use_cache"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::bindings"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::names"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::nbBindings"],[4,2,1,"_CPPv4NK14torch_tensorrt3ptq14Int8Calibrator12getBatchSizeEv","torch_tensorrt::ptq::Int8Calibrator::getBatchSize"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8CalibratorcvPN8nvinfer115IInt8CalibratorEEv","torch_tensorrt::ptq::Int8Calibrator::operator nvinfer1::IInt8Calibrator*"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache::length"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::cache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::length"],[30,2,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator"],[30,7,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator::Algorithm"],[30,3,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator::cache_file_path"],[29,2,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator"],[29,7,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::Algorithm"],[29,7,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::DataLoader"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::cache_file_path"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::dataloader"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::use_cache"],[35,2,1,"_CPPv4N14torch_tensorrt10set_deviceEKi","torch_tensorrt::set_device"],[35,3,1,"_CPPv4N14torch_tensorrt10set_deviceEKi","torch_tensorrt::set_device::gpu_id"],[48,1,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpecE","torch_tensorrt::torchscript::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::inputs"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec10capabilityE","torch_tensorrt::torchscript::CompileSpec::capability"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec5debugE","torch_tensorrt::torchscript::CompileSpec::debug"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec6deviceE","torch_tensorrt::torchscript::CompileSpec::device"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec12disable_tf32E","torch_tensorrt::torchscript::CompileSpec::disable_tf32"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec18enabled_precisionsE","torch_tensorrt::torchscript::CompileSpec::enabled_precisions"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec6inputsE","torch_tensorrt::torchscript::CompileSpec::inputs"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14min_block_sizeE","torch_tensorrt::torchscript::CompileSpec::min_block_size"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec20num_avg_timing_itersE","torch_tensorrt::torchscript::CompileSpec::num_avg_timing_iters"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec20num_min_timing_itersE","torch_tensorrt::torchscript::CompileSpec::num_min_timing_iters"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14ptq_calibratorE","torch_tensorrt::torchscript::CompileSpec::ptq_calibrator"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec5refitE","torch_tensorrt::torchscript::CompileSpec::refit"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec24require_full_compilationE","torch_tensorrt::torchscript::CompileSpec::require_full_compilation"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14sparse_weightsE","torch_tensorrt::torchscript::CompileSpec::sparse_weights"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec22torch_executed_modulesE","torch_tensorrt::torchscript::CompileSpec::torch_executed_modules"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec18torch_executed_opsE","torch_tensorrt::torchscript::CompileSpec::torch_executed_ops"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec24truncate_long_and_doubleE","torch_tensorrt::torchscript::CompileSpec::truncate_long_and_double"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14workspace_sizeE","torch_tensorrt::torchscript::CompileSpec::workspace_size"],[31,2,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support"],[31,3,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support::method_name"],[31,3,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support::module"],[32,2,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile"],[32,3,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile::info"],[32,3,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile::module"],[37,2,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::info"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::method_name"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::module"],[33,2,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module"],[33,3,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module::device"],[33,3,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module::engine"]]},objnames:{"0":["c","macro","C macro"],"1":["cpp","class","C++ class"],"2":["cpp","function","C++ function"],"3":["cpp","functionParam","C++ function parameter"],"4":["cpp","enum","C++ enum"],"5":["cpp","enumerator","C++ enumerator"],"6":["cpp","member","C++ member"],"7":["cpp","templateParam","C++ template parameter"]},objtypes:{"0":"c:macro","1":"cpp:class","2":"cpp:function","3":"cpp:functionParam","4":"cpp:enum","5":"cpp:enumerator","6":"cpp:member","7":"cpp:templateParam"},terms:{"0":[33,43,44,45,48,51,52,53,54,55,56,57,58,59,65,67,69,74,76,77,84,85,87,88,90,91,92,93],"00":[51,52,54,55,56,57,58,59],"0000":78,"00000000":[51,52,54,55,57],"000000037777":58,"000000252219":58,"000000397133":58,"000007":53,"000014":51,"000015":53,"000059":53,"000106":51,"000116":51,"000302":56,"000368":51,"000545":51,"000820":51,"000973":51,"001256":51,"001260":51,"001270":51,"001351":51,"0018":59,"002":54,"002251":53,"002259":53,"0023":59,"002305":53,"0026":59,"003287":53,"003289":53,"003317":53,"003462":51,"003774":51,"004":52,"004128":51,"004205":53,"004206":53,"004256":53,"004825":51,"005":[54,55],"006":[52,55],"006661":51,"006677":53,"006693":53,"006733":51,"006846":51,"006943":53,"0070":59,"008":59,"008071":51,"008453":51,"0087":59,"009802":51,"009803":51,"009836":51,"00f1b6db":[52,54,55],"01":[52,54,55,56,57,58,59,69,78,84],"0106":59,"010961":51,"011388":51,"013":59,"014965":56,"0151":59,"016114":51,"0163":59,"0169":59,"018642":51,"018643":51,"018670":51,"02":[52,54,55,59],"0208":84,"020804":51,"021143":51,"0220":59,"024492":51,"025":59,"025000":59,"026":56,"0263":59,"028":59,"0296":59,"03":[51,78],"03291":59,"033488":51,"033572":51,"03466":59,"035722":51,"0358":84,"0383":84,"04":[51,52,56,58,59,84,87,90],"0435":84,"04609":59,"0464":84,"04743":59,"04807":59,"0491":59,"0493":59,"04it":59,"05":[51,52,53,54,55,58,59],"050000":59,"0505":59,"05080":59,"0530":84,"05311":59,"05374":59,"057":59,"058047":51,"058053":51,"058375":51,"05945":59,"06":[51,52,58],"0622":59,"063":59,"06340":59,"06567":59,"0676ba61":[54,58],"0678":84,"069":59,"07":[52,54,55],"071":59,"071428":51,"072057":51,"07266":59,"073":56,"076796":51,"08":[52,54,55],"0805":84,"0818":84,"08331":59,"08555":59,"086":59,"09":[52,54,55,57],"0932":84,"096":59,"0a0":[51,52,77],"0a3":51,"0c106ec84f199a0fbcf1199010166986da732f9b0907768c9ac5ea5b120772db":87,"0f":58,"0mib":[52,54,55,57],"0rc1":51,"0s":54,"0x":53,"1":[3,4,33,43,44,45,47,48,51,52,53,54,55,56,57,58,59,61,62,64,67,69,74,75,77,78,81,83,84,85,86,87,88,91,92,93],"10":[48,51,52,53,54,55,56,57,58,59,81,83,84,87,88,90],"100":[52,54,55,57,58,59,85],"1000":[52,54,55,57,58,59,90],"10000":[52,54,55],"100000":59,"10018":59,"10070":59,"101":53,"101168":59,"1012":61,"1013":61,"10130":59,"102":51,"102248":59,"1024":[51,52,54,55,57,58,59,91],"10240mib":57,"10362":52,"104":[52,54,55],"1045":84,"105":59,"1056":84,"1063":84,"1065":51,"1069":51,"107":[52,54,55],"107194":59,"10732":59,"107625":59,"109":84,"10990":59,"10b0":51,"11":[51,52,53,54,55,57,58,59,61,77,81,84,85,87,90],"110":[58,59],"11299":59,"112mib":51,"11499":59,"115":57,"115269":59,"115740":59,"11594":59,"117":[52,54,55],"117969":59,"118358":59,"11879":59,"11888":59,"119":83,"1190":51,"119708":51,"11k":[52,54,55],"11w":52,"12":[51,52,53,54,55,57,58,59,61,77,81,83,84,85,90],"120":[57,59,83,84],"120097":51,"1201":51,"121":[54,57],"1216":53,"121618":51,"122":57,"12288mib":51,"123":[58,78],"12345":51,"126":59,"126382":59,"126834":59,"127":[52,59],"128":[51,52,53,54,55,57,58,59],"128674":59,"129":83,"129518":59,"12k":54,"13":[51,53,54,55,57,58,59,77,81,87],"130":51,"133":52,"13388":59,"135453":59,"135936":59,"136":90,"137":[51,83],"137858":59,"138":83,"138366":59,"139704147265344":59,"13x":52,"14":[51,52,53,54,55,57,58,59,81,90],"1409":88,"141":59,"143":51,"145":59,"145539":59,"146":51,"146053":59,"147871":59,"148353":59,"1488":51,"149":51,"14x":53,"15":[51,53,54,55,57,58,59,77,81],"1500":59,"1502":84,"150503":56,"150504":56,"150505":56,"150509":56,"1516":51,"1531":59,"1535566590":[52,54,55],"1538":51,"154252":59,"154685":59,"1549":[55,84],"1552":55,"1556":88,"1560":55,"1563":59,"156558":59,"1566":55,"1568":55,"157159":59,"1572":55,"1574":55,"1575":55,"1598":55,"15w":54,"15x":53,"16":[51,53,54,55,57,58,59,81,83,84,86],"16000":51,"163197":59,"163676":59,"164":[52,54,55],"165":58,"165549":59,"165991":59,"166":58,"167":58,"1691":84,"17":[51,52,53,54,55,57,58,59,81],"173":59,"173305":59,"173926":59,"176034":59,"176697":59,"1771":53,"1776":53,"1777":[51,59],"179":58,"1792":51,"18":[51,52,53,54,55,57,58,59,81,84,87],"182843":59,"183426":59,"185377":59,"185962":59,"188":59,"19":[51,53,54,58,59,78,81],"190":56,"1906":59,"191966":59,"192424":59,"194325":59,"194817":59,"1971":59,"198":51,"1994":[59,88],"1d":61,"1e":[54,55,56,59,91],"1f":[51,53],"1rc0":51,"1ubuntu0":51,"1x1":58,"2":[33,43,45,48,51,52,53,54,55,56,57,58,59,62,67,69,75,77,78,81,83,84,85,87,88,92],"20":[51,52,53,54,55,58,59,81],"200":[52,54,55,57,59],"2000000000":[51,53],"2002":59,"2009":88,"200w":55,"201":[52,54,55],"2010":[59,88],"2012":78,"2014":88,"2017":[51,53,58],"2018":[52,53,54,55],"2019":[51,52,53,54,57,58],"201988":59,"202":[52,54,55],"2020":[58,59,68,84],"2021":[51,53],"2022":[51,52,53,54,55,57,58,59],"2023":[59,88],"202665":59,"204763":59,"2048":[54,55],"205461":59,"20w":57,"21":[51,52,53,54,55,57,58,59],"211393":59,"211987":59,"213899":59,"214450":59,"215434":51,"215446":51,"215806":51,"216":52,"217":[54,55],"218":51,"22":[51,52,53,54,55,57,58,59,90],"220892":59,"221533":59,"222":54,"223":[54,55],"223519":59,"224":[52,54,55,62,90],"224037":59,"225":[52,54,55,90],"227":[52,54,55],"227739155292511":52,"229":[52,54,55,90],"23":[48,51,52,54,55,59,61,78],"2305":59,"23344755172729492":52,"233809":59,"234":59,"234375":90,"234434":59,"235":51,"237":59,"238":[55,59],"238212":59,"239042":59,"24":[51,54,57,58,59,61],"241":56,"241022":59,"24112":[52,54,55],"241654":59,"242":51,"243":[54,57],"245":58,"2453mib":51,"24576mib":[52,54],"246":52,"2462mib":51,"246kb":52,"247820":59,"248":61,"248445":59,"249":61,"24k":[52,54,55],"25":[51,54,55,59,84,85],"250366":59,"250959":59,"250w":51,"254":59,"256":[52,54,55,59,90],"257248":59,"257854":59,"258":77,"259968":59,"26":[51,53,54,55,58],"2606":[52,54,55],"260660":59,"265":51,"268160":59,"26w":51,"27":[51,52,53,57,59,84],"272":51,"28":[51,52,55,84,88,93],"280":59,"2802":84,"282":51,"2822":77,"285":59,"287":77,"288":[51,59],"28c":52,"29":[51,52,55,59,84],"291":59,"29c":54,"2_20200626":87,"2c3":78,"2c365_subsampl":[52,54,55],"2c916ef":51,"2f":[52,54,55,57,58,59],"2s":54,"2x":54,"3":[45,48,51,52,53,54,55,56,57,58,59,61,62,64,69,77,78,81,83,84,85,87,88,91,92,93],"30":[52,54,55,58,59],"300":[57,58,59,91,92],"300x300":58,"302":59,"309":59,"3090":[52,54],"31":[51,54,55,57,58,84],"311":59,"314":59,"315":51,"32":[51,52,53,55,57,58,59,83,84,86,88,91,93],"320":88,"3207":59,"320w":57,"321":52,"329273":59,"32bit":91,"32x32":54,"33":[52,54,55,57,58,84],"330212":59,"332529":59,"333365":59,"3393":52,"339547":59,"34":[52,54,55,56,57,58,59],"340248":59,"342257":59,"342890":59,"345":59,"346":84,"349":51,"35":[52,54,58,84],"350619":59,"350w":[52,54],"351372":59,"352":[52,54,55],"353470":59,"35363":[52,54,55],"353k":[52,54,55],"354121":59,"3550":59,"35k":[52,54,55],"35x":52,"36":[51,52,55,84],"360090":59,"360806":59,"361413":[52,54,55],"362803":59,"3631":59,"363274":59,"366":54,"366kb":54,"3677":61,"37":[51,52,54,55,59,84],"370369":59,"371057":59,"373071":59,"373766":59,"376":52,"3763":59,"379890":59,"38":[51,54,55,58,83],"380538":59,"382532":59,"383128":59,"385":59,"3877":59,"389077":59,"389760":59,"39":[51,52,53,54,55,56,57,58,59,83],"3909":51,"391815":59,"392399":59,"394":59,"39485082030296326":54,"395":59,"3987298309803009":52,"399809":59,"39c":51,"39mib":51,"3a8704db":77,"3d":85,"3e":56,"3f":59,"3x3":59,"4":[51,52,53,54,55,56,57,58,59,64,69,75,77,78,81,84,85,87],"40":[52,54,55,57,58,59],"400":[57,59],"400472":59,"402399":59,"402939":59,"406":[52,54,55,90],"408818":59,"409424":59,"4096":59,"40mb":54,"41":[51,54,55,57],"411513":59,"4116":55,"412097":59,"4122":55,"4123":55,"4142":55,"4156":55,"4161":51,"4166":55,"4170":55,"4172":55,"4176":55,"4178":55,"418537":59,"419128":59,"42":[51,55,57,58,59],"421343":59,"421946":59,"429":51,"429382":59,"429688":90,"42c":57,"42w":51,"43":[51,57,58,59],"430156":59,"432259":59,"433079":59,"4352":59,"439":59,"439297":59,"44":[51,58,59],"440027":59,"442":[52,54,55,59],"442149":59,"442826":59,"442k":[52,54,55],"443":[52,54,55],"4465":[59,88],"449377":59,"449968":59,"45":[51,52,58],"452122":59,"452718":[52,54,55],"452754":59,"456":[52,54,55,90],"45675724744796753":55,"4584":52,"459":59,"46":[51,52,58,59],"462532":59,"463295":59,"466963":59,"467725":59,"468750":90,"469692":59,"47":51,"470":[55,59],"4700":[52,54,55],"470336":59,"4726":59,"474":52,"476204":59,"4767":55,"476738":59,"47681mib":55,"478809":59,"479375":59,"48":[51,54,55],"481":54,"4822":[59,88],"484":59,"485":[52,54,55,90],"485666":59,"486219":59,"488416":59,"488986":59,"489":55,"49":[51,53,58],"4914":[59,88],"4935":55,"49785590171813965":54,"49788108468055725":55,"4980":55,"499":59,"4fef":[52,54,55],"4mib":51,"4s":52,"4x":51,"5":[51,52,53,54,55,56,57,58,59,64,65,77,78,81,83,84,85,87,90,91],"50":[51,52,53,55,57,58,59],"500":[57,59],"5002":55,"5005":55,"5014":55,"5016":55,"5018":55,"5020":55,"5024":55,"5026":55,"5027":55,"5033":55,"504":59,"5052":55,"5067":55,"5088":55,"5091":55,"5094":55,"5096":55,"510":[51,52,54,57],"5100":55,"511":59,"5110":55,"5115":55,"5117":59,"5118":55,"512":[51,54,55,59,91],"512364":59,"513354":59,"514046":59,"514638":59,"515270":59,"5153":55,"515859":59,"516441":59,"517009":59,"5172":59,"517600":59,"518167":59,"518752":59,"519333":59,"5197":55,"519911":59,"51c":55,"52":[52,54,55,59],"5202":55,"520473":59,"5207":55,"521038":59,"5215":55,"521596":59,"522170":59,"522742":59,"5231":55,"523360":59,"523438":90,"523957":59,"5242":55,"524581":59,"525059":59,"525366":59,"525675":59,"525962":59,"526257":59,"526566":59,"526885":59,"527188":59,"527489":59,"527792":59,"528097":59,"528387":59,"528834":59,"529163":59,"53":[51,54,58,78],"5320":59,"532748":59,"533468":59,"5335":59,"534033":59,"534684":59,"535320":59,"535983":59,"536":59,"536569":59,"537248":59,"537833":59,"538480":59,"539":84,"539074":59,"539724":59,"53k":[52,54,55],"540307":59,"540952":59,"541534":59,"542075":59,"542596":59,"543248":59,"543719":59,"544424":59,"544952":59,"545530":59,"546114":59,"546713":59,"547292":59,"547902":59,"548453":59,"549015":59,"549665":59,"55":55,"550436":59,"551":51,"551925":59,"553105":59,"55c":51,"55k":[52,54,55],"56":[51,52,55,57,84],"560":59,"5620":59,"564":59,"5676":59,"568":59,"57":[55,59],"5746":59,"576":[57,84],"58":[54,55,59],"59":[51,54,55,57,58],"594":51,"597":53,"599":53,"5d":59,"5f":59,"6":[51,52,53,54,55,56,57,59,61,64,69,81,83,84,87],"60":[52,54,55,58],"600":[57,59],"6047":51,"608":55,"608kb":55,"61":[58,59],"613":59,"62":[51,52,59],"622":[59,61],"62w":55,"62x":53,"63":[51,53,55],"630":[52,54,55],"635":59,"636":59,"637":59,"638":59,"639":59,"64":[53,54,55,59,85,86],"640":59,"641":59,"642":59,"643":59,"644":59,"6442285180091858":55,"6445754766464233":54,"646":59,"649":59,"64bit":91,"65":[51,52,54,55,59],"6539":59,"655":59,"66":52,"664062":90,"668":51,"669":51,"67":[55,59],"6733":59,"677":59,"67mib":51,"68":[54,59],"6812":[52,54,55],"687":59,"688":59,"689":59,"69":[54,55],"690":59,"6f":[51,53],"6s":55,"7":[51,52,53,54,55,56,57,59,64,65,81,84,87],"70":[52,54,55,58],"700":[57,59],"701":59,"709":51,"7099":59,"71":[52,55,59],"716":59,"72":[52,54],"7203":59,"72048":87,"721":59,"724":59,"728":51,"729":51,"73":[51,52,54,55],"7302":78,"732":59,"735":59,"7376":59,"738":59,"74":[58,59],"742":59,"7454":59,"75":[52,54,55,59],"7537":59,"76":59,"781":59,"79":[54,59],"796":59,"797":59,"7ubuntu0":51,"8":[3,51,52,53,54,55,56,57,58,59,61,77,78,81,84,85,87,90,91],"80":[51,52,54,55,58,59],"800":[57,59],"8000":90,"8001":90,"8002":90,"801":59,"81":[58,59],"818":59,"818977576572eadaf62c80434a25afe44dbaa32ebda3a0919e389dcbe74f8656":87,"82":59,"8204":59,"821":59,"83":[52,55,59],"834":59,"8351":59,"837":59,"84":[55,57,59,83,84],"847":59,"84e944ff11f8":[52,54,55],"84x":54,"85":[52,55,59],"86":[52,55],"860":59,"86k":[52,55],"87":59,"8732":58,"877":59,"8791":59,"88":[52,55,58],"89":[52,55],"898":59,"89k":[52,55],"8bit":59,"9":[51,52,53,54,55,56,57,58,59,81,84,90],"90":[52,54,55,58,90],"900":[57,59],"906":59,"90994":[52,55],"916":[51,59],"91a9cc5850784b2065e8a0aa3d526fd9":51,"92":[52,54,55,90],"9205bed204e2ae7aafd2e01cce0f21309e281e18d5bfd7172ef8541771539d41":87,"922029":56,"9223372036854775807":69,"923":[52,54,55],"925192":56,"927":59,"92k":54,"9367":59,"94":[52,54,55],"941":59,"94328":54,"944":59,"948":59,"94k":[52,54,55],"95":52,"951":53,"952":59,"953":[51,56,59],"955":51,"959":59,"96":[51,59],"9624":59,"9695423245429993":52,"97":[52,59],"98":59,"9899807572364807":54,"9899841547012329":55,"99":[51,52,53,54,55,58,59],"996":56,"997":59,"999":59,"9999":59,"99th_p":[51,53],"9ab0":[52,54,55],"9x":51,"abstract":[64,67,78],"boolean":[59,85],"break":[59,77,85],"byte":51,"case":[0,1,2,46,48,53,57,58,60,64,67,85,87,88,89],"catch":[61,84],"char":[3,4,44,84,91],"class":[17,29,30,44,45,46,50,52,53,54,55,56,57,58,59,64,67,77,78,83,84,85,86,88],"const":[0,1,2,3,4,29,30,31,32,33,35,37,44,45,46,61,67,69,84,88],"default":[0,1,2,3,4,16,29,30,43,45,46,47,48,51,52,54,55,57,58,62,75,76,77,84,85,87,88,91,92],"do":[51,52,54,57,58,60,61,62,67,76,78,83,84,85,86,88,93],"enum":[0,1,2,42,45,46,50,52,88],"export":[51,59,87],"final":[51,60,63,65,87],"float":[48,51,52,54,57,58,69,83,84,86,88,91,92],"function":[0,1,2,3,4,46,47,48,50,51,52,53,54,56,57,58,59,61,62,64,67,83,84,85,87,88,90,92,93],"import":[51,52,53,54,55,56,57,58,59,61,62,75,77,83,84,85,86,87,89,90,91,92],"int":[0,3,4,35,44,45,48,52,55,59,69,75,84,91],"long":[48,53,60,77,78,91],"new":[0,1,2,3,4,32,33,46,47,48,52,54,57,58,59,64,65,67,77,84,85,90],"null":51,"public":[0,1,2,3,4,44,45,46,47,48,78,88],"return":[0,1,2,3,4,23,24,29,30,31,32,33,34,37,42,43,44,45,46,51,52,53,54,55,56,57,59,61,63,64,65,67,83,84,85,86,88,90],"short":[61,77,78],"static":[47,48,60,67,75,84],"super":[44,56,57,83],"throw":[61,84,91],"true":[0,1,2,4,46,48,51,52,53,54,55,56,57,58,59,61,62,67,69,75,78,84,85,88,90,92,93],"try":[51,52,53,54,57,65,77,78,84,92],"var":69,"void":[3,4,25,26,27,28,35,36,42,44,45],"while":[56,59,87,88,90],A:[4,29,30,32,33,47,51,52,53,54,55,57,59,61,62,67,78,87,88,90],AS:[51,52,53,54,55,57,58,59],And:84,As:[55,84,85],At:76,But:[77,84],By:[29,30,50,57,58,62,75,83],For:[52,54,55,57,58,59,60,62,75,77,78,83,84,85,87,88,89,90,92],IS:[51,52,53,54,55,57,58,59],If:[27,51,52,53,54,56,57,58,59,60,61,75,77,84,85,87,88,89,90,93],In:[0,1,2,46,51,52,53,54,55,57,58,59,60,63,64,65,67,68,77,78,80,85,86,87,88,89,90],Is:24,It:[51,52,53,54,55,57,58,61,62,63,65,67,75,77,85,87,91],Its:[67,77],NOT:53,No:[52,54,55,57],Not:3,OF:[51,52,53,54,55,57,58,59],OR:[51,52,53,54,55,57,58,59],On:[51,52,54,55,57,62],One:[53,55,77,78,84,85],Or:77,THE:77,TO:[84,87],That:77,Thats:84,The:[1,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,75,78,83,85,86,87,88,90,91,92],Then:[56,62,87,88,92],There:[4,53,58,59,60,65,67,78,83,85,87,88,89,90],These:[52,53,54,60,64,75,77,88,90],To:[1,46,55,57,58,59,62,75,83,84,85,86,87,90,92],Will:31,With:[52,53,54,55,75,77,84,88,90],_:[51,52,53,54,55,56,57,58,59,77,85],___torch_mangle_10:83,___torch_mangle_4847:64,___torch_mangle_5:83,___torch_mangle_9:83,__and__:69,__attribute__:43,__future__:51,__getitem__:69,__gnuc__:43,__init__:[56,57,77,83],__is__:69,__isnot__:69,__not__:69,__or__:69,__range_length:69,__round_to_zero_floordiv:69,__torch__:[64,83,84],__torch___pytorch_detection_ssd_src_model_ssd300_trt_engin:64,__torch___torchvision_models_resnet____torch_mangle_4847_resnet_trt_engin:64,__version__:59,__visibility__:43,__xor__:69,_affin:59,_all_:61,_b:51,_c:92,_calibr:59,_convolut:[59,69,84],_input_quant:59,_jit_intern:51,_jit_to_backend:92,_pair:59,_quant:59,_run_on_acc:56,_run_on_acc_0:56,_run_on_acc_2:56,_run_on_gpu_1:56,_theme:82,_trace:51,_validate_not_a_forked_repo:[54,55,58,90],_weight_quant:59,a100:[51,52,53,54,57,58],a1b:78,aarch64:65,ab:69,abi:89,abil:55,abl:[52,53,54,55,57,58,60,61,67,68,85,88,92],about:[52,54,55,58,59,60,64,67,75,84,87,90,91],abov:[25,58,59,76,77,84,85,87],absl:51,absolut:[59,91],absolute_import:51,ac:80,acc:[56,59],acc_input:56,acc_mod:85,acc_norm:85,acc_op:[56,85],acc_op_convert:85,acc_ops_sigmoid:85,acc_trac:[56,85],acceler:[52,53,54,57,58,93],accept:[47,53,59,64,67,84,86,91],access:[55,58,61,67,68,75,84,92],accord:67,accordingli:[59,75,85],account:90,accumsan:80,accumul:48,accuraci:[58,59,88],achiev:[52,54,57,58,59],aco:69,acosh:69,acoust:51,acquir:84,across:[61,75],acthardtanh:67,action:[77,85],activ:[59,77,84,85,88,93],activationtyp:[67,85],actual:[57,59,61,64,67,83,84,85],ad:[25,60,85,91],adaptive_avg_pool1d:69,adaptive_avg_pool2d:69,adaptive_avg_pool3d:69,adaptive_max_pool1d:69,adaptive_max_pool2d:69,adaptive_max_pool3d:69,adaptiveavgpool2d:[54,55],add:[26,60,61,62,67,69,75,77,82,84,86,87],add_:[61,69,84],add_activ:85,add_patch:58,addactiv:67,addit:[55,58,59,61,84,85],addlay:84,address:78,addshuffl:84,adipisc:[78,80],adjac:77,adjust:[59,77],adjust_lr:59,adopt:53,advanc:[78,88],advis:77,aenean:80,affin:[54,55],afford:85,aforement:90,after:[55,56,58,59,60,61,62,68,83,84,85,86,89,90,91],again:[44,53,58,64,67,77],against:[84,91],agre:[51,52,53,54,55,57,58,59],agx:45,ahead:[55,84],aim:[53,61],aiohttp:51,aiosign:51,alabast:51,algo_typ:88,algorithm:[3,4,29,30,44,53,85,88],algorithm_selector:85,alias:43,align:77,align_corn:69,aliquam:80,aliquet:[78,80],all:[16,42,43,44,45,48,51,52,53,54,55,57,58,59,61,62,64,77,78,83,84,85,86,87,88,89,90,91],alloc:67,allow:[47,48,52,54,56,57,58,60,61,75,85,91],allow_gpu_fallback:[45,46,88,92,93],allow_tf32:69,almost:84,alpha:[58,69,78,85],alreadi:[51,52,53,54,55,57,58,59,60,61,84,88,91],also:[30,48,52,53,54,55,57,58,60,67,68,75,77,78,84,86,87,88],alter:55,altern:47,although:77,altogeth:[62,75],alwai:[3,4,27,77,91],amax:59,amax_sequeez:59,amazonaw:[52,54,55],amet:[78,80],amount:[53,59],amp:[52,54,55],amp_backend:51,an:[2,3,4,47,48,51,52,53,54,55,57,58,59,60,61,62,63,64,65,67,68,75,77,78,83,84,85,86,87,88,89,90,91],analogu:67,analysi:[58,62],analyt:75,analytics_id:75,ancient:77,ani:[47,51,52,53,54,55,57,58,59,60,67,75,77,84,85,86,87,88,91],ann:77,anneal:59,annot:[58,67,84],anonym:77,anoth:[53,77,78,83,86],ant:80,antlr4:51,anyon:78,anyth:[77,78,89],aot:[55,68,84],apach:[51,52,53,54,55,57,58,59],apex:58,api:[51,55,58,59,62,65,67,76,84,85,86,88,89,90,92],appdir:51,appear:77,append:[51,52,53,54,55,57,58,59,69],applehelp:51,appli:[59,88],applic:[1,30,46,51,52,53,54,55,57,58,59,61,65,84,86,89,91,92,93],approach:[52,54,57,58],apr:[51,84],apt:51,ar:[42,46,48,51,52,53,54,55,56,57,58,59,60,61,62,64,65,67,68,75,77,78,79,83,84,85,87,88,89,90,91,92],arab:78,arang:69,architectur:[53,58,59,68,87],archiv:[51,54,58,87],arcu:[78,80],area:79,aren:84,arg:[51,55,56,60,81,84,85],arg_replacement_tupl:85,argc:84,argmax:[52,53,54,55],argon2:[51,54,55,57,58],argpars:51,argument:[47,51,52,53,59,61,64,67,77,78,84,85,91],argv:84,around:[59,61,64,67,77,80,83],arrai:[3,4,33,51,53,60],arrayref:[45,47,48],arti:[52,54,55],arxiv:88,as_numpi:90,asin:69,asinh:69,aspect:91,asr:51,asr_model:51,assembl:[60,84],assert_clos:56,assign:[3,4,76],associ:[53,60,67,84],associatevalueandivalu:67,associatevalueandtensor:[67,84],assum:[51,59,92],ast:51,asttoken:[51,55,58],async:51,asyncio:[51,54,55,57,58],atan:69,atanh:69,aten:[48,58,59,61,62,66,67,69,84],atol:[56,91],attach:58,attent:53,attention_mask:53,attention_masks_tensor:53,attr:[51,54,55,57,58],attrdict:[51,90],attribut:[61,62,64,77,84,85],auctor:80,audio:51,audioread:51,augment:53,augu:80,auth:51,author:78,auto:[44,62,67,77,78,84,88,93],autodoc:[77,78],automat:[52,54,57,58,77,84],av:[54,55,57],avail:[52,54,55,57,58,67,75,85,87,91,93],averag:[48,52,54,55,57,58,59,91],avg:[52,58,59,91],avg_pool1d:69,avg_pool2d:69,avg_pool3d:69,avgpool:[54,55,58,59],avoid:[52,53,54,55,85],awai:77,await:[52,54,55],awaken:77,ax:[52,54,55,58],axi:[52,54,55,59,69],b0:54,b:[54,55,58,69,78,90],b_hh:69,b_ih:69,babel:51,back:[61,62,64,65,77,83,84],back_insert:44,backbon:[53,58],backcal:[51,54,55,57,58],backend:[51,52,53,54,55,56,57,58,59,76,92],background:[77,83],backlink:77,backport:51,backward:[59,85],bar:[75,77],base:[36,49,52,53,54,56,57,58,59,64,77,83,87,88],basebal:53,baselin:[55,59],bash:87,basi:[51,52,53,54,55,57,58,59,77],basic:[59,78,85,90,91],batch:[3,4,44,51,52,53,54,55,57,58,59,85,88,90,93],batch_norm:[67,69],batch_siz:[44,51,53,58,59,88],batched_attention_mask:53,batched_data_:44,batched_indexed_token:53,batched_segment_id:53,batchnorm2d:[54,55],batchnorm:[58,61],batchsiz:51,batchtyp:44,bathroom:77,bazel:[65,87],bazel_vers:87,bazelbuild:87,bazelisk:87,bazelvers:87,bbox:58,bdist_wheel:87,beat:78,beautifulsoup4:[51,55],becaus:[53,67,83,84,85,87],becom:[53,67],bee:77,been:[60,67,78,84],befor:[48,55,58,59,61,65,67,68,84,85,87,90],beforehand:84,begin:[44,53,77,85,87],beginn:83,begun:77,behav:[58,79],behavior:[48,58,85],behaviour:[51,52,53,54,55,57,58],behind:77,being:[52,54,57,58,84,85],belong:77,below:[53,58,67,77,84,85,87,90],benchmark:[52,53,54,57,69],benefit:[67,84],bertformaskedlm:53,bertforpretrain:53,bertforsequenceclassif:53,berttoken:53,besid:77,best:[52,54,55,57,58,77,85,87],best_result:58,best_results_per_input:58,best_results_per_input_trt:58,beta:69,better:[52,54,56,57,58,83,88],between:[58,61,67,77,78,87,88],bfe5ad2:52,bia:[53,54,55,56,57,59,61,69,84],bibendum:80,bibliograph:78,bibtex:51,bidirect:53,bigger:77,bin:87,binari:[44,88],binary_data:90,bind:[3,4,33,44,51,54,55,57,58,77],bird:[52,54,55,59,90],bit:[48,53,67,84,85],bitbucket:75,bitbucket_url:75,black:[51,58],blandit:80,blank:77,bleach:[51,54,55,57,58],blob:[66,75,88],block0:61,block1:61,block:[60,61,81,91],blue:77,bmm:69,bn1:[54,55],bn2:[54,55],bn3:[54,55],bodi:[77,78],bold:77,bool:[0,1,2,3,4,24,27,29,31,42,44,45,46,48,61,67,69,75,84,88],border:77,bot:58,both:[52,54,57,58,75,77,83,87,88],boto3:51,botocor:51,bottleneck:[54,55],bottom:75,bound:[58,59],box:[58,77],braceexpand:51,bracket:77,branch:[53,87],bread:77,breed:[52,54,55],brief:62,briefli:83,broadli:53,broken:[51,52,53,54,55,57,58],brontosaurus:77,browser:77,bsd:[42,43,44,45],bu:[51,52,54,55,57],buffer:[3,4,85],bug:87,bui:78,build:[29,30,34,48,51,52,56,60,63,65,67,76,81,84,85,88,91],build_fil:87,build_model:85,builder:85,builderconfig:45,built:[33,64,65,87,91],builtin:85,bust:[52,54,55],button:[75,77],bytearrai:85,c10:[0,1,45,46,47,48,84,88],c96b:55,c:[42,43,44,45,51,52,54,55,57,58,59,65,69,78,85,89,90,91,93],c_api:66,c_str:[67,84],ca6b:[52,54],cach:[3,4,29,30,44,51,54,55,58,59,84,85,88,91],cache_:44,cache_fil:[44,88],cache_file_path:[3,4,29,30,44],cache_file_path_:44,cache_size_:44,cachecalibr:88,cachetool:51,cackl:78,cadenc:55,calcuat:59,calcul:[47,60,62,84],calendar:51,calib:59,calib_output:59,calibr:[3,4,29,30,44,48,59,84,88,91],calibrate_model:59,calibration_cache_fil:[29,30,88],calibration_dataload:[29,88],calibration_dataset:88,calibrationalgo:88,call:[29,30,32,48,51,52,53,54,57,58,59,61,64,67,77,83,84,85,92],call_funct:[56,85],call_modul:56,callmethod:83,can:[0,1,4,29,30,37,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,75,77,83,84,85,86,87,88,89,90,91,92],canada:78,cannot:[47,57,58,59,61,62,76,83,85],canon:75,canonical_url:75,cap:[51,52,54,55,57],capabl:[17,45,48,64,91,92],capit:[53,77],caption:[77,80],captur:59,car:59,card:[52,53,54],cast:[3,4,61],cat:[59,69,87],caught:61,caus:[52,54,57,58,59,67,75,87],cd:[85,87,90],cdll:84,ceil:69,ceil_mod:[54,55,69],cell:[53,58,78],center:[52,53,54],centercrop:[52,54,55,90],cerr:84,certain:[51,85,87],certifi:[51,53],cf0691493d05062fe3239cf76773bae4c5124f4b039050dbdd291c652af3ab2a:87,cffi:[51,54,55,57,58],cfg:62,chain:67,challeng:[59,90],chanc:67,chang:[30,52,53,54,55,57,58,61,65,75,85,88,90],changelog:81,channel:[2,52,54,55,59,76],channel_last:55,charact:77,charset:[51,53],check:[0,1,31,46,55,58,61,67,84,85,87,89,90,91],check_method_operator_support:[21,41,45,49],checkmethodoperatorsupport:84,checkpoint:[51,53,54,58,59],child:[56,78],children:85,chimpansee_amber_r_1920x1080:[52,54,55],chimpanze:[52,54,55],choic:53,choos:[52,54,83,85],ci:[51,52,54,55,57],cifar10:[59,88],cifar:[59,88],circular:59,ckpt:59,ckpt_path:59,cl:53,clamp:[59,69],clamp_max:69,clamp_min:69,class_count:90,class_pr:59,class_prob:59,classes_to_label:58,classif:[57,58,59,83,84],classifi:[57,59,78],classification_index:90,clean:77,clear:44,cli:91,clib:51,click:[51,53,58],clickabl:77,client:[51,54,55,57,58],clone:[69,85],close:[59,84],closer:61,closet:77,cloud:51,cloudfront:[52,54,55],co:[69,78],coco:58,cocodataset:58,code:[52,53,54,55,57,58,62,65,68,76,78,83,84,85,88],collapse_navig:75,collat:78,collect:[51,52,54,57,58,59,84],collect_stat:59,colon:77,color:[24,27,56,77],colorama:51,colored_output_on:[27,42],column:78,com:[51,52,53,54,55,57,58,66,84,85,87,88,89,90],combin:85,come:[52,54,55,57,58,76,85,87,90],command:[77,78,83,84,87,90,91],comment:[77,87],commodo:80,common:[51,54,58,60,61,77,85],common_subexpression_elimin:61,commonli:78,commun:84,compani:53,compar:[53,56,58,59,85],comparis:[0,2],comparison:[1,46],compat:[0,1,46,52,54,57,58,61,64,85,87],compil:[21,31,37,41,45,48,49,51,52,53,54,55,57,58,59,61,62,64,67,75,83,86,88,89,90,91,92,93],compile_set:[51,88],compile_spec:[59,88,93],compilegraph:[84,88],compilesepc:33,compilespec:[3,4,21,32,37,41,45,49,62,84,88,93],compilespecstruct:49,complet:[51,52,53,54,57,58,62,83,84],complex:[83,87],compli:58,complianc:[51,52,53,54,55,57,58,59,91],compliat:88,complic:87,compon:[53,57,63,65,83,89],compos:[52,54,55,57,58,59,83,85,88,90],composit:[59,84],comprehens:58,compris:53,comput:[48,51,52,53,54,55,57,58,59,77,85,87,88],compute_amax:59,conceiv:77,concern:53,conclus:[51,52,53,54],concorr:90,conda:[51,52,53,54,55,57,58,59,85],condimentum:80,condit:[51,52,53,54,55,57,58,59,77],conduc:55,conduct:53,conf:[75,82],confid:[52,54,55,58],confidence_scor:90,config:[51,52,87,90],configur:[32,37,47,51,55,68,81,84,87,88,90],confirm:51,conflict:[51,52,53,54,55,57,58],congu:80,connect:[52,54,55,61,77,90,93],consectetur:[78,80],consecut:62,consid:[55,84],consider:90,consist:[53,61,77],consol:91,consolid:83,constant:[55,59,60,61,84],constant_pad_nd:69,constexpr:[0,1,2,45,46],construct:[0,1,2,3,4,46,47,48,60,61,63,65,67,77,78,84,85,88],constructor:[0,2,46,47,48,64,83],consult:76,consum:[4,60,83],contact:78,contain:[29,31,51,52,53,54,55,56,57,58,60,61,67,77,78,83,84,85,87,88,89,90],content:[55,81,88,90],context:[52,57,59,60,63,64,65],contextnet:51,contigu:[2,47,48,91],continu:[52,53,54,57,58,77,85,89],contributor:84,control:[57,58,83,85],conv1:[54,55,57,83,84],conv2:[54,55,57,83,84],conv2d:[54,55,57,59,83],conv3:[54,55],conv4_x:58,conv5_x:58,conv:[48,59,84,91],conv_asr:51,conval:80,convect:47,conveni:[58,88],convent:[52,53,54,57,58],convers:[52,57,58,59,61,62,64,84,85],conversionctx:[67,84],convert:[3,4,31,32,37,51,52,54,55,57,58,59,61,62,63,65,68,86,89,92],convert_method_to_trt_engin:[21,41,45,49,92],convertgraphtotrtengin:84,convien:48,convienc:[3,4,48],convnet:58,convolut:[51,52,55,58,59,88,93],convtert:85,coordin:65,copi:[44,51,52,53,54,55,57,58,59,67,69,78,85,90],copy_:69,copyright:[42,43,44,45,51,52,53,54,55,57,58,59,78,84],core:[45,51,52,54,55,57,58,61,62,65,84,91,93],corpor:[42,43,44,45,51,52,53,54,55,57,58,59],correct:[59,64,75,87],correctli:87,correspond:[58,59,67,85],cosh:69,could:85,count_include_pad:69,counterpart:59,coupl:[52,54,57,58,60,65,85,89],cout:84,cp38:58,cp:87,cpp:[14,15,42,43,44,45,50,61,65,84,88],cpp_frontend:88,cppdirectori:49,cppdoc:84,cpu:51,cra:80,creat:[29,30,33,51,52,53,54,55,57,58,59,60,64,67,77,84,85,90,91],create_model:52,create_transform:52,creating_torchscript_module_in_python:86,credit:84,crit:59,criteria:[62,63,65],cross:[59,77],crossentropyloss:59,cs:88,csrc:[61,66],cstddef:88,ctc_bpe_model:51,ctx:[67,84],ctype:84,cu102:87,cuda113:87,cuda:[48,51,52,53,54,55,56,57,58,59,64,84,86,87,88,90,92],cuda_runtim:[21,45],cudafloattyp:84,cudasetdevic:35,cudatoolkit:85,cudnn8:87,cudnn:[51,52,53,54,55,57,58,59],cudnn_en:69,cumsum:69,curabitur:80,curl:[77,87],current:[23,52,54,64,67,75,85],cursu:80,custom:[52,54,56,85,87],custom_mapp:85,cut:77,cxx11:89,cycler:51,cython:51,d17fnq9dkz9hgj:[52,54,55],d:[51,52,53,54,55,57,58,59,77,78,91,93],dapibu:80,data:[0,2,3,4,29,30,44,46,47,48,51,52,53,54,57,58,59,60,62,63,65,67,69,77,81,88,91],data_dir:88,data_item_1:76,data_load:59,data_typ:90,databas:51,dataclass:85,dataflow:[67,84],dataload:[4,29,30,44,48,59,88],dataloader_:44,dataloadercalibr:88,dataloaderopt:88,dataloaderuniqueptr:[4,44],dataset:[30,58,59,88],datatyp:[1,21,38,45,46,47,48,49,52,86,90],datatypeclass:49,date:78,dateutil:[51,54,55,57,58],david:78,dbg:87,ddof:[51,53],dead_code_elimin:61,deal:67,debian_frontend:51,debug:[16,27,45,48,59,67,91,92],debugg:91,debugpi:[51,54,55,57,58],decid:57,declar:[59,87],decod:[52,53,54,55],decode_result:58,deconvolut:93,decor:[51,54,55,57,58,85],dedic:[61,78],deep:[52,53,54,55,57,58,59,67,68,75,88,93],deeplearn:[66,85],deeplearningexampl:58,deer:59,def:[51,52,53,54,55,56,57,58,59,77,83,85,90],default_tim:[51,53],defer:55,defin:[0,1,2,3,4,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,43,46,47,48,50,51,53,55,57,59,75,83,84,85,86,88,91],definit:[50,67,77],defusedxml:[51,54,55,57,58],deiti:77,delet:[0,1,2,45,46,61],delimit:61,demo:[52,53,54,58,77,88],demonstr:[51,52,53,54,55,56,57,58,77,78,79,88,90],demonstrat:[52,54],denorm:58,denot:[53,77],dep:87,depend:[30,34,51,55,58,59,60,62,65,84,85,89,90],depickl:64,deploi:[52,54,55,57,58,63,65,68,84,88,90],deploy:[52,54,57,58,59,84,86,88,89,90,91,93],deprec:[51,69,85],depth:75,dequantizelay:59,descclassnam:77,descnam:77,describ:[48,54,57,58,67,83,90,92],descript:[55,62,78],deseri:84,design:[52,53,54,57,58,85,93],desir:[59,78,88],destini:78,destroi:[67,78],destructor:67,detail:[52,54,55,59,83,84,85,89,90],detect:[47,54,59,64],detections_batch:58,determin:[52,61,85],determinist:69,develop:[51,52,53,54,57,58,68,77,78,84,85,87],devhelp:51,deviat:91,devic:[21,33,35,38,45,48,49,52,54,56,57,58,59,64,69,86,88,91,92,93],device_typ:[45,46,88,92,93],deviceclass:49,devicetyp:[21,38,45,46,49,88,92,93],devicetypestruct:49,diam:80,dict:58,dictionari:[53,92],dictum:80,dictumst:80,did:77,didn:77,differ:[30,53,55,56,57,58,59,61,65,68,75,83,85],differenti:[52,54,57,58],digit:51,dignissim:80,dilat:[54,55,57,58,59,69],dim0:69,dim1:69,dim:[52,54,55,56,59,69,90],dim_int:69,dim_intlist:69,dimens:[47,55,61,85],dir:59,direct:[81,89],directli:[67,68,87,88],directori:[18,19,20,21,42,43,44,45,49,59,87,88],disabl:[52,54,55,57,58,59,75,76,87,91],disable_calib:59,disable_qu:59,disable_tf32:[45,48,88],disclos:87,disconnect:77,discret:77,discuss:[55,90],disp:[51,52,54,55,57],displai:[75,91],display_github:75,display_gitlab:75,display_vers:75,disregard:52,dist:87,distanc:51,distdir:87,distribut:[51,52,53,54,55,57,58,59,84,88,89],div:69,div_:69,divis:51,divisor_overrid:69,django:76,dl:77,dl_open:89,dla:[1,45,46,68,91],dla_cor:[45,46,88,91,92,93],dla_standalon:91,dlacor:91,doc:[59,65,66,75,76,77,82,87],docker:[51,52,53,54,57,58,90],docopt:51,docsrc:65,docstr:[77,78],document:[42,43,44,45,49,52,54,55,65,75,77,78,82,83,84,88,89,90,92],docutil:[51,77,78],doe:[43,44,53,58,61,62,67,77,85,88],doesn:[59,77,83,84],dog:59,dolor:[78,80],domain:[78,88],don:[56,57,67,75,77,78,85,88,90],done:[51,55,58,60,62,65,90],donec:[78,80],dont:42,dot:56,dothismethod:77,dotpai:76,dotpayprovid:76,doubl:[48,77,91],down:[52,54,57,58,75,85,87],download:[51,52,54,57,58,59,81,87,88,90],downsampl:[54,55],doxygen_should_skip_thi:[44,45],dream:78,driver:[51,52,54,55,57,87],drop:[58,75,87],dt:77,dtype:[45,47,48,51,52,53,54,55,57,58,59,69,85,86,91],dual:77,due:[3,4,52,54,57,58,59,76,77,87],dui:[78,80],dummi:53,dump:[36,87,91],dump_build_info:[21,38,45,49],durat:77,dure:[48,59,67,88,89,91],dynam:[47,48,58,59,85],dynamic_batch:85,e1109:59,e:[29,30,52,53,54,58,61,67,83,84,85,87,88,91],each:[3,4,48,53,56,58,59,60,61,62,64,67,75,77,84,85,87],eager:[52,54,56,57,58],ear:77,earli:85,earliest:59,eas:43,easi:[60,61,84,88,91],easier:[53,59,63,65,67,84,85,88],easiest:87,easili:[3,4],ecc:[51,52,54,55,57],echo:77,ecosystem:[52,54,57,58],edg:77,edgecolor:58,edit:75,editdist:51,edu:88,effect:[51,59,61,75,84,85,88],effici:67,efficientnet:[54,58],efficientnet_b0:52,efficientnet_b0_model:52,efficientnet_preprocess:52,efficitur:80,effort:55,eg:90,egesta:80,eget:80,either:[47,48,51,52,53,54,55,56,57,58,59,67,75,77,83,84,87,91],el:69,elaps:56,eleifend:78,element:[53,64,77,78,81,85],element_typ:44,elementum:80,elig:56,elit:[78,80],elk:77,els:[43,44,47,51,59,77,78],elu:69,emb:[33,78,91],embed:[64,69,77,91,93],embed_engine_in_new_modul:[21,41,45,49],emit:60,emphasi:77,emploi:53,empti:[48,57,78,83],emum:[16,17],en:[51,75],enabl:[3,4,24,48,52,54,55,57,58,59,62,63,65,75,85,91],enable_calib:59,enable_precis:84,enable_qu:59,enabled_precis:[45,48,51,52,53,54,55,57,58,59,84,86,88,90,92,93],enalbed_precis:93,enc:53,enc_input:53,encdecctcmodelbp:51,encod:[51,53,64],encoded_input:53,encorag:[52,53,54],encount:87,encourag:[55,90],end:[44,67,69,77,84,88,91],end_dim:[69,84],end_tim:[51,52,53,54,55,57,58,59],endif:[43,44,45],energi:77,enforc:84,engin:[0,1,17,32,33,37,45,46,47,48,51,53,55,56,60,62,63,65,68,75,84,86,88,89,91,92,93],engine_converted_from_jit:84,enginecap:[21,38,45,48,49,92],english:53,enhanc:[58,77],enim:80,enjoi:53,enough:59,ensur:[30,59,61,62],enter:[53,60],entir:[59,77],entiti:77,entri:[48,67],entropi:[29,30,59,88],entropy_calibration_2:88,entrypoint:[51,54,55,57,58],enumer:[0,1,2,16,17,46,53,59],environ:[51,52,53,54,55,57,58,85,90],ep:[54,55,69],epoch:59,eq:[69,77],equat:77,equival:[32,57,58,63,65,67,83,84,88],equivil:37,erat:80,erf:69,eric:77,ero:80,error:[16,48,51,52,53,54,57,58,60,61,65,77,84,85,87,91],eskimo_dog:52,essenc:77,essenti:[55,85],est:80,et:80,eta:[52,54,57,58],etc:[75,77,85,93],etiam:80,eu:80,euismod:80,eval:[51,52,54,55,56,57,58,59,84,86,90],evalu:[58,63,64,65],evaluated_value_map:[60,67],even:84,event:47,everi:[62,84],everyth:16,ex:[0,1,2,33,46,78,80],exact:90,exactli:[53,58],examin:[53,85],exampl:[47,52,54,55,56,57,58,59,62,64,65,67,75,76,78,81,83,84,85,88,89,90],exceedingli:77,except:[51,52,53,54,55,57,58,59,85],exception_elimin:61,excerpt:78,excit:51,execpt:61,execut:[33,51,52,54,55,57,58,61,63,64,65,83,84,85,88,90,91],execute_engin:[64,84],exert:77,exeuct:64,exhaust:84,exist:[4,31,32,37,51,56,85,87,88],exit:90,exp:69,expand:[61,69],expand_a:69,expanded_pad:59,expect:[47,48,52,53,54,55,57,58,61,67,84],experi:[52,53,54,57,58],experiment:[59,85],explain:85,explan:85,explic:[44,59],explicit:[0,1,2,3,4,45,46,55,61,68,77,85,88],explicit_batch_dimens:[56,85],explicitli:[53,59,62,63,65,88,92],explict:44,explictli:0,expon:69,export_util:51,expos:88,express:[51,52,53,54,55,57,58,59,77],ext:[77,78],extend:[51,63,65,67,69,84],extens:[51,53,55,58],extent:[68,84],extern:[75,77],extra:[48,84],extract:84,extractor:57,extrem:77,ey:77,f16:[84,91,93],f1:[52,54,55],f32:91,f:[51,57,59,77,83,85,87],facecolor:58,facilisi:80,fact:87,facto:77,factori:[4,29,30,88],fail:[84,93],fake:59,fake_quantize_per_:59,fake_quantize_per_channel_affin:[59,69],fake_quantize_per_tensor_affin:[59,69],fallback:[63,65,67,91,93],fals:[0,1,2,3,4,44,45,46,48,51,54,55,56,58,59,69,75,76,77,78,84,85,88,92],fame:80,famili:[52,54,57,58,59],familiar:90,familyhandyman:[52,54,55],fan:[51,52,54,55,57],far:[77,85],fashion:84,faster:59,fastjsonschema:55,fasttext:51,faucibu:80,fbed:[52,54,55],fc1:[57,83,84],fc2:[57,83,84],fc3:[57,83,84],fc:[48,54,55,58,59,61,91],feat:[57,83,84],featur:[51,52,53,54,55,57,58,59,62,84,85,88,91,92],feb:[52,54,57],fed:[3,4,47],feed:[29,30,59,84],feel:[55,68],feli:80,feugiat:[78,80],few:[52,54,57,58,85],ffmpeg:51,field:[3,4,88],fifth:78,fig:[52,54,55,58],figur:[62,78,80],file:[0,1,2,3,4,5,6,7,8,9,10,11,12,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,51,52,53,54,55,57,58,59,62,64,65,75,76,78,82,84,85,87,88,90,91],file_path:91,filelock:[51,53],filer_publ:[52,54,55],filer_public_thumbnail:[52,54,55],fill:[51,52,53,54,57],filter:[51,58,59],find:[4,53,58,84,85],fine:[51,59],finetun:59,finibu:80,finish:58,first:[47,51,53,57,58,59,60,61,77,78,84,85,86,88,90],firstli:90,fit:77,five:58,fix:[48,54,58,77,85,93],fixed_s:[45,48],flag:[59,62,63,65,87,89,91],flatten:[57,69,83,84],flatten_convert:84,flesh:90,flexibl:[52,54,57,58],float16:[51,52,54,57,58,91],float32:[47,48,51,52,53,54,55,56,59,85,91],float_int:69,floor:69,floor_divid:69,floordiv:69,flow:[56,57,58,59,67,77,83,85],flox:77,fluent:53,flush:77,fly:83,fmax:51,fmin:51,focal:51,fold:78,folder:85,follow:[33,51,52,53,54,55,57,58,59,62,64,75,77,78,82,83,84,85,87,88,89,90,91],fonttool:51,foo:[77,78,85],foo_kwarg:85,foo_nod:85,footprint:[52,54,57,58],forc:[75,85,91],force_fp32_output:85,forced_fallback_op:62,form:[51,53,60,77,90],format:[33,45,47,48,51,52,53,54,55,57,58,59,69,77,78,86,90,91],forth:78,forum:87,forward:[29,30,32,33,56,57,59,62,64,67,83,84,88,92],found:[42,43,44,45,51,52,54,55,57,58,77,84,87,88,89],four:[77,78],fp16:[0,47,48,53,55,57,58,59,68,84,86,91,93],fp32:[0,47,48,53,55,56,57,58,59,68,85,88,90,91],frac:77,framework:[52,54,57,58],franc:53,freed:67,freeli:55,freeze_modul:61,fri:52,friend:45,fringilla:80,frog:59,from:[0,1,2,3,4,29,30,44,46,47,48,51,52,53,54,56,57,58,59,60,61,62,63,64,65,67,68,75,76,77,78,83,84,85,88,90,91],from_pretrain:[51,53],from_tensor:[56,85],frozen:59,frozendict:51,frozenlist:51,fssl:87,fsspec:51,fstream:[20,44],full:[48,59,67,84,88,89,90,91,93],fulli:[31,56,61,84,88,91,93],further:85,fusc:80,fuse:[52,54,57,58],fuse_addmm_branch:61,fuse_flatten_linear:61,fuse_linear:61,fusion:[67,85],futur:[51,52,53,54,57,59,85],futurewarn:51,fx2trt:56,fx:56,g2p:51,g:[29,30,51,53,61,77,85,87,88,91],g_:77,gain:58,game:53,gamma:69,gatewai:76,gaurd:43,gcc:[65,84],gdown:51,ge:69,gear:88,geforc:[52,54,57],gener:[3,4,30,51,52,53,54,55,56,57,58,59,61,64,65,67,75,77,78,81,83,84,87,88,91],genutil:[51,54,55,57,58],geometr:53,get:[0,1,2,3,4,23,34,44,46,56,58,59,61,62,67,85,87,88,90],get_attr:56,get_batch_impl:44,get_build_info:[21,38,45,49],get_coco_object_dictionari:58,get_input:56,get_is_colored_output_on:[18,39,42,49],get_logging_prefix:[18,39,42,49],get_model_size_mb:51,get_output:85,get_reportable_log_level:[18,39,42,49],get_submod_input:56,getattr:[51,56,61,64,83,84],getbatch:[3,4,44],getbatchs:[3,4,44],getdimens:[67,84],getoutput:[67,84],gi:[51,52,54,55,57],git:[81,85],gitdb:51,github:[51,52,53,54,57,58,66,75,84,85,87,88,89,90],github_url:75,gitlab:75,gitlab_url:75,gitpython:51,give:[57,75,77,85],given:[47,48,53,58,61,83,84,85,91,92],global:[26,59,84],gnu:87,go:[44,52,54,55,57,58,59,61,62,68,83,84,85,90],goal:67,goe:[59,77,85],good:[44,67,77,85],goodger:78,googl:[51,53,75],got:[56,77,84],govern:[51,52,53,54,55,57,58,59],gpu:[1,32,35,37,45,46,51,52,53,54,55,56,57,58,59,84,85,88,90,91,92,93],gpu_id:[35,45,46,88,91,92,93],granular:57,graph:[16,31,32,37,45,51,52,54,55,56,57,58,59,60,62,63,65,67,68,83,84,85,91],graphic:55,graphnam:[51,53],gravida:80,great:[52,54,57,58,77,84],green_mamba:[54,55],group:[59,69,77,78],grpc:90,grpcio:51,gru_cel:69,gt:[51,52,53,54,55,57,58,69],gtc:68,guangzhou:78,guard:61,guard_elimin:61,guess:53,gui:77,guid:76,gulf:[52,54,55,90],gz:[77,78,87,88],h5py:51,h:[0,1,2,3,4,5,6,7,8,9,10,11,12,15,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,49,50,52,54,58,61,84,88,91],ha:[51,52,53,54,55,56,57,58,59,60,61,62,63,65,67,77,78,83,84,85,88],habit:80,habitass:80,hac:80,hack:44,hakaimagazin:[52,54,55,90],half:[53,55,57,58,59,77,84,86,88,90,91,92,93],hand:90,handl:[56,58,61,64,85],happen:[57,59,83,85],hardtanh:[67,69],hardtanh_:69,hardwar:[52,54,57,58,93],hasattr:51,hash:87,have:[30,33,44,51,52,53,54,55,56,57,58,60,61,67,68,77,83,84,85,87,88,90,91],haven:84,head:58,header:[52,54,55,75,77,78,84,90],heart:78,heaven:77,heck:77,heh:78,hehe:78,height:77,help:[27,51,52,53,54,57,59,60,67,84,85,89,91],helper:[51,57,58,59,67],henc:53,hendrerit:80,here:[44,51,52,53,54,55,57,58,60,62,64,75,77,78,83,84,85,87,88,89,90],hermet:87,hexagram:77,hfile:49,hi:[69,77,78],hidden:[43,53,75],hierarchi:59,high:[52,54,58,61,62,75],higher:[53,61,75,77,83],highfreq:51,highli:[55,90],highlight:77,hinton:88,hist_percentil:59,histogram:59,historgram:59,hit:51,hold:[46,47,60,67,88],holder:[64,79],holi:77,home:87,hood:[65,86],hope:78,hors:59,host:[54,55,57,58,59,87,90],how:[3,4,52,53,54,55,58,59,77,79,81,83,89,90,92],howev:[30,52,54,57,58,75,76,87,90],html:[59,66,77,83,87,88],html_theme:82,html_theme_opt:75,html_theme_path:82,htmlhelp:51,http:[51,52,53,54,55,57,58,59,66,75,77,83,84,85,87,88,89,90],http_archiv:87,httpclient:90,hub:[51,53,54,58,90],huge:53,huggingfac:[51,53],human:77,humankind:78,huski:[52,54,55],hx:69,hydra:51,hyperlink:77,hyphen:77,i0627:56,i8:91,i:[51,52,53,54,55,57,58,59,61,67,77,78,83,84,88,91],iaculi:80,icon:[75,77],id:[35,45,51,52,54,55,57,58,75,76,80,91,93],idea:[61,77],ident:[53,91],idna:[51,53],idx:[58,69],ifndef:[44,45],ifstream:44,iii:78,iint8calibr:[3,4,29,30,44,45,48,88],iint8entropycalibrator2:[3,4,29,30,44,88],iint8minmaxcalibr:[29,30,88],ilay:67,illustr:[59,85],imag:[52,54,55,58,59,88,90],image_classif:58,image_idx:58,imageio:58,imagenet:[52,54,55,59],imagenet_cla:[52,54,55],imagenet_class_index:[52,54,55],images:51,images_:88,img0:[52,54,55],img1:[52,54,55,90],img2:[52,54,55],img3:[52,54,55],img:[52,54,55,90],img_path:[52,54,55,90],impact:[52,53,54,57,58],imperdiet:80,implement:[3,4,52,53,54,55,56,57,58,61,62,64,76,84,85,88,89],impli:[51,52,53,54,55,57,58,59],implic:61,implicit:[69,77,85],importlib:[51,54,55,57,58],improv:[59,78],imshow:[52,54,55,58],in_featur:[54,55,57],in_shap:84,in_tensor:83,incas:44,includ:[13,15,16,34,36,42,43,44,45,50,52,54,57,58,62,63,64,65,75,77,83,84,85,87,88,91],includedirectori:49,includehidden:75,incompat:87,incorpor:78,incorrect:59,ind:[52,54,55],inde:[52,54,57,58],indent:77,independ:58,index:[33,51,52,53,54,55,57,58,59,66,68,69,75,81,88],indic:[51,53,69,75,77],indigo_bunt:52,indirect:77,inetworkdefinit:60,infer:[51,52,53,54,56,57,59,61,84,85,88],inference_output:90,inferenceservercli:90,inferinput:90,inferrequestedoutput:90,inflect:51,info:[16,32,37,45,48,67,84,91],inform:[25,33,34,36,47,51,55,58,59,60,62,64,68,77,83,84,85,87,88,91,92],infrastructur:[88,90],ingest:65,inherit:[49,85,88],iniconfig:51,init_weight:59,initi:[51,53,59,77],injuri:77,inlin:[0,1,2,3,4,29,30,44,46,48,51,54,55,57,58,61,78,81,84],inner:[48,78],innings:53,inplac:[54,55,56],input0:84,input1:84,input2:84,input:[3,4,21,30,33,38,44,45,48,49,51,52,53,54,55,56,57,58,59,60,61,62,64,67,69,78,83,84,85,86,88,90,91,92,93],input_0:[64,84],input__0:90,input_batch:[52,54,55],input_data:[52,54,55,57,58,59,83,86],input_file_path:[91,93],input_id:53,input_is_dynam:45,input_nam:85,input_s:[62,84],input_scal:69,input_shap:[51,52,54,55,57,58,59,88,93],input_spec:[85,91],input_tensor1:53,input_tensor2:53,input_tensor3:53,input_tensor:[51,52,54,55],input_tensor_spec:85,input_v:85,inputclass:49,inputrang:[62,84],inputtensorspec:[56,85],inreleas:51,insert:[59,84,88],inserting_befor:85,insid:[77,90],inspect:[52,54,57,58,67,83,84],instal:[51,52,53,54,55,57,58,59,68,81,84,89,90],instanc:[53,57,61,83,84],instance_norm:69,instanti:[51,63,64,65,67,84],instatin:[0,1,2,46],instead:[48,51,52,53,54,55,57,58,59,60,61,84,89,91],instnanti:64,instrucion:85,instruct:[62,63,65,84,85,87,90],insur:87,int32:[53,55],int64_t:[45,46,47,48,88,93],int8:[0,44,47,48,55,68,88,91,93],int8_t:[17,45],int8cachecalibr:[20,30,40,44,49],int8cachecalibratortempl:49,int8calibr:[3,20,29,40,44,49],int8calibratornamespac:49,int_float:69,integ:[59,80],integr:[52,53,54,55,57,58,68],intend:[51,87],intent:[61,77],interact:77,intercompat:58,interdum:80,interest:[61,77],interfac:[0,1,2,46,64,65,67,88],interfer:77,intermedi:[16,52,54,57,58,83],intern:[1,16,46,52,54,57,58,59,67,77,84],interp:56,interpol:[52,77],interpolationmod:52,interpret:[52,54,57,58,64,77,85],intro_to_torchscript_tutori:83,introduc:[52,54,57,58,59,85],introduct:53,invalid:59,invok:[83,84,85],involv:[51,52,53,54,57],io:[44,51,52,53,54,55,57,58,90],iostream:[20,21,44,45,84],ipad:51,ipso:77,ipsum:[78,80],ipykernel:[51,54,55,57,58],ipython:[51,54,55,57,58],ipywidget:[51,54,55,57,58,59],ir:[52,54,57,58,63,65,67,83],is_avail:[52,54,55],is_floating_point:69,is_tar:51,is_train:88,iscustomclass:67,isinst:[59,85],isn:[75,77],isort:51,issu:[3,4,51,52,53,54,57,84,87],istensor:67,istream_iter:44,it_:44,ital:77,item:[51,52,53,54,55,59,76,78],itensor:[60,67,84,85],iter:[20,44,48,51,52,53,54,55,56,57,58,59,60,91],its:[30,52,54,57,58,60,64,67,77],itself:[0,1,2,46,61,87,90,91,92],iv:78,ivalu:[60,64,67,84],ja:51,jan:78,jarowinkl:51,jedi:[51,54,55,57,58],jetpack:87,jetpack_4:87,jetson:[52,54,57,58],jieba:51,jinja2:[51,54,55,57,58],jit:[31,32,33,37,45,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,83,84,86,90,91,92],jit_model:59,jmespath:51,joblib:[51,53],join:59,jpeg:[52,54,55],jpg:[52,54,55,58,90],jpg__1920x1080_q85_subject_loc:[52,54,55],jsmath:51,json:[52,54,55],json_fil:[52,54,55],jsonschema:[51,54,55,57,58],jump:90,jupyt:[51,54,55,57,58],jupyterlab:[51,54,55,57,58],jupyterlab_widget:[54,57,58],just:[44,45,52,53,54,55,58,61,68,77,79,83,84,85,86,89,92],justo:[78,80],k:[53,69,88],kaldi:51,kaldiio:51,kb:[52,54,55,57,58],kbool:[0,45],kchannelslast:[2,45],kchar:[0,45],kclip:67,kcontigu:[2,45,47],kcpu:[1,46],kcuda:[1,46,62,84],kdebug:[16,42,44],kdla:[1,45,46,93],kdla_standalon:[17,45],keepdim:[56,69],kei:[53,59,77,83,90],kept:[59,78],kernel:[47,48,52,54,57,58,67,85,91],kernel_s:[54,55,57,69],kerror:[16,42],keyboard:77,keyword:51,kf16:[88,93],kfloat:[0,45,48],kgpu:[1,45,46],kgraph:[16,42,61],khalf:[0,45,84],ki8:88,kind:[51,52,53,54,55,57,58,59,60,85],kinfo:[16,42,44],kint:[0,45],kinternal_error:[16,42],kiwisolv:51,know:[42,56,67,75,77],knowledg:77,kriz:88,krizhevski:88,ksafeti:[17,45],kstandard:[17,45,48],ktest:88,ktrain:88,kunknown:[0,2,45],kwarg:[55,56,59,85],kwarn:[16,42],l:69,label:[52,54,55,58,59,77,88,90],lacinia:80,lack:[62,63,65,85],lacu:80,laid:84,lambda:[54,55,58,67,77,84,90],lang:76,languag:[51,52,54,55,57,58,59,76,77,78,83,90],laoreet:80,larg:[52,53,54,57,58,59,63,65,75,77,84,88],larger:[75,88],largest:69,last:[2,51,58,61,85],lastli:90,latenc:[51,53],later:[30,53,84,85],latest:[52,53,54,75,87],latexcodec:51,launch:90,law:[51,52,53,54,55,57,58,59],layer1:[54,55],layer2:[54,55],layer3:[54,55],layer4:[54,55],layer:[46,48,52,54,57,58,59,60,61,67,84,85,88,90,91,93],layer_norm:69,layout:[2,47,69],ld_library_path:87,ld_preload:89,ldd:87,le:69,lead:77,leader:77,leaky_relu:69,leaky_relu_:69,learn:[55,59,68,84,87,88,90,93],leas:78,least:[52,53,54,77,78],leav:[57,59,61],lectu:[78,80],left:[58,75,77],legend:77,len:[51,53,58,59,69],lenet:[83,84],lenet_script:[83,84],lenetclassifi:[57,83],lenetfeatextractor:[57,83],length:[3,4,44,52,53,54,55,69,78,85],leo:80,let:[46,51,52,54,55,57,58,61,67,75,77,85,90,91],letter:[51,78],level:[18,23,25,26,39,42,44,49,52,53,54,57,58,59,61,62,65,81,83,85,90],levelnamespac:49,leverag:[52,54,55,57,58,85,88],lib:[51,52,53,54,55,57,58,59,61,84,87],libero:[78,80],librari:[34,42,43,44,45,52,54,55,57,58,59,63,64,65,67,84],librosa:51,libsndfile1:51,libtorch:[4,36,52,54,57,58,67,84,87,88],libtorch_pre_cxx11_abi:87,libtorchtrt:[84,87,91],libtorchtrt_plugin:89,libtorchtrt_runtim:89,licens:[42,43,44,45,51,52,53,54,55,57,58,59,84],light:77,lightn:51,lightningdeprecationwarn:51,lightningmodul:51,ligula:80,like:[52,54,56,57,58,60,61,64,67,76,77,83,84,85,86,87,88,89,90,91],limit:[51,52,53,54,55,57,58,59,61,76,88],linalg:56,linalg_norm:56,linalg_norm_1:56,line:[78,84,91],linear:[2,54,55,56,57,59,69,83],linear_1:56,linear_bia:56,linear_weight:56,linewidth:58,link:[60,68,75,76,81,84,89,91],linux:[65,84,87],list:[18,19,20,21,31,48,50,51,53,58,59,60,62,64,67,69,81,84,85,86,87,90],listconstruct:[60,64,84],listunpack:[64,84],liter:78,literal:78,literal_block:77,live:[67,77],ll:[53,85],llvmlite:51,lo:69,load:[51,52,54,55,56,58,59,62,64,84,85,86,88,89,90,91,92],load_calib_amax:59,load_librari:89,load_state_dict:59,loader:[51,52,54,57,58],loading_data_recip:88,loborti:[78,80],local:[58,59,61,75,84],localhost:90,locat:[58,87,88],lock:76,log:[15,16,19,20,38,44,49,50,53,59,61,67,68,69,72,85],log_debug:67,loggingenum:49,logic:85,login:90,logist:85,logo_onli:75,lone:78,longer:[52,54,57,58,75,89],look:[51,52,53,54,55,57,58,59,60,61,83,88,90,92],loop:85,loop_unrol:61,lorem:[78,80],lorikeet:[54,55],lose:75,loss:[59,88],lot:67,low:85,lower:[16,55,56,78],lower_exampl:85,lower_graph:61,lower_precis:[56,85],lower_to_trt:85,lower_tupl:61,loweralltupl:61,lowered_model_output:56,lowerprecis:56,lowersimpletupl:61,lowfreq:51,lr:59,lstm_cell:69,lt:[51,53,54,55,57,58,59,69],ltorchtrt:89,luctu:80,lvl:[25,26,42],m:[51,52,54,55,57,78],machin:[52,54,57,58,64,87,88,90],macro:[5,6,7,8,9,10,11,12,15,18,21,42,45,49,50],mad:77,made:[58,61,63,65,77],maecena:80,magna:80,mai:[51,52,53,54,55,57,58,59,60,64,65,77,78,83,84,85,87,88,90],main:[58,61,62,63,64,65,67,75,77,79,84,85],mainli:85,maintain:[53,62,64,67],major:[52,54,57,58,65,85],make:[52,53,54,55,56,57,58,60,77,79,84,85,86,87,88,90,93],make_data_load:[4,88],make_int8_cache_calibr:[20,40,44,49,88],make_int8_calibr:[20,30,40,44,49,88],malesuada:80,man:[77,78],manag:[51,52,53,54,55,57,58,60,63,65,67,84],mangag:61,mani:[75,77,78,85],manifest_filepath:51,mantissa:48,manual:[76,77,85,87],manual_se:51,manylinux2014_x86_64:58,manylinux_2_17_x86_64:58,map:[1,46,56,60,61,63,65,67,84,85,88,90,92],mapper:85,mark:[52,61,75],markdown:51,marknodesforfallback:61,markup:[78,81],markup_process:77,markupsaf:[51,54,55,57,58],marshmallow:51,mask:[51,69],masked_fil:69,masked_sent:53,massa:80,master:[66,77,87,88,89],mat2:69,match:[48,56,61,87],math:81,mathemat:53,matmul:[61,69,84],matplotlib:[51,52,54,55,57,58],matric:53,matrix:66,matter:85,matti:78,matur:65,mauri:[78,80],max:[47,48,54,55,57,58,59,67,69,75,91],max_batch_s:[85,90],max_bound:59,max_c:91,max_dur:51,max_h:91,max_length:53,max_n:91,max_pool1d:69,max_pool2d:[57,69,83,84],max_pool3d:69,max_shap:[45,47,55,57,85,86],max_val:[67,69],max_valu:59,max_w:91,max_workspace_s:85,maxcalibr:59,maxim:55,maximu:80,maximum:[47,48,52,53,54,55,59,85,90,91],maxpool2d:[54,55],maxpool:[54,55],mayb:[55,77],mb:[52,54,55,57,58,91],md:66,me:[77,78],mean:[51,52,53,54,55,57,58,59,62,67,68,69,85,90],mecab:51,mechan:[51,53,67,85],media:[52,54,55],median:[51,53],medium:77,mel:51,member:[46,47,48],memeori:2,memori:[20,21,44,45,48,51,52,54,55,57,58,61,67,84,86],memory_format:69,memoryformat:[2,45],men:77,mental:77,menu:[75,77,91],menuselect:77,messag:[16,25,26,91],meta:[81,85],metadata:[51,64,67,75],meth:77,method:[31,32,33,37,47,51,52,54,55,57,58,59,61,67,77,83,84,85,87,91,92],method_nam:[31,37,45,84,91],metric:51,metu:80,mi:80,middl:77,mig:[51,52,54,55,57],might:[53,59,61,75,87],min:[47,48,67,69,91],min_block_s:[45,48,62],min_bound:59,min_c:91,min_h:91,min_n:91,min_shap:[45,47,55,57,85,86],min_val:[67,69],min_valu:59,min_w:91,mind:77,mine:77,mini:[52,54,55],minim:[48,88,91],minimum:[47,48,55,62,91],minmax:[29,30,88],misbuild:75,miss:[77,84],mistun:[51,54,55,57,58],mix:58,mixin:51,mkdir:[52,54,55,87],mlm_model_t:53,mm:[51,90],mmb:77,mobilenet_v2:92,mod:[51,56,62,81,84,85,88,91],mode:[56,59,85,86,88],mode_:88,model:[51,56,62,64,68,83,84,86,88,91,92],model_math:58,model_nam:[51,59,90],model_repositori:90,model_s:51,model_state_dict:59,modelpt:51,modern:58,modifi:[78,85,87],modified_state_dict:59,modul:[31,32,33,37,45,48,51,52,53,54,55,56,57,58,59,62,63,64,65,67,68,76,77,78,85,86,88,91,92,93],modular:84,module_fallback:61,module_nam:91,molesti:80,momentum:[54,55,59,69],mon:55,month:51,monthli:[51,55],morbi:80,more:[52,54,55,57,58,59,60,68,75,78,83,84,85,87,88,89,90,92],most:[53,65,85,87,89,90],most_likely_token_id:53,most_likely_token_ids_trt:53,mother:77,motion:77,mous:77,move:[29,44,45,52,54,55,57,58,61,64,84,88],mpmath:51,ms:[52,54,55,57,58,59],mse:59,msg:[26,42,51,53],mu:77,much:[67,75,77,88],mul:[59,69],mul_:69,multi:91,multidict:51,multipl:[64,77,78,88,90],multipli:48,must:[33,47,48,53,58,61,62,67,77,78,84,85,87,89,91],mutil:78,my:77,my_pytorch_model:85,myclass:77,mymodel:[62,86],mypi:58,myself:78,n01537544:52,n01739381:52,n01749939:[54,55],n01820546:[54,55],n02109961:52,n02110185:[54,55],n02481823:[52,54,55],n:[51,52,53,54,56,57,67,84,88,91],n_fft:51,n_mel:51,nabla:77,nacc_op:56,nam:[78,80],name:[3,4,31,33,37,44,51,52,54,55,56,57,58,59,62,64,67,77,78,83,84,85,87,90,92],named_children:56,named_modul:59,namedtupl:85,namespac:[42,43,44,45,50,61,68,88],narrow:[59,69],nativ:[59,65,66,84],native_funct:66,natur:[53,77],nav:[75,81],navig:75,navigation_depth:75,nbbind:[3,4,44],nbclient:[51,54,55,57,58],nbconvert:[51,54,55,57,58],nbformat:[51,54,55,57,58],nchw:2,ncol:[52,54,55],ne:[61,69],nec:80,necessari:[42,89],need:[0,1,2,25,30,43,46,52,54,55,56,58,60,61,67,77,84,85,86,87,88,89,90],neg:69,negative_slop:69,nemo:51,nemo_1:51,nemo_asr:51,nemo_log:51,nemo_toolkit:51,nequ:[78,80],nest:[49,51,54,55,57,58,77,78],net:[52,54,55,67,77,78,84],netu:80,network:[29,30,52,54,57,58,59,67,84,85,88,90,93],networkx:58,neural:[52,54,58,93],new_lay:67,new_level:53,new_local_repositori:87,new_lr:59,new_siz:88,newer:[52,54,57,58],newest:51,newli:51,next:[3,4,58,59,60,64,75,77,78,88,90],nfilt:51,ngc:[51,52,53,54,55,57,58,87,90],nhwc:[2,91],nibh:[78,80],nice:87,nickel:77,night:78,nightli:85,nine:53,ninja:87,nisi:80,nisl:80,nl:[52,54,55],nlp:[29,30,53,88],nltk:51,nn:[51,52,54,55,56,57,59,61,66,83,84,85,86],no_grad:[51,52,53,54,55,57,58,59],node:[56,59,61,62,63,65,67,84,85],node_info:[67,84],node_support_preview:56,noexcept:[3,4,44,88],non:[56,78,80],non_block:[59,69],none:[52,54,56,57,58,59,67,69,75,77,85],nonetheless:77,nonexist:77,noninteract:51,nonloc:56,norm:[56,69],normal:[0,1,2,46,51,52,53,54,55,57,58,59,77,83,84,85,88,90,93],normalized_shap:69,noskipw:44,notatemoduleforfallback:61,note:[1,46,47,53,67,75,77,84,85,87,93],notebook:[51,52,53,54,55,57,58,59,65],notic:[57,58],now:[51,52,53,54,57,58,61,65,67,77,84,85,87,92],np:[51,52,53,54,55,57,58,59,90],nrow:[52,54,55],nrun:[52,54,55,57,58,59],nsupport:56,nu:77,nulla:80,nullptr:[44,45,48],num:[51,53,91],num_avg_timing_it:[45,48,92],num_batch:59,num_bit:59,num_calib_batch:59,num_class:59,num_epoch:59,num_it:91,num_loop:[51,53],num_min_timing_it:[45,48,92],num_op:91,num_work:[59,88],numba:51,number:[3,4,48,51,52,53,54,59,61,62,67,75,84,85,91],numel:69,numer:[51,78,85,91],numpi:[51,52,53,54,55,57,58,59,90],nunc:80,nunsupport:56,nvcr:[51,90],nvidia:[32,37,42,43,44,45,51,52,53,54,55,57,58,59,66,84,85,87,90,91,93],nvidia_convnets_processing_util:58,nvidia_deeplearningexamples_torchhub:58,nvidia_efficientnet:58,nvidia_efficientnet_b0:58,nvidia_efficientnet_b4:58,nvidia_efficientnet_widese_b0:58,nvidia_efficientnet_widese_b4:58,nvidia_resnet50:58,nvidia_resnext101_32x4d:58,nvidia_resnext:58,nvidia_se_resnext101_32x4d:58,nvidia_ssd:58,nvidia_ssd_processing_util:58,nvidia_ssdpyt_amp_200703:58,nvidia_tacotron2:58,nvidia_tts_util:58,nvidia_waveglow:58,nvinfer1:[3,4,29,30,44,45,48,67,88],nvinfer:[20,44],nwarmup:[52,54,55,57,58,59],o:[52,54,55,77,87,90],oauthlib:51,obj:69,object:[0,1,2,3,4,46,47,48,64,67,88,92],observ:[51,52,53,54,59],obsolet:58,obtain:[51,52,53,54,55,57,58,59,86],obvious:83,octet:[52,54,55],odio:[78,80],off:[51,52,54,55,57,58,62,64],offici:87,ofstream:[44,84],often:77,oh:78,ok:[52,54,55,77,84],okai:48,older:65,omegaconf:51,onc:[42,43,44,45,60,61,64,85,88,89,90],one:[53,58,59,61,67,77,83,84,85,90],ones:[42,52,54,57,58,62,63,65,77,84,87],onli:[1,3,4,16,30,44,46,47,57,58,61,62,65,67,77,85,87,88,89,91,93],onnx:[51,61],onto:[64,91],onward:[52,54,55],op:[52,53,54,55,56,58,59,60,61,63,65,67,84,89,91],op_and_target:85,op_nam:91,op_precis:[52,54,55,58],open:[52,54,55,57,58,90],opencc:51,oper:[0,1,2,3,4,31,44,45,46,48,52,54,55,56,57,58,59,60,61,62,63,64,65,67,68,85,86,88,91,93],opset:[63,65],opt:[47,48,51,52,53,54,55,57,58,59,87],opt_c:91,opt_h:91,opt_n:91,opt_shap:[45,47,55,57,86],opt_state_dict:59,opt_w:91,optim:[47,51,52,53,54,55,57,58,59,61,68,83,84,85,86,91],optimin:47,optimiz:[52,54,57,58,83],optimize_target_shap:85,optimized_execut:51,optimz:90,option:[44,47,56,62,63,65,77,81,85,87,88,89,91,93],orchestra:77,orci:80,ord:56,order:[48,58,62,67,84,85,86],org:[51,52,53,54,55,57,58,59,66,75,77,83,84,87,88],organ:78,origin:[51,53,58,59,85],original_nam:57,ornar:[78,80],os:[45,59],ostream:45,other:[0,1,2,45,46,52,54,55,56,57,58,59,60,61,64,68,69,76,77,84,85,86,87,89,91],otherwis:[52,53,54,87,89],our:[52,53,54,55,57,58,62,65,83,84,90],out:[31,44,51,52,53,54,55,57,59,60,61,62,63,65,67,77,84,87,90],out_dir:59,out_featur:[54,55,57],out_shap:84,out_tensor:[67,84],output0:61,output:[24,27,33,48,52,53,54,55,57,58,59,60,61,62,64,67,75,77,78,84,85,87,90,91],output__0:90,output_file_path:[91,93],output_nam:85,output_pad:69,output_s:[54,55,69],output_trt:53,outself:84,outsid:77,over:[52,54,55,57,63,65,77,85,90],overal:56,overkil:57,overrid:[3,4,29,30,44,85,88],overview:[53,66,68],own:[51,52,53,54,57,67,77,84,90],p0:55,p2:51,p8:[51,52,54,57],p:[52,54,55,69,84,90,91,93],packag:[51,52,53,54,55,57,58,59,61,84,85,91],pad:[51,53,54,55,59,69],padding_idx:69,padding_mod:59,page:[55,68,79,81,90],pair:[51,61,67,77,87,88],panda:51,pandocfilt:[51,54,55,57,58],pane:77,pangu:51,paper:[52,54,58],paragraph:[78,81],parallel:53,param:76,param_group:59,paramet:[0,1,2,3,4,25,26,27,29,30,31,32,33,35,37,46,47,48,59,60,61,67,81,83,84,85],parameter:51,parent:[14,15,18,19,20,21],pari:53,pars:[59,77,84],parser:77,parso:[51,54,55,57,58],part:[51,56,62,65,75,76,77,85,91],parti:55,partial:[52,54,57,58,77,91],particular:57,particularli:53,partit:61,partitioninfo:62,pass:[51,53,59,60,62,63,64,65,67,83,84,85,88],past:77,patch:58,path:[4,13,14,15,29,30,56,57,58,59,83,84,87,88,90,91],path_to_torchtrt_root:87,pathspec:[51,58],pathtool:51,pathwai:83,pattern:[67,84],payment:76,pbtxt:90,peephole_optimz:61,pellentesqu:80,peopl:77,pep:77,per:[55,58,59],percentil:[51,53,59],perf:[51,52,54,55,57],perfom:59,perforamnc:85,perform:[29,30,52,53,54,55,56,57,58,88,90],performac:88,permiss:[51,52,53,54,55,57,58,59],permit:77,permut:[69,85],persist:[51,52,54,55,57,77],pesq:51,pexpect:[51,54,55,57,58],pharetra:80,phase:[16,59,67,84],phasellu:80,phi:77,philosoph:77,phrase:77,pi:77,pick:[57,83],pick_best:58,pickler:64,pickleshar:[51,54,55,57,58],pid:[51,52,54,55,57],piec:51,pil:[52,54,55,90],pillow:[51,52,58],pin:76,pin_memori:69,pip3:[85,87],pip:[51,52,53,54,55,57,58,59,87,90],pipelin:[91,93],piplein:84,pipreq:51,pixel_shuffl:69,pl:76,place:[47,61,77,78,79,85,87,88],placehold:56,placerat:80,plan:[65,91],plane:59,platea:80,platform:[45,52,54,57,58,65,87,90,91,93],platformdir:58,pleas:[51,52,59,77,84,85,87,90],plot:58,plot_result:58,plt:[52,54,55,58],pluggi:51,plugin:[51,85],po:53,point:[75,76,77,84,90],pointer:[3,4,88],polish:76,pooch:51,pool:[54,55,57,58,59,93],pop:64,popular:[53,76,87],portabl:[52,54,57,58,64],portalock:51,portion:77,porttitor:[78,80],pos_mask:53,posit:[51,53,75,85,91],possibl:[52,53,54,57,58,77,90],post1:51,post:[29,30,48,68,84,91],posuer:[78,80],potenti:[48,80],pow:69,power:[52,54,57,58,77,84,85],pr:84,practic:[52,54,57,58],praesent:80,pragma:[42,43,44,45,88],pre:[33,51,52,53,54,59,61,88,89],pre_cxx11_abi:87,preced:77,precis:[48,53,55,57,58,68,84,85,86,88,91,93],precisions_str:51,pred:[52,54,55,59],pred_label:58,pred_loc:58,predict:[52,53,54,55,58],prefer:84,prefix:[27,28,42,77],preinstal:87,prelu:69,prepar:[51,52,53,54,57,58,85,90],prepare_input:58,prepare_tensor:58,preprint:88,preprocess:[51,52,54,55,59,88,90],preserv:[59,77,83,88],prespect:83,press:77,pretium:80,pretrain:[51,52,53,54,55,58,90,92],pretti:84,prev_next_buttons_loc:75,prevent:[48,91],preview:56,previou:[53,75],previous:[30,33,84],prim:[60,61,64,69,83,84],prim_devic:69,primal:77,primari:53,primarili:[65,84],print:[16,31,44,51,52,53,54,55,56,57,58,59,77,84,90,92],print_funct:51,printout:53,printstat:[51,53],priorit:87,privat:[3,4,44,45,88],prob:[52,54,55],probabl:[52,53,54,55,58],probablil:[52,54,55],problem:[53,77],problemat:77,proce:[52,54,55,90],proceed:90,process:[51,52,53,54,55,57,58,59,62,76,77,83,88,90,91,92],prod:69,produc:[47,60,64,67,77,84],product:[48,52,54,57,58],profil:[47,57],profiling_verbos:85,program:[18,19,20,21,30,50,55,57,58,63,64,65,68,83,91],programm:77,progress:78,proin:80,project:[76,81],prometheu:[51,54,55,57,58],promis:[51,85],prompt:[51,54,55,57,58],properli:87,properti:[51,53,75],propog:61,prose:77,protobuf:51,provid:[3,4,48,51,52,53,54,55,56,62,64,67,77,84,85,86,87,88,89,90,91,92],providi:[63,65],provok:77,psutil:[51,55],pt:[53,56,58,59,84,85,90,91],pth:[54,58,59],ptq:[3,4,15,18,38,49,50,68,72,91],ptq_calibr:[3,4,45,48,88],ptqtemplat:49,ptyprocess:[51,54,55,57,58],publish:90,pull:[87,90],purchas:76,pure:[31,51,55,58],purpos:[55,56,58,85,87,90],puru:80,push:64,push_back:[44,62],put:77,pwd:90,pwr:[51,52,54,55,57],py2:[54,57,58],py3:[51,52,53,54,57,58,90],py:[51,52,56,58,59,61,65,75,77,82,83,84,85,87,88],pyannot:51,pyasn1:51,pybind11:51,pybtex:51,pycpars:[51,54,55,57,58],pycr:51,pydeprec:51,pydub:51,pygment:[51,54,55,57,58],pyindex:[85,90],pypa:[51,52,53,54,55,57,58],pypars:[51,53,54,55,57,58],pypi:[51,52,53,54,55,57,58,59,87],pypinyin:51,pyplot:[52,54,55,58],pyrsist:[51,54,55,57,58],pysock:51,pystoi:51,pytest:51,python3:[51,52,53,54,55,57,58,59,61,84,87],python:[51,52,53,54,55,57,58,59,62,65,77,78,84,85,89,90,91,92,93],python_api:66,python_env:85,pythonhost:[54,55,57,58,59],pyton:85,pytorch:[47,48,51,52,53,54,55,56,58,59,61,62,63,64,65,67,83,84,86,87,88,89,90,91],pytorch_libtorch:90,pytorch_lightn:51,pytorch_quant:[58,59],pytorch_sphinx_them:[75,82],pytorch_vision_v0:55,pytz:51,pywavelet:58,pyyaml:[51,53],pyzmq:[51,54,55,57,58],qat:59,qat_model:59,qthelp:51,qualiti:[52,54,58],quant:59,quant_dim:59,quant_input:59,quant_max:69,quant_min:69,quant_modul:59,quant_nn:59,quant_weight:59,quantconv2d:59,quantdescriptor:59,quantiz:[29,30,58,68,84,91],quantizatiom:48,quantizelay:59,quantlinear:59,quantoz:59,quantpool:59,quartznet:51,question:84,qui:[78,80],quick:59,quickli:[52,54,84,88,91],quisqu:80,quit:[55,67,84],quot:78,r:[56,58,77],rais:[61,85],raiseexcept:61,rand:[84,85],randn:[51,52,54,55,56,57,58,59,62,84,92],random:51,randomcrop:59,randomhorizontalflip:59,rang:[47,48,51,52,53,54,55,57,58,59,85,91],rank:75,rapidfuzz:51,rate:59,rather:61,raw:[58,75],re:[51,56,77,85],read:[3,4,29,30,44,51,55,75,77,88],readcalibrationcach:[3,4,44],reader:77,readi:[51,55],readm:[51,52,53,54,57,58],realiz:64,realli:67,reason:[0,56,58,83,85],reattribut:78,recalibr:30,receiv:85,recip:88,recipi:58,reciproc:69,recognit:[51,54,59,88],recomend:[29,30],recommend:[29,30,51,52,53,54,55,57,58,59,77,84,85,87,90],recompil:58,record:[57,59,60,83],rect:58,rectangl:58,recurs:60,recursivescriptmodul:57,redistribut:78,reduc:[52,54,57,58,59,61,63,65,85,88],redund:85,ref:77,refer:[47,59,63,65,76,81,84,85,86,88,90],referenc:[58,87],refit:[45,48,92],reflect:45,reflection_pad1d:69,reflection_pad2d:69,regard:[77,87],regardless:78,regex:[51,53],region:85,regist:[33,64,67,85],register_acc_op:85,register_acc_op_map:85,register_custom_acc_mapper_fn:85,register_forward_pre_hook:56,registernodeconversionpattern:[67,84],registr:85,registri:[60,84],regular:59,regular_model_output:56,reinterpret_cast:44,rel:91,relat:[46,77],relationship:49,releas:[51,53,77],reload_model_output:[56,85],reload_trt_mod:[56,85],relu:[54,55,56,57,62,69,83,84],relu_2:56,relu_3:56,relu_:69,remain:[52,53,54,57,58,61,88],rememb:85,remov:[51,52,54,56,57,58,59,75],remove_contigu:61,remove_dropout:61,remove_to:61,render:75,rent:78,repack:64,repeat:[69,91],replac:[53,56,58,61],replication_pad1d:69,replication_pad2d:69,replication_pad3d:69,report:[23,44],repositori:[52,54,58,65,75,82,90],repres:[47,48,59,67,77,85],represent:[52,53,54,57,58,61,67,83,85],request:[51,52,53,54,55,84,90],requir:[30,48,51,52,53,54,55,57,58,59,60,61,75,84,85,88,89,90,91],require_full_compil:[45,48,52,54,57,58],requires_grad:69,resampi:51,research:[52,54,57,58,85],reserv:[42,43,44,45,51,52,53,54,55,57,58,59],reset:44,reshap:[69,90],residu:54,resiz:[52,54,55,90],resnet50:[54,55,58,90],resnet50_model:[54,55],resnet:[55,58,64,90],resnet_trt:64,resolv:[52,54,55,60,61,63,65],resolve_data_config:52,resourc:[51,54,55,57,58,60,88],respons:[30,52,54,55,59,64,77],respositori:53,rest:[77,78,85],restor:51,restrict:48,restructuredtext:[77,78],result:[51,52,53,54,55,56,57,59,60,61,75,83,86,90],results_per_input:58,ret:61,rethink:52,return_tensor:53,reus:[61,85,88],revert:75,revis:[77,78],revisit:77,rfc:77,rgb:[52,54],rho_:77,rhoncu:80,right:[42,43,44,45,51,52,53,54,55,57,58,59,61,65,67,77],risu:80,rm:90,rn50_preprocess:[54,55,90],role:77,roll:69,roman:78,room:77,root:[42,43,44,45,51,52,53,54,55,57,58,59,75,87,88],roughli:62,round:[48,59],round_:59,rounding_mod:69,row:78,rsa:51,rst:[75,77],rsub:69,rtol:[56,91],ruamel:51,rule:[85,87],ruler:77,run:[1,37,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,68,77,83,84,85,86,87,88,89,90,91,92,93],run_on_acc_:56,run_on_gpu_:56,runner:51,running_loss:59,running_mean:69,running_var:69,runtim:[51,52,54,55,57,58,68,84],runtimeerror:85,rutrum:[78,80],s3:[52,54,55],s3transfer:51,s:[47,48,58,59,62,64,67,68,75,77,78,83,84,85,86,88,90],sacrebleu:51,sacremos:[51,53],safe:67,safeti:[48,91],sage:77,sagitti:[78,80],sai:[55,78],said:77,same:[52,54,55,58,64,75,77,83,84,85,87,90,92],sampl:[51,52,54,77,85,88,90],sample_input:85,sample_r:51,sapien:80,satisfi:[51,52,53,54,55,57,58,62,85],save:[30,44,51,52,54,55,56,57,58,59,64,84,85,86,89,90,91],save_checkpoint:59,save_restore_connector:51,saw:84,scalar:[67,69],scalaropt_dim:69,scalartyp:[0,45,69],scale:[52,59,69,88],scale_factor:69,scale_grad_by_freq:69,scales_d:69,scales_h:69,scales_w:69,scelerisqu:80,schedul:[59,90],schema:[67,84],scheme:85,scientist:77,scikit:[51,58],scikit_imag:58,scipi:[51,58],scope:61,score:[52,54,55,58],scratch:30,scratch_spac:90,screen:75,script:[31,53,58,59,61,62,83,84,86,92],script_model:[57,83,92],scripted_model:93,scriptmodul:84,scroll:[75,79],sdk:[51,52,54,57,58,66],se:51,seamlessli:[55,68],search:[53,68,75],second:[52,53,55,61,77,85],secondli:90,section:[55,59,75,77,78,79,81,84,85,88,90],secur:[51,87],sed:[78,80],see:[31,51,52,53,54,55,56,57,58,59,61,64,77,83,84,85,87],seen:[77,78],segment:[51,56,62],segments_tensor:53,select:[17,29,30,37,48,52,54,57,58,64,69,76,79,85,87,88,91],self:[51,53,56,57,59,61,64,67,69,83,84,93],self_1:[64,84],self_int:69,sell:78,seller:76,seller_id:76,sem:80,semant:77,semper:80,send2trash:[51,54,55,57,58],send:90,senectu:80,sens:[77,84],sent:[52,54,55],sentenc:[53,77],sentencepiec:51,sentencepiecetoken:51,sentinel:[0,2],sentri:51,separ:[52,54,57,58,62,63,65],seq_relationship:53,sequenc:[51,53,77,85],sequenti:[54,55],serial:[33,37,63,65,84,91],serializ:[64,83],serialized_cach:85,serializinghtml:51,seril:64,serv:[64,68,85,91],server:51,servic:77,session:77,session_nam:77,set:[3,4,16,21,25,27,30,32,35,37,45,46,47,48,52,54,57,58,59,60,61,62,63,64,65,68,75,79,82,83,84,85,86,87,88,93],set_data_from_numpi:90,set_devic:[21,38,45,49],set_is_colored_output_on:[18,39,42,49],set_logging_prefix:[18,39,42,49],set_reportable_log_level:[18,39,42,49,53,59],set_typecheck_en:51,setalpha:67,setattr:56,setbeta:67,setnam:[67,84],setproctitl:51,setreshapedimens:84,setup:[43,51,59,85,88,90],setup_multiple_test_data:51,setup_multiple_validation_data:51,setup_test_data:51,setup_training_data:51,setup_validation_data:51,setuptool:[51,54,55,57,58],sever:[16,26,53,56],sgd:59,sh:87,sha256:87,shape:[45,47,48,51,52,53,54,57,58,59,62,67,69,85,86,90,91,93],shape_rang:85,share:87,shell_command:77,shellingham:51,shift:[69,77,87],ship:[59,84,89],shorthand:77,shortuuid:51,should:[0,3,4,30,45,48,52,55,59,60,61,62,63,65,67,68,75,77,80,85,88,90,91],show:[58,75,77],showcas:[52,54,55],shown:[53,75,77,84],shuffl:[51,59,84,88],shutterstock_780480850:[52,54,55],siberian:[52,54,55],siberian_huski:[54,55],side:[61,75,84],sidebar:[75,81],sigmoid:[69,85],sigmoid_:69,sign:90,signifi:[47,61],signific:[58,59,77],significantli:[61,75],similar:[58,67,84,85,89,92],simonyan:88,simpil:88,simpl:[51,52,53,54,57,58,59,77,78,83,85,90],simplejson:51,simplest:[53,90],simpli:[55,57,61],simplic:[52,54,58],simplifi:60,simul:59,sin:[69,77],sinc:[53,56,57,61,77,83,84,85,88],sing:77,singl:[47,48,53,57,61,77,83,84,85,88,91],singular:67,sinh:69,sink:77,sit:[78,80],site:[51,52,53,54,55,57,58,59,61,77,84,87],six:[51,53,54,55,57,58,77],sixth:78,size:[3,4,44,47,48,51,52,53,54,55,57,58,59,61,62,69,75,84,85,88,91,93],size_t:[3,4,44,88],skip:[56,91],slash:75,slice:69,slightli:85,slither:[52,54,55],sm:64,sm_output:[52,54,55],small:[59,61,90],smaller:51,smallest:53,smi:[51,52,54,55,57],smmap:51,snake:[52,54,55],snowballstemm:51,so:[0,44,52,54,55,57,59,60,61,64,65,67,68,76,77,78,84,85,87,88,91],sodal:80,softmax:[52,54,55,58,59,61,69,85],softwar:[51,52,53,54,55,57,58,59,77],sole:88,sollicitudin:80,solv:90,some:[52,53,54,56,60,61,63,64,65,67,76,77,84,85,88],some_funct:77,someth:[43,61,77,90],someurl:77,sort:[67,69,92],sortedcontain:51,soundfil:51,soupsiev:[51,55],sourc:[42,43,44,45,52,54,58,65,85],sourceforg:[77,78],sox:51,space:[77,78,88],spaces_and_linebreak:77,span:78,spars:[69,91],sparse_weight:[45,48,85],sparsiti:[48,85,91],speak:53,speaker:53,spec:[47,48,52,54,57,58,91,92],specif:[32,48,51,52,53,54,55,57,58,59,61,63,65,77],specifi:[3,4,48,52,53,54,55,57,58,59,67,68,75,77,85,86,90,91,92],speech:51,speed:[51,52,53,54,55,58],speed_m:[51,53],speed_mean:[51,53],speedup:[51,52,53,54],sphinx:[51,75,76,77,78,82],sphinx_rtd_them:[77,78],sphinxcontrib:51,spin:90,spirit:77,split:[53,56,69,85],split_mod:56,split_siz:69,split_with_s:69,splitter:56,sqrt:69,squeez:[51,69],sr:51,src:[64,66,69],ss:44,ssd300:58,ssd300_trt:64,ssd:64,ssd_300_trace:58,ssd_pyt_ckpt_amp:58,ssd_trace:91,ssd_trt:91,sstream:[20,44],stabl:[59,66,75],stack:[51,55,58,59,64,69,88],stage:[60,85],stand:[64,77],standalon:77,standard:[52,53,54,55,57,58,64,68,77,89,91,92],stapl:78,start:[53,55,58,59,60,62,69,78,85,87,92],start_dim:[69,84],start_step:69,start_tim:[51,52,53,54,55,57,58,59],startswith:59,stat:59,state:[51,52,53,54,59,60,67,84],state_dict:59,statement:[61,77],static_cast:44,statist:[53,59],statu:[44,78],std:[3,4,22,26,28,29,30,31,33,34,37,42,44,45,47,48,51,52,53,54,55,62,84,88,90,93],std_dev:[51,53],stderr:59,stdout:36,steamlin:88,step:[51,52,53,54,55,57,58,59,68,69,85,88],stft:51,stick:75,sticki:[75,81],sticky_navig:[75,79],still:[44,56,58,62,85,88],stitch:[57,62,84],stop:84,storag:88,store:[2,4,60,64,67,83,84,85],str:[19,43,44,49,52,54,55,69,85],straight:67,strang:77,strategi:53,stream:[52,54,55],street:78,strict:89,strict_type_constraint:85,stride:[54,55,57,58,59,69],string:[3,4,18,20,21,22,26,28,29,30,31,33,34,37,42,44,45,48,62,64,67,75,84,88],stringstream:44,strip_prefix:87,strong:[52,54,57,58,77],strongli:77,struct:[1,21,38,41,45,88],structur:[30,46,48,52,54,57,58,62,65,67,75,77,81,83,90],structuredtext:77,stt_en_citrinet_256:51,stt_en_citrinet_256_bs128_torch:51,stt_en_citrinet_256_bs1_torch:51,stt_en_citrinet_256_bs32_torch:51,stt_en_citrinet_256_bs8_torch:51,stub:78,stuff:77,style:[42,43,44,45,75,77,78],style_external_link:75,sub:[69,77,83],sub_:69,subdirectori:50,subexpress:61,subgraph:[48,56,60,61,67,84,91],subject:65,submenu:81,submod:56,submodul:[56,57,83],subplot:[52,54,55,58],subscript:77,subsect:77,subset:[59,88],substitut:77,subtitl:77,subtre:82,subword:51,successfulli:[51,52,54,57,58],sudo:87,suffic:61,suggest:90,suit:[55,68],suitabl:85,sum:[48,59,69,85],summari:53,summarywrit:59,superscript:77,suppli:77,support:[0,1,2,27,31,46,47,48,52,54,55,56,57,58,59,62,66,68,75,76,83,84,85,87,90,91,93],sure:[56,84,86,87,90,93],suscipit:[78,80],suspendiss:80,swap:51,sy:59,symbol:[33,77,85,87,89],symlink:82,sympi:51,synchron:[51,52,53,54,55,57,58,59],system:[51,52,53,54,55,57,58,60,67,68,87],t1:69,t2:69,t:[0,1,2,45,46,55,56,57,59,61,67,69,75,77,78,83,84,85,87,88,90],t_:77,tabl:[81,87],tabul:51,tag:[77,90],take:[31,32,33,37,51,52,54,57,58,60,63,64,65,67,75,77,84,85,88,92],taken:[52,54,58,77],talk:68,tan:69,tanh:69,tanh_:69,tar:[77,87,88],tarbal:[84,88],target:[1,33,45,46,47,48,52,54,55,56,57,58,64,65,68,85,86,88,91,92,93],targets_:88,tarred_audio_filepath:51,task:[29,30,51,53,85,88],techinqu:84,techniqu:[59,88],tell:[61,62,63,64,65,67,77],tellu:80,tem:91,temp:[51,52,54,55,57],templat:[20,40,44,45,49,75,84],temporari:85,tempu:80,tensor:[2,33,44,45,47,48,51,52,53,54,55,57,58,59,60,61,62,64,67,69,83,84,85,88],tensor_mod:69,tensor_qu:59,tensor_quant:59,tensor_scalar:69,tensor_tensor:69,tensorboard:[51,59],tensorcontain:67,tensorformat:[21,38,45,47,49],tensorformatenum:49,tensorlist:[62,67],tensorquant:59,tensorrt:[0,1,3,4,29,30,31,32,33,36,37,44,45,46,47,48,53,56,60,61,62,63,65,67,83,88,91],tensorrt_convert:85,tensorrtcompilespec:92,tensort:85,teo:91,term:[55,77,78,88],termin:[27,84,91],terminado:[51,54,55,57,58],test:[51,52,53,54,55,56,57,58,59,65,77,78,85,88,90,91],test_acc:59,test_acc_trac:85,test_loss:59,test_pr:59,test_prob:59,test_ptq_dataloader_calibr:88,test_ptq_trt_calibr:88,test_py_modul:[77,81],testing_dataload:[59,88],testing_dataset:[59,88],testpath:[51,54,57,58],text:[51,53,58,78,80],tf32:[48,91],tgz:87,than:[51,53,55,61,68,76,77,89],thats:[60,88],the_model_repositori:90,thei:[46,53,58,59,60,61,64,67,75,77,85,87,91],them:[51,52,53,54,56,57,58,61,62,64,75,84,85,87],theori:[60,77],therebi:64,therefor:[30,51,52,54,57,58,64,77,84,85],theres:89,therfor:89,theta:77,thi:[0,1,2,29,30,42,43,44,45,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,75,76,77,79,80,83,84,85,87,88,89,90,91,92],thicker:77,thin:77,thing1:77,thing2:77,thing3:77,thing:[57,77,85,87],think:[67,77],third:[55,78,85],third_parti:[65,87],this_arg_is_opt:85,those:[53,60,77],though:[58,65,67,83,84,91],thought:77,threadpoolctl:51,three:[47,55,56,63,65,77,78,85,90],threshold:91,through:[47,51,52,53,54,55,57,58,60,61,62,64,68,77,84,85],throughout:[52,54],throughput:52,throught:85,thrown:48,thu:[51,57,77],tifffil:58,time:[48,51,52,53,54,55,56,57,58,59,60,61,63,64,65,67,75,77,84,85,88,91],time_99th:[51,53],time_m:[51,53],time_mean:[51,53],time_std:[51,53],timegraph:[51,53],timeit:[51,53],timeout:51,timing_cach:85,timm:[52,54],tincidunt:80,tini:88,tinycss2:55,titan:[51,52,54,57,58],titl:[52,54,55],titles_onli:75,tmp:84,toctre:75,tocustomclass:67,todim:84,todo:[75,85],togeth:[57,60,67,84],toilet:[52,54,55],token:[51,53],token_type_id:53,tokens_tensor:53,toler:91,toml:51,tomli:58,too:[75,77,78,87],took:53,tool:[52,53,54,56,57,58,67,84,85],toolchain:[65,87],toolkit:[51,54,55,57,58,59],top:[58,65,75,79],topk:69,topolog:53,torch:[0,1,2,4,20,29,30,31,32,33,36,37,44,45,46,47,48,53,56,60,61,62,63,64,65,67,83,87,88,91,93],torch_executed_modul:[45,48,62],torch_executed_op:[45,48,62],torch_scirpt_modul:83,torch_script_modul:84,torch_tensorrt:[0,1,2,3,4,14,16,17,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,62,68,84,85,86,88,89,90,91,92,93],torch_tensorrt_major_vers:[19,43,49],torch_tensorrt_minor_vers:[19,43,49],torch_tensorrt_patch_vers:[19,43,49],torch_tensorrt_vers:[19,43,49],torch_tensorrtfil:49,torch_tensorrtnamespac:49,torchbind:64,torchhub:[58,90],torchmetr:51,torchscript:[19,21,38,43,45,48,49,51,52,53,54,55,58,59,63,64,65,85,86,91,92,93],torchscriptstruct:49,torchtext:85,torchtrt:[43,51,62],torchtrt_api:[19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,42,43,44,45,49],torchtrt_check:67,torchtrt_hidden:[19,43,49],torchtrt_runtime_exampl:89,torchtrt_unus:67,torchtrtc:[68,93],torchvis:[51,52,54,55,59,64,85,88,90,92],tornado:[51,54,55,57,58],toronto:88,tortor:80,total:59,totensor:[52,54,55,59,88,90],tovec:84,toward:88,tqdm:[51,53,59],trace:[51,53,56,58,59,62,83,84,85,86],traced_mlm_model:53,traced_model:[57,58,83],tracer:56,tracerwarn:59,track:[67,88],track_running_stat:[54,55],trade:58,tradit:[47,88],traget:32,trail:75,train:[29,30,48,51,52,53,54,58,68,69,84,86,91],trainabl:61,trained_vgg16_qat:59,trainer:51,training_dataload:59,training_dataset:59,traitlet:[51,54,55,57,58],transcrib:51,transfer:76,transform:[51,52,54,55,56,57,58,59,84,88,90],transformed_img:90,transforms_factori:52,translat:[58,84],transmit:77,transpos:[69,85],trash:77,travers:[63,65],treat:[59,91],tree:[42,43,44,45,51,75,88,89],trigger:[57,84,85],trim:88,trim_sil:51,tristiqu:80,triton:68,triton_to_np_dtyp:90,tritoncli:90,tritonserv:90,trt:[0,1,3,4,46,47,51,56,60,61,64,67,69,84,85],trt_interpreter_result:85,trt_lenet_script:84,trt_mod:[56,59,62,84,88,93],trt_model:[53,58,62,90,92],trt_model_fp16:[52,53,54],trt_model_fp32:[52,54],trt_model_with_d:55,trt_model_without_d:55,trt_script_modul:57,trt_splitter:56,trt_ts_modul:[51,57,62,86],trtinterpret:[56,85],trtinterpreterresult:85,trtmodul:[56,85],trtorch:51,trtsplitter:56,truck:59,truncat:[48,91],truncate_long_and_doubl:[45,48,51,53],trust:[54,55,57,58,59],ts:[43,51,57,62,68,72,83,84,86,91,92],ts_model:[62,84],tt:77,tue:[54,78],tune:[51,52,54,57,58,59],tupl:[64,85],tupleconstruct:[61,64],tupleunpack:61,turn:51,turpi:80,tutori:[52,54,55,83,88],two:[51,57,58,61,67,77,78,82,83,85,87,88,90,91],type:[0,1,2,29,47,48,49,51,52,53,54,55,56,57,58,59,60,64,67,77,84,85,88,91],type_fp32:90,typecheck:51,typenam:[3,4,29,30,44],typer:51,typic:[60,67,90],typing_extens:52,ubuntu:[51,87],ugli:77,ui:76,uint64_t:[45,48],ultric:80,un:[52,54,88],unabl:[67,84],unbind:69,unbroken:77,uncas:53,unchang:53,uncom:87,uncorr:[51,52,54,55,57],undefin:58,under:[42,43,44,45,51,52,53,54,55,57,58,59,65,77,86],underli:[0,1,2,46,67],understand:[52,54],unidecod:51,union:[67,84],uniqu:4,unique_ptr:[4,29],unit:[53,57,85],univers:77,unless:[51,52,53,54,55,57,58,59,85],unlik:[55,68,87,92],unlimit:75,unmask:53,unmasked_sent:53,unmasked_sentences_trt:53,unmasked_token:53,unmasked_tokens_trt:53,unpack_addmm:61,unpack_log_softmax:61,unqiue_ptr:4,unreferenc:77,unrestrict:77,unsign:59,unsqueez:[52,54,55,69],unstabl:65,unsupport:[31,48,56],unsur:67,untest:65,until:[55,60,65,67,87],unwrap:67,unwraptodoubl:67,unwraptoint:84,unzip:87,up:[51,52,53,54,57,58,59,60,61,63,64,65,77,83,85],updat:[51,55,59,85],upgrad:51,upload:[52,54,55,90],upon:75,upper:[59,78],upsample_bilinear2d:69,upsample_linear1d:69,upsample_nearest1d:69,upsample_nearest2d:69,upsample_nearest3d:69,upsample_trilinear3d:69,upscale_factor:69,upstream:84,uri:[58,77],url:[75,87,90],urllib3:[51,53],urna:80,us:[0,1,2,3,4,29,30,32,35,37,43,44,45,46,47,48,51,52,53,54,56,57,58,60,62,64,65,67,68,75,76,77,78,83,85,88,89,90,91,93],usabl:85,usag:[51,52,54,55,57,77,84],use_amp:51,use_cach:[3,4,29,44,88],use_cache_:44,use_fb_fake_qu:59,use_input_stat:69,use_start_end_token:51,use_subset:88,usecas:87,user:[42,47,48,51,52,53,54,55,56,57,58,62,63,64,65,77,78,84,87,88,90],userguid:59,userwarn:[51,52,58],using_int:[69,84],usr:87,usual:[58,59,75,85],ut:80,utf:[77,78],util:[52,54,56,57,59,67,84,88,90],v0:[54,55,74,90],v1:51,v2:[29,30,58],v8:87,v:[51,52,53,54,57,58,78,90,91],val2017:58,val:[58,59],valid:[1,46,51,57,58,59,67],valu:[0,1,2,16,17,45,46,47,53,57,59,60,64,67,69,75,84],value_tensor_map:[60,67],vanilla:85,vari:[52,53,54,55],variabl:[47,85],variant:[51,89],varient:61,varieti:90,variou:[51,85,93],variu:80,vcs_pageview_mod:75,vec:69,vector:[20,21,44,45,47,48,62,64,84,88,93],vehicula:80,vel:80,velit:80,venenati:80,venv:[51,52,53,54,55,57,58],verbios:91,verbos:[78,91],veri:[59,78,79,88,90,92],verifi:[53,59,62],version:[34,36,51,52,53,54,55,57,58,59,65,75,78,85,87,90],vertic:[75,77],vestibulum:[78,80],vgg16:[59,88],vgg16_base_ckpt:59,vgg16_qat_ckpt:59,vgg:[58,59,88],vi:77,via:[51,55,56,58,68,75,81,85,86,88,89],view:[69,75],vine_snak:52,virtual:[51,52,53,54,55,57,58,88],vision:[52,53,54,55,85,90],visit:[52,54,55,58],visitor:75,visual:55,vita:[78,80],vivamu:80,viverra:80,vm:78,volatil:[51,52,54,55,57],volta:[52,54,57,58],volutpat:80,vs:[0,1,2,46,61,92],vulput:80,w1109:59,w:[51,52,54,58,91],w_hh:69,w_ih:69,wa:[51,52,53,54,57,58,61,64,77,84,85],wai:[52,54,59,83,84,85,87,88,91],walk:[51,52,53,54,57,58],walkthrough:55,wandb:51,want:[42,52,54,56,57,58,62,83,84,85,88,90,92],warm:[51,52,53,54,55,57,58,59],warn:[16,44,51,52,53,54,55,57,58,59,67,91],warranti:[51,52,53,54,55,57,58,59],wash:77,wcwidth:[51,54,55,57,58],we:[42,44,51,52,53,54,55,56,57,58,59,60,61,63,64,65,67,75,77,83,84,85,88,90],weak:77,web:77,webdataset:51,webencod:[51,54,55,57,58],websit:87,weight:[47,48,53,56,59,60,69,77,84,85,91],weight_decai:59,welcom:[84,85],welecom:[52,54],well:[48,52,53,54,57,58,77,84,87,88],were:[53,58,84],werkzeug:51,wget:[51,52,54,55,90],what:[4,56,58,61,77,83,84,85],whatev:[64,85],wheel:[51,87],when:[27,44,45,46,52,53,54,57,58,59,60,61,63,64,65,67,75,77,79,83,84,85,87,88,91],where:[51,52,54,57,60,61,67,78,84,85,88],wherev:85,whether:[4,76,85,88,91],which:[1,2,30,32,37,46,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,75,77,78,83,84,85,86,87,88,89,90,92],white:[58,77],whitespac:77,whl:[52,54,57,58,87],who:77,whole:[52,54,57,58,85],whose:[56,61,85],why:77,wide:[55,81],widespread:53,widget:[51,54,55,57,58],widgetsnbextens:[51,54,55,57,58],width:[52,54,55,77],window:77,window_nam:77,wish:78,wit:51,within:[51,52,53,54,55,57,58,63,65,75,77],without:[51,52,53,54,56,57,58,59,67,75,77,84,88],wl:89,won:55,wooden:77,word:[51,53,77],wordninja:51,work:[44,57,61,65,67,77,78,85,88],worker:88,workflow:[59,92],workspac:[48,87,88,91,93],workspace_s:[45,48,51,52,53,54,55,58,88,91,93],world:[52,54,57,58,77],would:[56,67,84,85,87,89,90,91,92],wp:[52,54,55,90],wrap:[59,63,64,65,77,80,84,85,92],wrapper:67,wrapt:51,write:[3,4,29,30,44,51,52,53,54,55,57,58,59,60,68,77,84,85,88,90],writecalibrationcach:[3,4,44],writer:59,written:[52,54],wrote:77,www:[51,52,53,54,55,57,58,59,75,77,84,87,88,90],x64:87,x86:89,x86_64:[65,87],x9:61,x:[5,10,33,43,52,54,56,57,58,59,61,78,83,84,87],x_0:77,x_1:77,x_2:77,x_3:77,x_4:77,x_:77,xavier:[45,52,54,57,58,93],xstr:[19,43,49],xx:90,xxx:85,y:[33,51,58,78],yahoo:78,yaml:[51,66],yarg:51,yarl:51,year:51,yet:85,yield:53,you:[0,1,2,29,30,46,47,48,51,52,53,54,55,57,58,59,60,61,62,64,65,67,68,75,77,78,79,83,84,85,86,87,88,89,90,91,92],your:[51,52,53,54,55,57,58,59,67,68,75,77,78,82,83,84,86,87,89,92],yourself:[52,53,54,84],youtokentom:51,yy:[51,90],z:78,zero_grad:59,zero_point:69,zeroth:55,zip:[54,58,64,87],zipp:[51,54,55,57,58],zisserman:88},titles:["Class DataType","Class Device::DeviceType","Class TensorFormat","Template Class Int8CacheCalibrator","Template Class Int8Calibrator","Define STR","Define TORCH_TENSORRT_PATCH_VERSION","Define TORCH_TENSORRT_MAJOR_VERSION","Define TORCH_TENSORRT_MINOR_VERSION","Define TORCHTRT_API","Define XSTR","Define TORCHTRT_HIDDEN","Define TORCH_TENSORRT_VERSION","Directory cpp","Directory include","Directory torch_tensorrt","Enum Level","Enum EngineCapability","File logging.h","File macros.h","File ptq.h","File torch_tensorrt.h","Function torch_tensorrt::logging::get_logging_prefix","Function torch_tensorrt::logging::get_reportable_log_level","Function torch_tensorrt::logging::get_is_colored_output_on","Function torch_tensorrt::logging::set_reportable_log_level","Function torch_tensorrt::logging::log","Function torch_tensorrt::logging::set_is_colored_output_on","Function torch_tensorrt::logging::set_logging_prefix","Template Function torch_tensorrt::ptq::make_int8_calibrator","Template Function torch_tensorrt::ptq::make_int8_cache_calibrator","Function torch_tensorrt::torchscript::check_method_operator_support","Function torch_tensorrt::torchscript::compile","Function torch_tensorrt::torchscript::embed_engine_in_new_module","Function torch_tensorrt::get_build_info","Function torch_tensorrt::set_device","Function torch_tensorrt::dump_build_info","Function torch_tensorrt::torchscript::convert_method_to_trt_engine","Namespace torch_tensorrt","Namespace torch_tensorrt::logging","Namespace torch_tensorrt::ptq","Namespace torch_tensorrt::torchscript","Program Listing for File logging.h","Program Listing for File macros.h","Program Listing for File ptq.h","Program Listing for File torch_tensorrt.h","Struct Device","Struct Input","Struct CompileSpec","Torch-TensorRT C++ API","Full API","Torch-TensorRT Getting Started - CitriNet","Torch-TensorRT Getting Started - EfficientNet-B0","Masked Language Modeling (MLM) with Hugging Face BERT Transformer","Torch-TensorRT Getting Started - ResNet 50","Torch-TensorRT - Using Dynamic Shapes","<no title>","Torch-TensorRT Getting Started - LeNet","Object Detection with Torch-TensorRT (SSD)","Deploying Quantization Aware Trained models in INT8 using Torch-TensorRT","Conversion Phase","Lowering Phase","Partitioning Phase","Compiler Phases","Runtime Phase","System Overview","Useful Links for Torch-TensorRT Development","Writing Converters","Torch-TensorRT","Operators Supported","torch_tensorrt.logging","torch_tensorrt.ptq","torch_tensorrt","torch_tensorrt.ts","Changelog","Configuration","5. :mod:`test_py_module`","3. Paragraph Level Markup","4. Lists & Tables","1. Long Sticky Nav","1. Structural Elements","<no title>","Installation","Creating a TorchScript Module","Getting Started with C++","Torch-TensorRT (FX Path) User Guide","Using Torch-TensorRT in Python","Installation","Post Training Quantization (PTQ)","Deploying Torch-TensorRT Programs","Serving a Torch-TensorRT model with Triton","torchtrtc","Using Torch-TensorRT Directly From PyTorch","DLA"],titleterms:{"1":[79,90],"10":79,"11":79,"12":79,"13":79,"14":79,"15":79,"16":79,"17":79,"18":79,"19":79,"2":[79,80,90],"20":79,"3":[79,90],"4":79,"5":79,"50":54,"6":[58,79],"7":[58,79],"8":79,"9":79,"class":[0,1,2,3,4,20,21,38,40,41,49,71,72],"enum":[16,17,18,21,38,39,49,71,72],"function":[18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,49,55,66,72,73],"long":[79,81],A:77,And:77,But:78,By:[18,19],Or:61,The:[77,84],To:61,aarch64:87,abi:[64,87],acc:85,add:85,addmm:61,admonit:77,advic:67,ahead:68,an:81,api:[49,50,66,68,87],applic:88,arg:[67,76],automat:62,avail:66,awar:59,b0:52,background:[64,67],base:[3,4,75],benchmark:[51,55,58,59],bert:53,binari:87,block:77,branch:61,build:[55,75,87,90],bullet:78,c:[49,66,68,84,87,88],can:78,caption:[78,81],center:77,ch:77,changelog:74,check_method_operator_support:31,choos:87,citat:[77,88],citrinet:51,cli:87,client:90,code:[61,77],compil:[32,63,65,68,84,87],compilespec:48,compound:77,conclus:[57,58],configur:75,construct:64,content:[18,19,20,21,38,39,40,41,51,52,53,54,57,58,75,76,77,78,79,80],context:[67,75],contigu:61,contract:67,contributor:68,convers:[60,63,65,67],convert:[60,67,69,84,85],convert_method_to_trt_engin:37,cpp:[13,18,19,20,21,62],creat:[83,88],creativ:77,cudnn:87,current:69,custom:84,cxx11:87,data:[55,76],datatyp:0,dead:61,debug:87,deeper:78,defin:[5,6,7,8,9,10,11,12,19,49],definit:[18,19,20,21,78],demo:81,depend:87,deploi:[59,89],descript:[52,54,58],deseri:64,detail:58,detect:58,detector:58,develop:66,devic:[1,46],devicetyp:1,dimens:66,direct:77,directli:92,directori:[13,14,15,50],disk:83,distribut:87,dla:93,doctest:77,documen:68,document:[0,1,2,3,4,5,6,7,8,9,10,11,12,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,66,68,80,81],down:78,download:[55,77,82],dr:55,dropout:61,dump_build_info:36,dynam:55,easier:66,efficientnet:52,element:80,elimin:61,eliminatecommonsubexpress:61,embed_engine_in_new_modul:33,emphas:77,engin:[64,85],enginecap:17,enumer:78,envior:87,evalu:[60,69],exampl:[77,79],execept:61,executor:64,expect:66,explan:55,face:53,fallback:[61,62],field:78,figur:77,file:[15,18,19,20,21,42,43,44,45,49,50],flatten:61,footnot:77,format:64,fp16:[51,52,54],fp32:[51,52,54],freez:61,from:[55,87,92],full:[49,50],fuse:61,fx2trt:85,fx:85,gaurd:61,gener:76,get:[51,52,54,55,57,68,84],get_build_info:34,get_is_colored_output_on:24,get_logging_prefix:22,get_reportable_log_level:23,giant:78,git:82,glossari:77,gpu:68,graph:[61,64],grid:78,guarante:67,guid:85,h:[18,19,20,21,42,43,44,45,62],half:[51,52,54],have:78,hierarchi:49,hlist:78,hole:78,hood:84,how:[75,85,88],html:75,hub:55,hug:53,ien:77,imag:[77,78],includ:[14,18,19,20,21],incred:81,index:76,indic:68,infer:[58,90],inherit:[3,4],inlin:77,input:47,instal:[82,85,87],int8:59,int8cachecalibr:3,int8calibr:4,ir:66,jetson:87,jit:68,languag:53,layer:66,learn:[51,52,53,54,57,58],lenet:57,level:[16,75,77,78],librari:[87,89],libtorchtrt:89,like:78,line:77,linear:61,link:[66,77],list:[42,43,44,45,78],liter:77,local:87,log:[18,22,23,24,25,26,27,28,39,42,70],logsoftmax:61,loop:61,lower:[61,63,65],macro:[19,43],make_int8_cache_calibr:30,make_int8_calibr:29,markup:77,mask:53,math:77,measur:58,menu:[79,81],meta:77,miss:85,mlm:53,mod:76,model:[52,53,54,55,57,58,59,85,90],modul:[61,83,84],multibox:58,namespac:[18,19,20,21,38,39,40,41,49],nativ:87,native_op:66,nav:79,nest:[1,46],next:[51,52,53,54,55,57],node:60,number:[77,78],nvidia:68,object:[51,52,53,54,57,58],one:78,op:[64,85],oper:[69,84],optim:90,optimz:61,option:[75,76,78],other:67,overview:[51,52,54,57,58,59,65],own:88,packag:[87,89],page:75,paragraph:[77,80],paramet:76,partit:[62,63,65],partitoninfo:62,pass:61,path:85,pattern:61,peephol:61,perform:59,phase:[60,61,62,63,64,65],plugin:89,post:88,pre:87,precis:[51,52,54],precompil:87,prerequisit:87,program:[42,43,44,45,89],project:75,ptq:[20,29,30,40,44,71,88],python:[66,68,83,86,87,88],pytorch:[57,66,68,85,92],quantiz:[59,88],queri:90,quickstart:84,quot:77,rabbit:78,read:66,redund:61,refer:[58,77],regist:84,relationship:[1,3,4,46],releas:87,remov:61,replac:77,resnet:54,respons:67,result:[58,64],right:87,rubric:77,runtim:[63,64,65,89],s:[51,52,53,54,55,57],sampl:[55,58],save:83,script:57,second:78,section:80,segmentedblock:62,serial:64,serv:90,server:90,set:[55,90],set_devic:35,set_is_colored_output_on:27,set_logging_prefix:28,set_reportable_log_level:25,setup:87,shape:55,shape_analysi:62,shot:58,sidebar:77,simpl:55,singl:[51,52,54,58],so:89,sometim:66,sourc:87,speedup:58,ssd:58,start:[51,52,54,57,68,84],step:90,sticki:79,str:5,struct:[46,47,48,49],structur:80,subdirectori:[13,14],submenu:79,submodul:72,subsect:80,subsubmenu:79,subsubsect:80,support:69,system:65,tabl:[75,76,77,78,79,80],tarbal:87,target:77,templat:[3,4,29,30],tensorformat:2,tensorrt:[49,51,52,54,55,57,58,59,64,66,68,84,85,86,87,89,90,92],test_py_modul:76,text:77,theme:[75,81],thi:[78,81],through:69,time:68,titl:77,tl:55,toc:75,topic:77,torch:[49,51,52,54,55,57,58,59,66,68,84,85,86,89,90,92],torch_tensorrt:[15,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,45,70,71,72,73],torch_tensorrt_major_vers:7,torch_tensorrt_minor_vers:8,torch_tensorrt_patch_vers:6,torch_tensorrt_vers:12,torchscript:[31,32,33,37,41,57,68,83,84],torchtrt_api:9,torchtrt_hidden:11,torchtrtc:[84,91],trace:57,tracer:85,train:[59,88],transform:53,triton:90,trt:55,ts:73,tupl:61,type:[3,4,46],under:84,unpack:61,unrol:61,unsupport:84,up:[55,90],us:[55,59,61,66,84,86,87,92],user:85,util:[51,55,58],version:64,via:82,visual:58,wai:77,weight:67,what:[51,52,53,54,55,57,67],wide:75,without:55,work:[55,83,84],write:67,xstr:10,your:[88,90]}}) \ No newline at end of file +Search.setIndex({docnames:["_cpp_api/classtorch__tensorrt_1_1DataType","_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType","_cpp_api/classtorch__tensorrt_1_1TensorFormat","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator","_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502","_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268","_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e","_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827","_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b","_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da","_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59","_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883","_cpp_api/dir_cpp","_cpp_api/dir_cpp_include","_cpp_api/dir_cpp_include_torch_tensorrt","_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558","_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb","_cpp_api/file_cpp_include_torch_tensorrt_logging.h","_cpp_api/file_cpp_include_torch_tensorrt_macros.h","_cpp_api/file_cpp_include_torch_tensorrt_ptq.h","_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h","_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3","_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650","_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a","_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2","_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8","_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5","_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc","_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039","_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa","_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797","_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9","_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef","_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528","_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384","_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1","_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2","_cpp_api/namespace_torch_tensorrt","_cpp_api/namespace_torch_tensorrt__logging","_cpp_api/namespace_torch_tensorrt__ptq","_cpp_api/namespace_torch_tensorrt__torchscript","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h","_cpp_api/structtorch__tensorrt_1_1Device","_cpp_api/structtorch__tensorrt_1_1Input","_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec","_cpp_api/torch_tensort_cpp","_cpp_api/unabridged_orphan","_notebooks/CitriNet-example","_notebooks/EfficientNet-example","_notebooks/Hugging-Face-BERT","_notebooks/Resnet50-example","_notebooks/dynamic-shapes","_notebooks/lenet-getting-started","_notebooks/ssd-object-detection-demo","_notebooks/vgg-qat","contributors/conversion","contributors/lowering","contributors/partitioning","contributors/phases","contributors/runtime","contributors/system_overview","contributors/useful_links","contributors/writing_converters","index","indices/supported_ops","py_api/logging","py_api/ptq","py_api/torch_tensorrt","py_api/ts","src/pytorch-sphinx-theme/docs/changelog","src/pytorch-sphinx-theme/docs/configuring","src/pytorch-sphinx-theme/docs/demo/api","src/pytorch-sphinx-theme/docs/demo/demo","src/pytorch-sphinx-theme/docs/demo/lists_tables","src/pytorch-sphinx-theme/docs/demo/long","src/pytorch-sphinx-theme/docs/demo/structure","src/pytorch-sphinx-theme/docs/index","src/pytorch-sphinx-theme/docs/installing","tutorials/creating_torchscript_module_in_python","tutorials/getting_started_with_cpp_api","tutorials/getting_started_with_python_api","tutorials/installation","tutorials/ptq","tutorials/runtime","tutorials/serving_torch_tensorrt_with_triton","tutorials/torchtrtc","tutorials/use_from_pytorch","tutorials/using_dla"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,nbsphinx:4,sphinx:56},filenames:["_cpp_api/classtorch__tensorrt_1_1DataType.rst","_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.rst","_cpp_api/classtorch__tensorrt_1_1TensorFormat.rst","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.rst","_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.rst","_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.rst","_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.rst","_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.rst","_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.rst","_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.rst","_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.rst","_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.rst","_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.rst","_cpp_api/dir_cpp.rst","_cpp_api/dir_cpp_include.rst","_cpp_api/dir_cpp_include_torch_tensorrt.rst","_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.rst","_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.rst","_cpp_api/file_cpp_include_torch_tensorrt_logging.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_macros.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.rst","_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst","_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.rst","_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.rst","_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.rst","_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.rst","_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.rst","_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.rst","_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.rst","_cpp_api/function_ptq_8h_1a83ff2be7e0b80bc7434de415861dc039.rst","_cpp_api/function_ptq_8h_1a9835f6e605dce1abf442a55b64d6dffa.rst","_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.rst","_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.rst","_cpp_api/function_torch__tensorrt_8h_1a710df824a7718b440e4bc17bf9693cef.rst","_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.rst","_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.rst","_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.rst","_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.rst","_cpp_api/namespace_torch_tensorrt.rst","_cpp_api/namespace_torch_tensorrt__logging.rst","_cpp_api/namespace_torch_tensorrt__ptq.rst","_cpp_api/namespace_torch_tensorrt__torchscript.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.rst","_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst","_cpp_api/structtorch__tensorrt_1_1Device.rst","_cpp_api/structtorch__tensorrt_1_1Input.rst","_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.rst","_cpp_api/torch_tensort_cpp.rst","_cpp_api/unabridged_orphan.rst","_notebooks/CitriNet-example.ipynb","_notebooks/EfficientNet-example.ipynb","_notebooks/Hugging-Face-BERT.ipynb","_notebooks/Resnet50-example.ipynb","_notebooks/dynamic-shapes.ipynb","_notebooks/lenet-getting-started.ipynb","_notebooks/ssd-object-detection-demo.ipynb","_notebooks/vgg-qat.ipynb","contributors/conversion.rst","contributors/lowering.rst","contributors/partitioning.rst","contributors/phases.rst","contributors/runtime.rst","contributors/system_overview.rst","contributors/useful_links.rst","contributors/writing_converters.rst","index.rst","indices/supported_ops.rst","py_api/logging.rst","py_api/ptq.rst","py_api/torch_tensorrt.rst","py_api/ts.rst","src/pytorch-sphinx-theme/docs/changelog.rst","src/pytorch-sphinx-theme/docs/configuring.rst","src/pytorch-sphinx-theme/docs/demo/api.rst","src/pytorch-sphinx-theme/docs/demo/demo.rst","src/pytorch-sphinx-theme/docs/demo/lists_tables.rst","src/pytorch-sphinx-theme/docs/demo/long.rst","src/pytorch-sphinx-theme/docs/demo/structure.rst","src/pytorch-sphinx-theme/docs/index.rst","src/pytorch-sphinx-theme/docs/installing.rst","tutorials/creating_torchscript_module_in_python.rst","tutorials/getting_started_with_cpp_api.rst","tutorials/getting_started_with_python_api.rst","tutorials/installation.rst","tutorials/ptq.rst","tutorials/runtime.rst","tutorials/serving_torch_tensorrt_with_triton.rst","tutorials/torchtrtc.rst","tutorials/use_from_pytorch.rst","tutorials/using_dla.rst"],objects:{"":[[5,0,1,"c.STR","STR"],[9,0,1,"c.TORCHTRT_API","TORCHTRT_API"],[11,0,1,"c.TORCHTRT_HIDDEN","TORCHTRT_HIDDEN"],[7,0,1,"c.TORCH_TENSORRT_MAJOR_VERSION","TORCH_TENSORRT_MAJOR_VERSION"],[8,0,1,"c.TORCH_TENSORRT_MINOR_VERSION","TORCH_TENSORRT_MINOR_VERSION"],[6,0,1,"c.TORCH_TENSORRT_PATCH_VERSION","TORCH_TENSORRT_PATCH_VERSION"],[12,0,1,"c.TORCH_TENSORRT_VERSION","TORCH_TENSORRT_VERSION"],[10,0,1,"c.XSTR","XSTR"],[0,1,1,"_CPPv4N14torch_tensorrt8DataTypeE","torch_tensorrt::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value","torch_tensorrt::DataType::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE","torch_tensorrt::DataType::DataType"],[0,2,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEv","torch_tensorrt::DataType::DataType"],[0,3,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value","torch_tensorrt::DataType::DataType::t"],[0,3,1,"_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE","torch_tensorrt::DataType::DataType::t"],[0,4,1,"_CPPv4N14torch_tensorrt8DataType5ValueE","torch_tensorrt::DataType::Value"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kBoolE","torch_tensorrt::DataType::Value::kBool"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kCharE","torch_tensorrt::DataType::Value::kChar"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value6kFloatE","torch_tensorrt::DataType::Value::kFloat"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kHalfE","torch_tensorrt::DataType::Value::kHalf"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value4kIntE","torch_tensorrt::DataType::Value::kInt"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE","torch_tensorrt::DataType::Value::kUnknown"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kBoolE","torch_tensorrt::DataType::kBool"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kCharE","torch_tensorrt::DataType::kChar"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value6kFloatE","torch_tensorrt::DataType::kFloat"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value5kHalfE","torch_tensorrt::DataType::kHalf"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value4kIntE","torch_tensorrt::DataType::kInt"],[0,5,1,"_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE","torch_tensorrt::DataType::kUnknown"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypecv5ValueEv","torch_tensorrt::DataType::operator Value"],[0,2,1,"_CPPv4N14torch_tensorrt8DataTypecvbEv","torch_tensorrt::DataType::operator bool"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeneE8DataType","torch_tensorrt::DataType::operator!="],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE","torch_tensorrt::DataType::operator!="],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeneE8DataType","torch_tensorrt::DataType::operator!=::other"],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE","torch_tensorrt::DataType::operator!=::other"],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType","torch_tensorrt::DataType::operator=="],[0,2,1,"_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE","torch_tensorrt::DataType::operator=="],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType","torch_tensorrt::DataType::operator==::other"],[0,3,1,"_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE","torch_tensorrt::DataType::operator==::other"],[46,1,1,"_CPPv4N14torch_tensorrt6DeviceE","torch_tensorrt::Device"],[46,2,1,"_CPPv4N14torch_tensorrt6Device6DeviceEv","torch_tensorrt::Device::Device"],[1,1,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypeE","torch_tensorrt::Device::DeviceType"],[46,1,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypeE","torch_tensorrt::Device::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv","torch_tensorrt::Device::DeviceType::DeviceType"],[1,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType::t"],[1,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType::t"],[46,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value","torch_tensorrt::Device::DeviceType::DeviceType::t"],[46,3,1,"_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE","torch_tensorrt::Device::DeviceType::DeviceType::t"],[1,4,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE","torch_tensorrt::Device::DeviceType::Value"],[46,4,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE","torch_tensorrt::Device::DeviceType::Value"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::Value::kDLA"],[46,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::Value::kDLA"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::Value::kGPU"],[46,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::Value::kGPU"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE","torch_tensorrt::Device::DeviceType::kDLA"],[1,5,1,"_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE","torch_tensorrt::Device::DeviceType::kGPU"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv","torch_tensorrt::Device::DeviceType::operator Value"],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv","torch_tensorrt::Device::DeviceType::operator Value"],[1,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv","torch_tensorrt::Device::DeviceType::operator bool"],[46,2,1,"_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv","torch_tensorrt::Device::DeviceType::operator bool"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!="],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!="],[1,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!=::other"],[46,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType","torch_tensorrt::Device::DeviceType::operator!=::other"],[1,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator=="],[46,2,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator=="],[1,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator==::other"],[46,3,1,"_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType","torch_tensorrt::Device::DeviceType::operator==::other"],[46,6,1,"_CPPv4N14torch_tensorrt6Device18allow_gpu_fallbackE","torch_tensorrt::Device::allow_gpu_fallback"],[46,6,1,"_CPPv4N14torch_tensorrt6Device11device_typeE","torch_tensorrt::Device::device_type"],[46,6,1,"_CPPv4N14torch_tensorrt6Device8dla_coreE","torch_tensorrt::Device::dla_core"],[46,6,1,"_CPPv4N14torch_tensorrt6Device6gpu_idE","torch_tensorrt::Device::gpu_id"],[17,4,1,"_CPPv4N14torch_tensorrt16EngineCapabilityE","torch_tensorrt::EngineCapability"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability15kDLA_STANDALONEE","torch_tensorrt::EngineCapability::kDLA_STANDALONE"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability7kSAFETYE","torch_tensorrt::EngineCapability::kSAFETY"],[17,5,1,"_CPPv4N14torch_tensorrt16EngineCapability9kSTANDARDE","torch_tensorrt::EngineCapability::kSTANDARD"],[47,1,1,"_CPPv4N14torch_tensorrt5InputE","torch_tensorrt::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input"],[47,2,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::dtype"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::format"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::max_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::min_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::opt_shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat","torch_tensorrt::Input::Input::shape"],[47,3,1,"_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE","torch_tensorrt::Input::Input::tensor"],[47,6,1,"_CPPv4N14torch_tensorrt5Input5dtypeE","torch_tensorrt::Input::dtype"],[47,6,1,"_CPPv4N14torch_tensorrt5Input6formatE","torch_tensorrt::Input::format"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9max_shapeE","torch_tensorrt::Input::max_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9min_shapeE","torch_tensorrt::Input::min_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input9opt_shapeE","torch_tensorrt::Input::opt_shape"],[47,6,1,"_CPPv4N14torch_tensorrt5Input5shapeE","torch_tensorrt::Input::shape"],[2,1,1,"_CPPv4N14torch_tensorrt12TensorFormatE","torch_tensorrt::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value","torch_tensorrt::TensorFormat::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE","torch_tensorrt::TensorFormat::TensorFormat"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEv","torch_tensorrt::TensorFormat::TensorFormat"],[2,3,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value","torch_tensorrt::TensorFormat::TensorFormat::t"],[2,3,1,"_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE","torch_tensorrt::TensorFormat::TensorFormat::t"],[2,4,1,"_CPPv4N14torch_tensorrt12TensorFormat5ValueE","torch_tensorrt::TensorFormat::Value"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE","torch_tensorrt::TensorFormat::Value::kChannelsLast"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE","torch_tensorrt::TensorFormat::Value::kContiguous"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE","torch_tensorrt::TensorFormat::Value::kUnknown"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE","torch_tensorrt::TensorFormat::kChannelsLast"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE","torch_tensorrt::TensorFormat::kContiguous"],[2,5,1,"_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE","torch_tensorrt::TensorFormat::kUnknown"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatcv5ValueEv","torch_tensorrt::TensorFormat::operator Value"],[2,2,1,"_CPPv4N14torch_tensorrt12TensorFormatcvbEv","torch_tensorrt::TensorFormat::operator bool"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat","torch_tensorrt::TensorFormat::operator!="],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator!="],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat","torch_tensorrt::TensorFormat::operator!=::other"],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator!=::other"],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat","torch_tensorrt::TensorFormat::operator=="],[2,2,1,"_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator=="],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat","torch_tensorrt::TensorFormat::operator==::other"],[2,3,1,"_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE","torch_tensorrt::TensorFormat::operator==::other"],[36,2,1,"_CPPv4N14torch_tensorrt15dump_build_infoEv","torch_tensorrt::dump_build_info"],[34,2,1,"_CPPv4N14torch_tensorrt14get_build_infoEv","torch_tensorrt::get_build_info"],[16,4,1,"_CPPv4N14torch_tensorrt7logging5LevelE","torch_tensorrt::logging::Level"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE","torch_tensorrt::logging::Level::kDEBUG"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kERRORE","torch_tensorrt::logging::Level::kERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE","torch_tensorrt::logging::Level::kGRAPH"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level5kINFOE","torch_tensorrt::logging::Level::kINFO"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE","torch_tensorrt::logging::Level::kINTERNAL_ERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE","torch_tensorrt::logging::Level::kWARNING"],[24,2,1,"_CPPv4N14torch_tensorrt7logging24get_is_colored_output_onEv","torch_tensorrt::logging::get_is_colored_output_on"],[22,2,1,"_CPPv4N14torch_tensorrt7logging18get_logging_prefixEv","torch_tensorrt::logging::get_logging_prefix"],[23,2,1,"_CPPv4N14torch_tensorrt7logging24get_reportable_log_levelEv","torch_tensorrt::logging::get_reportable_log_level"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE","torch_tensorrt::logging::kDEBUG"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kERRORE","torch_tensorrt::logging::kERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE","torch_tensorrt::logging::kGRAPH"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level5kINFOE","torch_tensorrt::logging::kINFO"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE","torch_tensorrt::logging::kINTERNAL_ERROR"],[16,5,1,"_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE","torch_tensorrt::logging::kWARNING"],[26,2,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log"],[26,3,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log::lvl"],[26,3,1,"_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE","torch_tensorrt::logging::log::msg"],[27,2,1,"_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb","torch_tensorrt::logging::set_is_colored_output_on"],[27,3,1,"_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb","torch_tensorrt::logging::set_is_colored_output_on::colored_output_on"],[28,2,1,"_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE","torch_tensorrt::logging::set_logging_prefix"],[28,3,1,"_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE","torch_tensorrt::logging::set_logging_prefix::prefix"],[25,2,1,"_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level","torch_tensorrt::logging::set_reportable_log_level"],[25,3,1,"_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level","torch_tensorrt::logging::set_reportable_log_level::lvl"],[3,1,1,"_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE","torch_tensorrt::ptq::Int8CacheCalibrator"],[3,7,1,"_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE","torch_tensorrt::ptq::Int8CacheCalibrator::Algorithm"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE","torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE","torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator::cache_file_path"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::bindings"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::names"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::nbBindings"],[3,2,1,"_CPPv4NK14torch_tensorrt3ptq19Int8CacheCalibrator12getBatchSizeEv","torch_tensorrt::ptq::Int8CacheCalibrator::getBatchSize"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibratorcvPN8nvinfer115IInt8CalibratorEEv","torch_tensorrt::ptq::Int8CacheCalibrator::operator nvinfer1::IInt8Calibrator*"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache::length"],[3,2,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::cache"],[3,3,1,"_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::length"],[4,1,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator"],[4,7,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator::Algorithm"],[4,7,1,"_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE","torch_tensorrt::ptq::Int8Calibrator::DataLoaderUniquePtr"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::cache_file_path"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::dataloader"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb","torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::use_cache"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::bindings"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::names"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci","torch_tensorrt::ptq::Int8Calibrator::getBatch::nbBindings"],[4,2,1,"_CPPv4NK14torch_tensorrt3ptq14Int8Calibrator12getBatchSizeEv","torch_tensorrt::ptq::Int8Calibrator::getBatchSize"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8CalibratorcvPN8nvinfer115IInt8CalibratorEEv","torch_tensorrt::ptq::Int8Calibrator::operator nvinfer1::IInt8Calibrator*"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t","torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache::length"],[4,2,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::cache"],[4,3,1,"_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t","torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::length"],[30,2,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator"],[30,7,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator::Algorithm"],[30,3,1,"_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE","torch_tensorrt::ptq::make_int8_cache_calibrator::cache_file_path"],[29,2,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator"],[29,7,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::Algorithm"],[29,7,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::DataLoader"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::cache_file_path"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::dataloader"],[29,3,1,"_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb","torch_tensorrt::ptq::make_int8_calibrator::use_cache"],[35,2,1,"_CPPv4N14torch_tensorrt10set_deviceEKi","torch_tensorrt::set_device"],[35,3,1,"_CPPv4N14torch_tensorrt10set_deviceEKi","torch_tensorrt::set_device::gpu_id"],[48,1,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpecE","torch_tensorrt::torchscript::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,2,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"],[48,3,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE","torch_tensorrt::torchscript::CompileSpec::CompileSpec::inputs"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec10capabilityE","torch_tensorrt::torchscript::CompileSpec::capability"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec5debugE","torch_tensorrt::torchscript::CompileSpec::debug"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec6deviceE","torch_tensorrt::torchscript::CompileSpec::device"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec12disable_tf32E","torch_tensorrt::torchscript::CompileSpec::disable_tf32"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec18enabled_precisionsE","torch_tensorrt::torchscript::CompileSpec::enabled_precisions"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec6inputsE","torch_tensorrt::torchscript::CompileSpec::inputs"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14min_block_sizeE","torch_tensorrt::torchscript::CompileSpec::min_block_size"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec20num_avg_timing_itersE","torch_tensorrt::torchscript::CompileSpec::num_avg_timing_iters"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec20num_min_timing_itersE","torch_tensorrt::torchscript::CompileSpec::num_min_timing_iters"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14ptq_calibratorE","torch_tensorrt::torchscript::CompileSpec::ptq_calibrator"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec5refitE","torch_tensorrt::torchscript::CompileSpec::refit"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec24require_full_compilationE","torch_tensorrt::torchscript::CompileSpec::require_full_compilation"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14sparse_weightsE","torch_tensorrt::torchscript::CompileSpec::sparse_weights"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec22torch_executed_modulesE","torch_tensorrt::torchscript::CompileSpec::torch_executed_modules"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec18torch_executed_opsE","torch_tensorrt::torchscript::CompileSpec::torch_executed_ops"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec24truncate_long_and_doubleE","torch_tensorrt::torchscript::CompileSpec::truncate_long_and_double"],[48,6,1,"_CPPv4N14torch_tensorrt11torchscript11CompileSpec14workspace_sizeE","torch_tensorrt::torchscript::CompileSpec::workspace_size"],[31,2,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support"],[31,3,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support::method_name"],[31,3,1,"_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE","torch_tensorrt::torchscript::check_method_operator_support::module"],[32,2,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile"],[32,3,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile::info"],[32,3,1,"_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec","torch_tensorrt::torchscript::compile::module"],[37,2,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::info"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::method_name"],[37,3,1,"_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec","torch_tensorrt::torchscript::convert_method_to_trt_engine::module"],[33,2,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module"],[33,3,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module::device"],[33,3,1,"_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6Device","torch_tensorrt::torchscript::embed_engine_in_new_module::engine"],[71,8,0,"-","torch_tensorrt"]],"torch_tensorrt.Device":[[71,10,1,"","__init__"],[71,11,1,"","allow_gpu_fallback"],[71,11,1,"","device_type"],[71,11,1,"","dla_core"],[71,11,1,"","gpu_id"]],"torch_tensorrt.Input":[[71,10,1,"","__init__"],[71,11,1,"","dtype"],[71,11,1,"","format"],[71,11,1,"","shape"],[71,11,1,"","shape_mode"]],"torch_tensorrt.logging":[[69,9,1,"","Level"],[69,9,1,"","debug"],[69,9,1,"","errors"],[69,12,1,"","get_is_colored_output_on"],[69,12,1,"","get_logging_prefix"],[69,12,1,"","get_reportable_log_level"],[69,9,1,"","graphs"],[69,9,1,"","info"],[69,9,1,"","internal_errors"],[69,12,1,"","log"],[69,12,1,"","set_is_colored_output_on"],[69,12,1,"","set_logging_prefix"],[69,12,1,"","set_reportable_log_level"],[69,9,1,"","warnings"]],"torch_tensorrt.logging.Level":[[69,11,1,"","Debug"],[69,11,1,"","Error"],[69,11,1,"","Graph"],[69,11,1,"","Info"],[69,11,1,"","InternalError"],[69,11,1,"","Warning"]],"torch_tensorrt.ptq":[[70,9,1,"id1","CacheCalibrator"],[70,9,1,"id2","CalibrationAlgo"],[70,9,1,"id0","DataLoaderCalibrator"],[70,12,1,"","get_batch"],[70,12,1,"","get_batch_size"],[70,12,1,"","get_cache_mode_batch"],[70,12,1,"","read_calibration_cache"],[70,12,1,"","write_calibration_cache"]],"torch_tensorrt.ptq.CacheCalibrator":[[70,10,1,"","__init__"]],"torch_tensorrt.ptq.CalibrationAlgo":[[70,11,1,"","ENTROPY_CALIBRATION"],[70,11,1,"","ENTROPY_CALIBRATION_2"],[70,11,1,"","LEGACY_CALIBRATION"],[70,11,1,"","MINMAX_CALIBRATION"]],"torch_tensorrt.ptq.DataLoaderCalibrator":[[70,10,1,"","__init__"]],"torch_tensorrt.ts":[[72,12,1,"","TensorRTCompileSpec"],[72,12,1,"","check_method_op_support"],[72,12,1,"","compile"],[72,12,1,"","convert_method_to_trt_engine"],[72,12,1,"","embed_engine_in_new_module"]],torch_tensorrt:[[71,9,1,"","Device"],[71,9,1,"","DeviceType"],[71,9,1,"","EngineCapability"],[71,9,1,"","Input"],[71,9,1,"","TensorFormat"],[71,12,1,"","compile"],[71,12,1,"","convert_method_to_trt_engine"],[71,9,1,"","dtype"],[71,12,1,"","dump_build_info"],[71,12,1,"","get_build_info"],[69,8,0,"-","logging"],[70,8,0,"-","ptq"],[71,12,1,"","set_device"],[72,8,0,"-","ts"]]},objnames:{"0":["c","macro","C macro"],"1":["cpp","class","C++ class"],"10":["py","method","Python method"],"11":["py","attribute","Python attribute"],"12":["py","function","Python function"],"2":["cpp","function","C++ function"],"3":["cpp","functionParam","C++ function parameter"],"4":["cpp","enum","C++ enum"],"5":["cpp","enumerator","C++ enumerator"],"6":["cpp","member","C++ member"],"7":["cpp","templateParam","C++ template parameter"],"8":["py","module","Python module"],"9":["py","class","Python class"]},objtypes:{"0":"c:macro","1":"cpp:class","10":"py:method","11":"py:attribute","12":"py:function","2":"cpp:function","3":"cpp:functionParam","4":"cpp:enum","5":"cpp:enumerator","6":"cpp:member","7":"cpp:templateParam","8":"py:module","9":"py:class"},terms:{"0":[33,43,44,45,48,51,52,53,54,55,56,57,58,64,66,68,69,70,71,72,73,75,76,83,85,86,88,89,90,91],"00":[51,52,54,55,56,57,58],"0000":77,"00000000":[51,52,54,55,56],"000000037777":57,"000000252219":57,"000000397133":57,"000007":53,"000014":51,"000015":53,"000059":53,"000106":51,"000116":51,"000368":51,"000545":51,"000820":51,"000973":51,"001256":51,"001260":51,"001270":51,"001351":51,"0018":58,"002":54,"002251":53,"002259":53,"0023":58,"002305":53,"0026":58,"003287":53,"003289":53,"003317":53,"003462":51,"003774":51,"004":52,"004128":51,"004205":53,"004206":53,"004256":53,"004825":51,"005":[54,55],"006":[52,55],"006661":51,"006677":53,"006693":53,"006733":51,"006846":51,"006943":53,"0070":58,"008":58,"008071":51,"008453":51,"0087":58,"009802":51,"009803":51,"009836":51,"00f1b6db":[52,54,55],"01":[52,54,55,56,57,58,68,77,83],"0106":58,"010961":51,"011388":51,"013":58,"0151":58,"016114":51,"0163":58,"0169":58,"018642":51,"018643":51,"018670":51,"02":[52,54,55,58],"0208":83,"020804":51,"021143":51,"0220":58,"024492":51,"025":58,"025000":58,"0263":58,"028":58,"0296":58,"03":[51,77],"03291":58,"033488":51,"033572":51,"03466":58,"035722":51,"0358":83,"0383":83,"04":[51,52,57,58,83,85,88],"0435":83,"04609":58,"0464":83,"04743":58,"04807":58,"0491":58,"0493":58,"04it":58,"05":[51,52,53,54,55,57,58],"050000":58,"0505":58,"05080":58,"0530":83,"05311":58,"05374":58,"057":58,"058047":51,"058053":51,"058375":51,"05945":58,"06":[51,52,57],"0622":58,"063":58,"06340":58,"06567":58,"0676ba61":[54,57],"0678":83,"069":58,"07":[52,54,55],"071":58,"071428":51,"072057":51,"07266":58,"076796":51,"08":[52,54,55],"0805":83,"0818":83,"08331":58,"08555":58,"086":58,"09":[52,54,55,56],"0932":83,"096":58,"0a0":[51,52,76],"0a3":51,"0c106ec84f199a0fbcf1199010166986da732f9b0907768c9ac5ea5b120772db":85,"0f":57,"0mib":[52,54,55,56],"0rc1":51,"0s":54,"0x":53,"0x7f9f791ec5b0":72,"1":[3,4,33,43,44,45,47,48,51,52,53,54,55,56,57,58,60,61,63,66,68,69,70,71,72,73,74,76,77,80,82,83,84,85,86,89,90,91],"10":[48,51,52,53,54,55,56,57,58,72,80,82,83,85,86,88],"100":[52,54,55,56,57,58],"1000":[52,54,55,56,57,58,88],"10000":[52,54,55],"100000":58,"10018":58,"10070":58,"101":53,"101168":58,"1012":60,"1013":60,"10130":58,"102":51,"102248":58,"1024":[51,52,54,55,56,57,58,71,72,89],"10240mib":56,"10362":52,"104":[52,54,55],"1045":83,"105":58,"1056":83,"1063":83,"1065":51,"1069":51,"107":[52,54,55],"107194":58,"10732":58,"107625":58,"109":83,"10990":58,"10b0":51,"11":[51,52,53,54,55,56,57,58,60,76,80,83,85,88],"110":[57,58],"11299":58,"112mib":51,"11499":58,"115":56,"115269":58,"115740":58,"11594":58,"117":[52,54,55],"117969":58,"118358":58,"11879":58,"11888":58,"119":82,"1190":51,"119708":51,"11k":[52,54,55],"11w":52,"12":[51,52,53,54,55,56,57,58,60,76,80,82,83,88],"120":[56,58,82,83],"120097":51,"1201":51,"121":[54,56],"1216":53,"121618":51,"122":56,"12288mib":51,"123":[57,77],"12345":51,"126":58,"126382":58,"126834":58,"127":[52,58],"128":[51,52,53,54,55,56,57,58],"128674":58,"129":82,"129518":58,"12k":54,"13":[51,53,54,55,56,57,58,76,80,85],"130":51,"133":52,"13388":58,"135453":58,"135936":58,"136":88,"137":[51,82],"137858":58,"138":82,"138366":58,"139704147265344":58,"13x":52,"14":[51,52,53,54,55,56,57,58,80,88],"1409":86,"141":58,"143":51,"145":58,"145539":58,"146":51,"146053":58,"147871":58,"148353":58,"1488":51,"149":51,"14x":53,"15":[51,53,54,55,56,57,58,76,80],"1500":58,"1502":83,"1516":51,"1531":58,"1535566590":[52,54,55],"1538":51,"154252":58,"154685":58,"1549":[55,83],"1552":55,"1556":86,"1560":55,"1563":58,"156558":58,"1566":55,"1568":55,"157159":58,"1572":55,"1574":55,"1575":55,"1598":55,"15w":54,"15x":53,"16":[51,53,54,55,56,57,58,71,80,82,83,84],"16000":51,"163197":58,"163676":58,"164":[52,54,55],"165":57,"165549":58,"165991":58,"166":57,"167":57,"1691":83,"17":[51,52,53,54,55,56,57,58,80],"173":58,"173305":58,"173926":58,"176034":58,"176697":58,"1771":53,"1776":53,"1777":[51,58],"179":57,"1792":51,"18":[51,52,53,54,55,56,57,58,80,83,85],"182843":58,"183426":58,"185377":58,"185962":58,"188":58,"19":[51,53,54,57,58,77,80],"1906":58,"191966":58,"192424":58,"194325":58,"194817":58,"1971":58,"198":51,"1994":[58,86],"1d":60,"1e":[54,55,58,89],"1f":[51,53],"1rc0":51,"1ubuntu0":51,"1x1":57,"2":[33,43,45,48,51,52,53,54,55,56,57,58,61,66,68,69,70,71,72,74,76,77,80,82,83,85,86,90],"20":[51,52,53,54,55,57,58,80],"200":[52,54,55,56,58],"2000000000":[51,53],"2002":58,"2009":86,"200w":55,"201":[52,54,55],"2010":[58,86],"2012":77,"2014":86,"2017":[51,53,57],"2018":[52,53,54,55],"2019":[51,52,53,54,56,57],"201988":58,"202":[52,54,55],"2020":[57,58,67,83],"2021":[51,53],"2022":[51,52,53,54,55,56,57,58],"2023":[58,86],"202665":58,"204763":58,"2048":[54,55],"205461":58,"20w":56,"21":[51,52,53,54,55,56,57,58],"211393":58,"211987":58,"213899":58,"214450":58,"215434":51,"215446":51,"215806":51,"216":52,"217":[54,55],"218":51,"22":[51,52,53,54,55,56,57,58,88],"220892":58,"221533":58,"222":54,"223":[54,55],"223519":58,"224":[52,54,55,61,71,72,88],"224037":58,"225":[52,54,55,88],"227":[52,54,55],"227739155292511":52,"229":[52,54,55,88],"23":[48,51,52,54,55,58,60,72,77],"2305":58,"23344755172729492":52,"233809":58,"234":58,"234375":88,"234434":58,"235":51,"237":58,"238":[55,58],"238212":58,"239042":58,"24":[51,54,56,57,58,60],"241022":58,"24112":[52,54,55],"241654":58,"242":51,"243":[54,56],"244":[71,72],"245":57,"2453mib":51,"24576mib":[52,54],"246":52,"2462mib":51,"246kb":52,"247820":58,"248":60,"248445":58,"249":60,"24k":[52,54,55],"25":[51,54,55,58,83],"250366":58,"250959":58,"250w":51,"254":58,"256":[52,54,55,58,88],"257248":58,"257854":58,"258":76,"259968":58,"26":[51,53,54,55,57],"2606":[52,54,55],"260660":58,"265":51,"268160":58,"26w":51,"27":[51,52,53,56,58,83],"272":51,"28":[51,52,55,83,86,91],"280":58,"2802":83,"282":51,"2822":76,"285":58,"287":76,"288":[51,58],"28c":52,"29":[51,52,55,58,83],"291":58,"29c":54,"2_20200626":85,"2c3":77,"2c365_subsampl":[52,54,55],"2c916ef":51,"2f":[52,54,55,56,57,58],"2s":54,"2x":54,"3":[45,48,51,52,53,54,55,56,57,58,60,61,63,68,69,70,71,72,76,77,80,82,83,85,86,89,90,91],"30":[52,54,55,57,58],"300":[56,57,58,89,90],"300x300":57,"302":58,"309":58,"3090":[52,54],"31":[51,54,55,56,57,83],"311":58,"314":58,"315":51,"32":[51,52,53,55,56,57,58,71,82,83,84,86,89,91],"320":86,"3207":58,"320w":56,"321":52,"329273":58,"32bit":89,"32x32":54,"33":[52,54,55,56,57,83],"330212":58,"332529":58,"333365":58,"3393":52,"339547":58,"34":[52,54,55,56,57,58],"340248":58,"342257":58,"342890":58,"345":58,"346":83,"349":51,"35":[52,54,57,83],"350619":58,"350w":[52,54],"351372":58,"352":[52,54,55],"353470":58,"35363":[52,54,55],"353k":[52,54,55],"354121":58,"3550":58,"35k":[52,54,55],"35x":52,"36":[51,52,55,83],"360090":58,"360806":58,"361413":[52,54,55],"362803":58,"3631":58,"363274":58,"366":54,"366kb":54,"3677":60,"37":[51,52,54,55,58,83],"370369":58,"371057":58,"373071":58,"373766":58,"376":52,"3763":58,"379890":58,"38":[51,54,55,57,82],"380538":58,"382532":58,"383128":58,"385":58,"3877":58,"389077":58,"389760":58,"39":[51,52,53,54,55,56,57,58,82],"3909":51,"391815":58,"392399":58,"394":58,"39485082030296326":54,"395":58,"3987298309803009":52,"399809":58,"39c":51,"39mib":51,"3f":58,"3x3":58,"4":[51,52,53,54,55,56,57,58,63,68,69,74,76,77,80,83,85],"40":[52,54,55,56,57,58],"400":[56,58],"400472":58,"402399":58,"402939":58,"406":[52,54,55,88],"408818":58,"409424":58,"4096":58,"40mb":54,"41":[51,54,55,56],"411513":58,"4116":55,"412097":58,"4122":55,"4123":55,"4142":55,"4156":55,"4161":51,"4166":55,"4170":55,"4172":55,"4176":55,"4178":55,"418537":58,"419128":58,"42":[51,55,56,57,58],"421343":58,"421946":58,"429":51,"429382":58,"429688":88,"42c":56,"42w":51,"43":[51,56,57,58],"430156":58,"432259":58,"433079":58,"4352":58,"439":58,"439297":58,"44":[51,57,58],"440027":58,"442":[52,54,55,58],"442149":58,"442826":58,"442k":[52,54,55],"443":[52,54,55],"4465":[58,86],"449377":58,"449968":58,"45":[51,52,57],"452122":58,"452718":[52,54,55],"452754":58,"456":[52,54,55,88],"45675724744796753":55,"4584":52,"459":58,"46":[51,52,57,58],"462532":58,"463295":58,"466963":58,"467725":58,"468750":88,"469692":58,"47":51,"470":[55,58],"4700":[52,54,55],"470336":58,"4726":58,"474":52,"476204":58,"4767":55,"476738":58,"47681mib":55,"478809":58,"479375":58,"48":[51,54,55],"481":54,"4822":[58,86],"484":58,"485":[52,54,55,88],"485666":58,"486219":58,"488416":58,"488986":58,"489":55,"49":[51,53,57],"4914":[58,86],"4935":55,"49785590171813965":54,"49788108468055725":55,"4980":55,"499":58,"4fef":[52,54,55],"4mib":51,"4s":52,"4x":51,"5":[51,52,53,54,55,56,57,58,63,64,69,71,76,77,80,82,83,85,88,89],"50":[51,52,53,55,56,57,58],"500":[56,58],"5002":55,"5005":55,"5014":55,"5016":55,"5018":55,"5020":55,"5024":55,"5026":55,"5027":55,"5033":55,"504":58,"5052":55,"5067":55,"5088":55,"5091":55,"5094":55,"5096":55,"510":[51,52,54,56],"5100":55,"511":58,"5110":55,"5115":55,"5117":58,"5118":55,"512":[51,54,55,58,71,72,89],"512364":58,"513354":58,"514046":58,"514638":58,"515270":58,"5153":55,"515859":58,"516441":58,"517009":58,"5172":58,"517600":58,"518167":58,"518752":58,"519333":58,"5197":55,"519911":58,"51c":55,"52":[52,54,55,58],"5202":55,"520473":58,"5207":55,"521038":58,"5215":55,"521596":58,"522170":58,"522742":58,"5231":55,"523360":58,"523438":88,"523957":58,"5242":55,"524581":58,"525059":58,"525366":58,"525675":58,"525962":58,"526257":58,"526566":58,"526885":58,"527188":58,"527489":58,"527792":58,"528097":58,"528387":58,"528834":58,"529163":58,"53":[51,54,57,77],"5320":58,"532748":58,"533468":58,"5335":58,"534033":58,"534684":58,"535320":58,"535983":58,"536":58,"536569":58,"537248":58,"537833":58,"538480":58,"539":83,"539074":58,"539724":58,"53k":[52,54,55],"540307":58,"540952":58,"541534":58,"542075":58,"542596":58,"543248":58,"543719":58,"544424":58,"544952":58,"545530":58,"546114":58,"546713":58,"547292":58,"547902":58,"548453":58,"549015":58,"549665":58,"55":55,"550436":58,"551":51,"551925":58,"553105":58,"55c":51,"55k":[52,54,55],"56":[51,52,55,56,83],"560":58,"5620":58,"564":58,"5676":58,"568":58,"57":[55,58],"5746":58,"576":[56,83],"58":[54,55,58],"59":[51,54,55,56,57],"594":51,"597":53,"599":53,"5d":58,"5f":58,"6":[51,52,53,54,55,56,58,60,63,68,80,82,83,85],"60":[52,54,55,57],"600":[56,58],"6047":51,"608":55,"608kb":55,"61":[57,58],"613":58,"62":[51,52,58],"622":[58,60],"62w":55,"62x":53,"63":[51,53,55],"630":[52,54,55],"635":58,"636":58,"637":58,"638":58,"639":58,"64":[53,54,55,58,84],"640":58,"641":58,"642":58,"643":58,"644":58,"6442285180091858":55,"6445754766464233":54,"646":58,"649":58,"64bit":89,"65":[51,52,54,55,58],"6539":58,"655":58,"66":52,"664062":88,"668":51,"669":51,"67":[55,58],"6733":58,"677":58,"67mib":51,"68":[54,58],"6812":[52,54,55],"687":58,"688":58,"689":58,"69":[54,55],"690":58,"6f":[51,53],"6s":55,"7":[51,52,53,54,55,56,58,63,64,80,83,85],"70":[52,54,55,57],"700":[56,58],"701":58,"709":51,"7099":58,"71":[52,55,58],"716":58,"72":[52,54],"7203":58,"72048":85,"721":58,"724":58,"728":51,"729":51,"73":[51,52,54,55],"7302":77,"732":58,"735":58,"7376":58,"738":58,"74":[57,58],"742":58,"7454":58,"75":[52,54,55,58],"7537":58,"76":58,"781":58,"79":[54,58],"796":58,"797":58,"7ubuntu0":51,"8":[3,51,52,53,54,55,56,57,58,60,71,76,77,80,83,85,88,89],"80":[51,52,54,55,57,58],"800":[56,58],"8000":88,"8001":88,"8002":88,"801":58,"81":[57,58],"818":58,"818977576572eadaf62c80434a25afe44dbaa32ebda3a0919e389dcbe74f8656":85,"82":58,"8204":58,"821":58,"83":[52,55,58],"834":58,"8351":58,"837":58,"84":[55,56,58,82,83],"847":58,"84e944ff11f8":[52,54,55],"84x":54,"85":[52,55,58],"86":[52,55],"860":58,"86k":[52,55],"87":58,"8732":57,"877":58,"8791":58,"88":[52,55,57],"89":[52,55],"898":58,"89k":[52,55],"8bit":58,"9":[51,52,53,54,55,56,57,58,80,83,88],"90":[52,54,55,57,88],"900":[56,58],"906":58,"90994":[52,55],"916":[51,58],"91a9cc5850784b2065e8a0aa3d526fd9":51,"92":[52,54,55,88],"9205bed204e2ae7aafd2e01cce0f21309e281e18d5bfd7172ef8541771539d41":85,"9223372036854775807":68,"923":[52,54,55],"927":58,"92k":54,"9367":58,"94":[52,54,55],"941":58,"94328":54,"944":58,"948":58,"94k":[52,54,55],"95":52,"951":53,"952":58,"953":[51,58],"955":51,"959":58,"96":[51,58],"9624":58,"9695423245429993":52,"97":[52,58],"98":58,"9899807572364807":54,"9899841547012329":55,"99":[51,52,53,54,55,57,58],"997":58,"999":58,"9999":58,"99th_p":[51,53],"9ab0":[52,54,55],"9x":51,"abstract":[63,66,77],"boolean":[58,71],"break":[58,76],"byte":[51,71,72],"case":[0,1,2,46,48,53,56,57,59,63,66,85,86,87],"catch":[60,83],"char":[3,4,44,83,89],"class":[17,29,30,44,45,46,50,52,53,54,55,56,57,58,63,66,69,76,77,82,83,84,86],"const":[0,1,2,3,4,29,30,31,32,33,35,37,44,45,46,60,66,68,83,86],"default":[0,1,2,3,4,16,29,30,43,45,46,47,48,51,52,54,55,56,57,61,71,72,74,75,76,83,85,86,89,90],"do":[51,52,54,56,57,59,60,61,66,75,77,82,83,84,86,91],"enum":[0,1,2,42,45,46,50,52,69,72,86],"export":[51,58,85],"final":[51,59,62,64,85],"float":[48,51,52,54,56,57,68,71,82,83,84,86,89,90],"function":[0,1,2,3,4,46,47,48,50,51,52,53,54,56,57,58,60,61,63,66,82,83,85,86,88,90,91],"import":[51,52,53,54,55,56,57,58,60,61,74,76,82,83,84,85,87,88,89,90],"int":[0,3,4,35,44,45,48,52,55,58,68,71,72,74,83,89],"long":[48,53,59,76,77,89],"new":[0,1,2,3,4,32,33,46,47,48,52,54,56,57,58,63,64,66,69,72,76,83,88],"null":51,"public":[0,1,2,3,4,44,45,46,47,48,77,86],"return":[0,1,2,3,4,23,24,29,30,31,32,33,34,37,42,43,44,45,46,51,52,53,54,55,56,58,60,62,63,64,66,69,71,72,82,83,84,86,88],"short":[60,76,77],"static":[47,48,59,66,71,72,74,83],"super":[44,56,82],"throw":[60,83,89],"true":[0,1,2,4,46,48,51,52,53,54,55,56,57,58,60,61,66,68,71,72,74,77,83,86,88,90,91],"try":[51,52,53,54,56,64,76,77,83,90],"var":68,"void":[3,4,25,26,27,28,35,36,42,44,45],"while":[58,85,86,88],A:[4,29,30,32,33,47,51,52,53,54,55,56,58,60,61,66,77,85,86,88],AS:[51,52,53,54,55,56,57,58],And:83,As:[55,83],At:75,But:[76,83],By:[29,30,50,56,57,61,74,82],For:[52,54,55,56,57,58,59,61,74,76,77,82,83,85,86,87,88,90],IS:[51,52,53,54,55,56,57,58],If:[27,51,52,53,54,56,57,58,59,60,69,71,74,76,83,85,86,87,88,91],In:[0,1,2,46,51,52,53,54,55,56,57,58,59,62,63,64,66,67,76,77,79,84,85,86,87,88],Is:[24,71],It:[51,52,53,54,55,56,57,60,61,62,64,66,74,76,85,89],Its:[66,76],NOT:53,No:[52,54,55,56],Not:3,OF:[51,52,53,54,55,56,57,58],OR:[51,52,53,54,55,56,57,58],On:[51,52,54,55,56,61],One:[53,55,76,77,83],Or:76,THE:76,TO:[83,85],That:76,Thats:83,The:[1,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,69,71,72,74,77,82,84,85,86,88,89,90],Then:[61,85,86,90],There:[4,53,57,58,59,64,66,77,82,85,86,87,88],These:[52,53,54,59,63,74,76,86,88],To:[1,46,55,56,57,58,61,74,82,83,84,85,88,90],Will:31,With:[52,53,54,55,74,76,83,86,88],_:[51,52,53,54,55,56,57,58,76],___torch_mangle_10:82,___torch_mangle_4847:63,___torch_mangle_5:82,___torch_mangle_9:82,__and__:68,__attribute__:43,__future__:51,__getitem__:68,__gnuc__:43,__init__:[56,70,71,76,82],__is__:68,__isnot__:68,__not__:68,__or__:68,__range_length:68,__round_to_zero_floordiv:68,__torch__:[63,82,83],__torch___pytorch_detection_ssd_src_model_ssd300_trt_engin:63,__torch___torchvision_models_resnet____torch_mangle_4847_resnet_trt_engin:63,__version__:58,__visibility__:43,__xor__:68,_affin:58,_all_:60,_b:51,_c:[72,90],_calibr:58,_convolut:[58,68,83],_input_quant:58,_jit_intern:51,_jit_to_backend:90,_pair:58,_quant:58,_script:72,_shapemod:71,_theme:81,_trace:51,_validate_not_a_forked_repo:[54,55,57,88],_weight_quant:58,a100:[51,52,53,54,56,57],a1b:77,aarch64:64,ab:68,abi:87,abil:55,abl:[52,53,54,55,56,57,59,60,66,67,86,90],about:[52,54,55,57,58,59,63,66,71,74,83,85,88,89],abov:[25,57,58,69,75,76,83,85],absl:51,absolut:[58,89],absolute_import:51,ac:79,acc:58,acceler:[52,53,54,56,57,91],accept:[47,53,58,63,66,71,83,84,89],access:[55,57,60,66,67,74,83,90],accord:[66,72],accordingli:[58,74],account:88,accumsan:79,accumul:[48,72],accuraci:[57,58,86],achiev:[52,54,56,57,58],aco:68,acosh:68,acoust:51,acquir:83,across:[60,74],acthardtanh:66,action:76,activ:[58,72,76,83,86,91],activationtyp:66,actual:[56,58,60,63,66,69,82,83],ad:[25,59,89],adaptive_avg_pool1d:68,adaptive_avg_pool2d:68,adaptive_avg_pool3d:68,adaptive_max_pool1d:68,adaptive_max_pool2d:68,adaptive_max_pool3d:68,adaptiveavgpool2d:[54,55],add:[26,59,60,61,66,68,69,74,76,81,83,84,85],add_:[60,68,83],add_patch:57,addactiv:66,addit:[55,57,58,60,71,83],addlay:83,address:77,addshuffl:83,adipisc:[77,79],adjac:76,adjust:[58,76],adjust_lr:58,adopt:53,advanc:[77,86],advis:76,aenean:79,affin:[54,55],aforement:88,after:[55,57,58,59,60,61,67,82,83,84,87,88,89],again:[44,53,57,63,66,76],against:[83,89],agre:[51,52,53,54,55,56,57,58],agx:45,ahead:[55,83],aim:[53,60],aiohttp:51,aiosign:51,alabast:51,algo_typ:[70,86],algorithm:[3,4,29,30,44,53,70,86],alias:43,align:76,align_corn:68,aliquam:79,aliquet:[77,79],all:[16,42,43,44,45,48,51,52,53,54,55,56,57,58,60,61,63,69,71,76,77,82,83,84,85,86,87,88,89],alloc:66,allow:[47,48,52,54,56,57,59,60,71,74,89],allow_gpu_fallback:[45,46,71,72,86,90,91],allow_tf32:68,almost:83,alpha:[57,68,77],alreadi:[51,52,53,54,55,56,57,58,59,60,83,86,89],also:[30,48,52,53,54,55,56,57,59,66,67,74,76,77,83,84,85,86],alter:55,altern:47,although:76,altogeth:[61,74],alwai:[3,4,27,76,89],amax:58,amax_sequeez:58,amazonaw:[52,54,55],amet:[77,79],amount:[53,58],amp:[52,54,55],amp_backend:51,an:[2,3,4,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,67,70,71,72,74,76,77,82,83,84,85,86,87,88,89],analogu:66,analysi:[57,61],analyt:74,analytics_id:74,ancient:76,ani:[47,51,52,53,54,55,56,57,58,59,66,71,74,76,83,84,85,86,89],ann:76,anneal:58,annot:[57,66,83],anonym:76,anoth:[53,76,77,82,84],ant:79,antlr4:51,anyon:77,anyth:[76,77,87],aot:[55,67,83],apach:[51,52,53,54,55,56,57,58],apex:57,api:[51,55,57,58,61,64,66,71,72,75,83,84,86,87,88,90],appdir:51,appear:76,append:[51,52,53,54,55,56,57,58,68],applehelp:51,appli:[58,86],applic:[1,30,46,51,52,53,54,55,56,57,58,60,64,83,84,87,89,90,91],approach:[52,54,56,57],apr:[51,83],apt:51,ar:[42,46,48,51,52,53,54,55,56,57,58,59,60,61,63,64,66,67,71,72,74,76,77,78,82,83,85,86,87,88,89,90],arab:77,arang:68,architectur:[53,57,58,67,85],archiv:[51,54,57,85],arcu:[77,79],area:78,aren:83,arg:[51,55,59,70,71,80,83],argc:83,argmax:[52,53,54,55],argon2:[51,54,55,56,57],argpars:51,argument:[47,51,52,53,58,60,63,66,71,72,76,77,83,89],argv:83,around:[58,60,63,66,76,79,82],arrai:[3,4,33,51,53,59,72],arrayref:[45,47,48],arti:[52,54,55],arxiv:86,as_numpi:88,asin:68,asinh:68,aspect:89,asr:51,asr_model:51,assembl:[59,83],assign:[3,4,75],associ:[53,59,66,83],associatevalueandivalu:66,associatevalueandtensor:[66,83],assum:[51,58,90],ast:51,asttoken:[51,55,57],async:51,asyncio:[51,54,55,56,57],atan:68,atanh:68,aten:[48,57,58,60,61,65,66,68,72,83],atol:89,attach:57,attent:53,attention_mask:53,attention_masks_tensor:53,attr:[51,54,55,56,57],attrdict:[51,88],attribut:[60,61,63,76,83],auctor:79,audio:51,audioread:51,augment:53,augu:79,auth:51,author:77,auto:[44,61,66,76,77,83,86,91],autodoc:[76,77],automat:[52,54,56,57,76,83],av:[54,55,56],avail:[52,54,55,56,57,66,74,85,89,91],averag:[48,52,54,55,56,57,58,72,89],avg:[52,57,58,89],avg_pool1d:68,avg_pool2d:68,avg_pool3d:68,avgpool:[54,55,57,58],avoid:[52,53,54,55],awai:76,await:[52,54,55],awaken:76,ax:[52,54,55,57],axi:[52,54,55,58,68],b0:54,b:[54,55,57,68,77,88],b_hh:68,b_ih:68,babel:51,back:[60,61,63,64,71,76,82,83],back_insert:44,backbon:[53,57],backcal:[51,54,55,56,57],backend:[51,52,53,54,55,56,57,58,72,75,90],background:[76,82],backlink:76,backport:51,backward:58,bar:[74,76],base:[36,49,52,53,54,56,57,58,63,69,70,71,76,82,85,86],basebal:53,baselin:[55,58],bash:85,basi:[51,52,53,54,55,56,57,58,76],basic:[58,77,88,89],batch:[3,4,44,51,52,53,54,55,56,57,58,86,88,91],batch_norm:[66,68],batch_siz:[44,51,53,57,58,86],batched_attention_mask:53,batched_data_:44,batched_indexed_token:53,batched_segment_id:53,batchnorm2d:[54,55],batchnorm:[57,60],batchsiz:51,batchtyp:44,bathroom:76,bazel:[64,85],bazel_vers:85,bazelbuild:85,bazelisk:85,bazelvers:85,bbox:57,bdist_wheel:85,beat:77,beautifulsoup4:[51,55],becaus:[53,66,82,83,85],becom:[53,66],bee:76,been:[59,66,77,83],befor:[48,55,57,58,60,64,66,67,72,83,85,88],beforehand:83,begin:[44,53,76,85],beginn:82,begun:76,behav:[57,78],behavior:[48,57,71,72],behaviour:[51,52,53,54,55,56,57],behind:76,being:[52,54,56,57,83],belong:76,below:[53,57,66,76,83,85,88],benchmark:[52,53,54,56,68],benefit:[66,83],bertformaskedlm:53,bertforpretrain:53,bertforsequenceclassif:53,berttoken:53,besid:76,best:[52,54,55,56,57,76,85],best_result:57,best_results_per_input:57,best_results_per_input_trt:57,beta:68,better:[52,54,56,57,82,86],between:[57,60,66,76,77,85,86],bfe5ad2:52,bia:[53,54,55,56,58,60,68,83],bibendum:79,bibliograph:77,bibtex:51,bidirect:53,bigger:76,bin:85,binari:[44,86],binary_data:88,bind:[3,4,33,44,51,54,55,56,57,72,76],bird:[52,54,55,58,88],bit:[48,53,66,71,72,83],bitbucket:74,bitbucket_url:74,black:[51,57],blandit:79,blank:76,bleach:[51,54,55,56,57],blob:[65,74,86],block0:60,block1:60,block:[59,60,80,89],blue:76,bmm:68,bn1:[54,55],bn2:[54,55],bn3:[54,55],bodi:[76,77],bold:76,bool:[0,1,2,3,4,24,27,29,31,42,44,45,46,48,60,66,68,69,71,72,74,83,86],border:76,bot:57,both:[52,54,56,57,74,76,82,85,86],boto3:51,botocor:51,bottleneck:[54,55],bottom:74,bound:[57,58],box:[57,76],braceexpand:51,bracket:76,branch:[53,85],bread:76,breed:[52,54,55],brief:61,briefli:82,broadli:53,broken:[51,52,53,54,55,56,57],brontosaurus:76,browser:76,bsd:[42,43,44,45],bu:[51,52,54,55,56],buffer:[3,4],bug:85,bui:77,build:[29,30,34,48,51,52,59,62,64,66,71,75,80,83,86,89],build_fil:85,builderconfig:45,built:[33,63,64,72,85,89],bust:[52,54,55],button:[74,76],c10:[0,1,45,46,47,48,83,86],c96b:55,c:[42,43,44,45,51,52,54,55,56,57,58,64,68,77,87,88,89,91],c_api:65,c_str:[66,83],ca6b:[52,54],cach:[3,4,29,30,44,51,54,55,57,58,70,83,86,89],cache_:44,cache_fil:[44,70,86],cache_file_path:[3,4,29,30,44],cache_file_path_:44,cache_size_:44,cachecalibr:[70,86],cachetool:51,cackl:77,cadenc:55,calcuat:58,calcul:[47,59,61,83],calendar:51,calib:58,calib_output:58,calibr:[3,4,29,30,44,48,58,70,72,83,86,89],calibrate_model:58,calibration_cache_fil:[29,30,86],calibration_dataload:[29,86],calibration_dataset:86,calibrationalgo:[70,86],call:[29,30,32,48,51,52,53,54,56,57,58,60,63,66,72,76,82,83,90],callmethod:82,can:[0,1,4,29,30,37,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,71,72,74,76,82,83,84,85,86,87,88,89,90],canada:77,cannot:[47,56,57,58,60,61,71,72,75,82],canon:74,canonical_url:74,cap:[51,52,54,55,56],capabl:[17,45,48,63,71,72,89,90],capit:[53,76],caption:[76,79],captur:58,car:58,card:[52,53,54],cast:[3,4,60],cat:[58,68,85],caught:60,caus:[52,54,56,57,58,66,74,85],cd:[85,88],cdll:83,ceil:68,ceil_mod:[54,55,68],cell:[53,57,77],center:[52,53,54],centercrop:[52,54,55,88],cerr:83,certain:[51,85],certifi:[51,53],cf0691493d05062fe3239cf76773bae4c5124f4b039050dbdd291c652af3ab2a:85,cffi:[51,54,55,56,57],cfg:61,chain:66,challeng:[58,88],chanc:66,chang:[30,52,53,54,55,56,57,60,64,74,86,88],changelog:80,channel:[2,52,54,55,58,71,75],channel_last:[55,71,72],channels_last:71,charact:76,charset:[51,53],check:[0,1,31,46,55,57,60,66,72,83,85,87,88,89],check_method_op_support:72,check_method_operator_support:[21,41,45,49],checkmethodoperatorsupport:83,checkpoint:[51,53,54,57,58],child:77,chimpansee_amber_r_1920x1080:[52,54,55],chimpanze:[52,54,55],choic:[53,70],choos:[52,54,82],ci:[51,52,54,55,56],cifar10:[58,86],cifar:[58,86],circular:58,ckpt:58,ckpt_path:58,cl:53,clamp:[58,68],clamp_max:68,clamp_min:68,class_count:88,class_pr:58,class_prob:58,classes_to_label:57,classif:[56,57,58,82,83],classifi:[56,58,77],classification_index:88,clean:76,clear:44,cli:89,clib:51,click:[51,53,57],clickabl:76,client:[51,54,55,56,57],clone:68,close:[58,83],closer:60,closet:76,cloud:51,cloudfront:[52,54,55],co:[68,77],coco:57,cocodataset:57,code:[52,53,54,55,56,57,61,64,67,75,77,82,83,86],collapse_navig:74,collat:77,collect:[51,52,54,56,57,58,83],collect_stat:58,colon:76,color:[24,27,69,76],colorama:51,colored_output_on:[27,42,69],column:77,com:[51,52,53,54,55,56,57,65,83,85,86,87,88],come:[52,54,55,56,57,75,85,88],command:[76,77,82,83,85,88,89],comment:[76,85],commodo:79,common:[51,54,57,59,60,76],common_subexpression_elimin:60,commonli:77,commun:83,compani:53,compar:[53,57,58],comparis:[0,2],comparison:[1,46],compat:[0,1,46,52,54,56,57,60,63,72,85],compil:[21,31,37,41,45,48,49,51,52,53,54,55,56,57,58,60,61,63,66,69,71,72,74,82,84,86,87,88,89,90,91],compile_set:[51,86],compile_spec:[58,86,91],compilegraph:[83,86],compilesepc:33,compilespec:[3,4,21,32,37,41,45,49,61,83,86,91],compilespecstruct:49,complet:[51,52,53,54,56,57,61,82,83],complex:[82,85],compli:57,complianc:[51,52,53,54,55,56,57,58,89],compliat:86,complic:85,compon:[53,56,62,64,82,87],compos:[52,54,55,56,57,58,82,86,88],composit:[58,83],comprehens:57,compris:53,comput:[48,51,52,53,54,55,56,57,58,76,85,86],compute_amax:58,conceiv:76,concern:53,conclus:[51,52,53,54],concorr:88,conda:[51,52,53,54,55,56,57,58],condimentum:79,condit:[51,52,53,54,55,56,57,58,76],conduc:55,conduct:53,conf:[74,81],confid:[52,54,55,57],confidence_scor:88,config:[51,52,85,88],configur:[32,37,47,51,55,67,71,72,80,83,85,86,88],confirm:51,conflict:[51,52,53,54,55,56,57],congu:79,connect:[52,54,55,60,72,76,88,91],consectetur:[77,79],consecut:61,consid:[55,83],consider:88,consist:[53,60,76],consol:89,consolid:82,constant:[55,58,59,60,83],constant_pad_nd:68,constexpr:[0,1,2,45,46],construct:[0,1,2,3,4,46,47,48,59,60,62,64,66,70,71,76,77,83,86],constructor:[0,2,46,47,48,63,82],consult:75,consum:[4,59,82],contact:77,contain:[29,31,51,52,53,54,55,56,57,59,60,66,71,76,77,82,83,85,86,87,88],content:[55,80,86,88],context:[52,56,58,59,62,63,64,69],contextnet:51,contigu:[2,47,48,71,72,89],continu:[52,53,54,56,57,76,87],contributor:83,control:[56,57,82],conv1:[54,55,56,82,83],conv2:[54,55,56,82,83],conv2d:[54,55,56,58,82],conv3:[54,55],conv4_x:57,conv5_x:57,conv:[48,58,83,89],conv_asr:51,conval:79,convect:47,conveni:[57,86],convent:[52,53,54,56,57],convers:[52,56,57,58,60,61,63,71,72,83],conversionctx:[66,83],convert:[3,4,31,32,37,51,52,54,55,56,57,58,60,61,62,64,67,71,72,84,87,90],convert_method_to_trt_engin:[21,41,45,49,71,72,90],convertgraphtotrtengin:83,convien:48,convienc:[3,4,48],convnet:57,convolut:[51,52,55,57,58,72,86,91],coordin:64,copi:[44,51,52,53,54,55,56,57,58,66,68,70,77,88],copy_:68,copyright:[42,43,44,45,51,52,53,54,55,56,57,58,77,83],core:[45,51,52,54,55,56,57,60,61,64,71,83,89,91],core_id:71,corpor:[42,43,44,45,51,52,53,54,55,56,57,58],correct:[58,63,74,85],correctli:85,correspond:[57,58,66],cosh:68,count_include_pad:68,counterpart:58,coupl:[52,54,56,57,59,64,87],cout:83,cp38:57,cp:85,cpp:[14,15,42,43,44,45,50,60,64,83,86],cpp_frontend:86,cppdirectori:49,cppdoc:83,cpu:51,cra:79,creat:[29,30,33,51,52,53,54,55,56,57,58,59,63,66,72,76,83,88,89],create_model:52,create_transform:52,creating_torchscript_module_in_python:84,credit:83,crit:58,criteria:[61,62,64],cross:[58,76],crossentropyloss:58,cs:86,csrc:[60,65],cstddef:86,ctc_bpe_model:51,ctx:[66,83],ctype:83,cu102:85,cuda113:85,cuda:[48,51,52,53,54,55,56,57,58,63,71,83,84,85,86,88,90],cuda_runtim:[21,45],cudafloattyp:83,cudasetdevic:35,cudnn8:85,cudnn:[51,52,53,54,55,56,57,58],cudnn_en:68,cumsum:68,curabitur:79,curl:[76,85],current:[23,52,54,63,66,72,74],cursu:79,custom:[52,54,85],cut:76,cxx11:87,cycler:51,cython:51,d17fnq9dkz9hgj:[52,54,55],d:[51,52,53,54,55,56,57,58,76,77,89,91],dapibu:79,data:[0,2,3,4,29,30,44,46,47,48,51,52,53,54,56,57,58,59,61,62,64,66,68,70,71,72,76,80,86,89],data_dir:86,data_item_1:75,data_load:58,data_typ:88,databas:51,dataflow:[66,83],dataload:[4,29,30,44,48,58,70,86],dataloader_:44,dataloadercalibr:[70,86],dataloaderopt:86,dataloaderuniqueptr:[4,44],dataset:[30,57,58,70,86],datatyp:[1,21,38,45,46,47,48,49,52,71,72,84,88],datatypeclass:49,date:77,dateutil:[51,54,55,56,57],david:77,dbg:85,ddof:[51,53],dead_code_elimin:60,deal:66,debian_frontend:51,debug:[16,27,45,48,58,66,69,72,89,90],debugg:[72,89],debugpi:[51,54,55,56,57],decid:[56,71],declar:[58,85],decod:[52,53,54,55],decode_result:57,deconvolut:91,decor:[51,54,55,56,57],dedic:[60,77],deep:[52,53,54,55,56,57,58,66,67,74,86,91],deeplearn:65,deeplearningexampl:57,deer:58,def:[51,52,53,54,55,56,57,58,76,82,88],default_tim:[51,53],defer:55,defin:[0,1,2,3,4,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,43,46,47,48,50,51,53,55,56,58,71,74,82,83,84,86,89],definit:[50,66,76],defusedxml:[51,54,55,56,57],deiti:76,delet:[0,1,2,45,46,60],delimit:60,demo:[52,53,54,57,76,86],demonstr:[51,52,53,54,55,56,57,76,77,78,86,88],demonstrat:[52,54],denorm:57,denot:[53,76],dep:85,depend:[30,34,51,55,57,58,59,61,64,83,87,88],depickl:63,deploi:[52,54,55,56,57,62,64,67,83,86,88],deploy:[52,54,56,57,58,83,84,86,87,88,89,91],deprec:[51,68],depth:74,dequantizelay:58,descclassnam:76,descnam:76,describ:[48,54,56,57,66,82,88,90],descript:[55,61,77],deseri:[71,72,83],design:[52,53,54,56,57,91],desir:[58,77,86],destini:77,destroi:[66,77],destructor:66,detail:[52,54,55,58,82,83,87,88],detect:[47,54,58,63],detections_batch:57,determin:[52,60],determinist:68,develop:[51,52,53,54,56,57,67,76,77,83,85],devhelp:51,deviat:89,devic:[21,33,35,38,45,48,49,52,54,56,57,58,63,68,70,71,72,84,86,89,90,91],device_typ:[45,46,71,86,90,91],deviceclass:49,devicetyp:[21,38,45,46,49,71,86,90,91],devicetypestruct:49,diam:79,dict:[57,71,72],dictionari:[53,71,72,90],dictum:79,dictumst:79,did:76,didn:76,differ:[30,53,55,56,57,58,60,64,67,74,82],differenti:[52,54,56,57],digit:51,dignissim:79,dilat:[54,55,56,57,58,68],dim0:68,dim1:68,dim:[52,54,55,58,68,88],dim_int:68,dim_intlist:68,dimens:[47,55,60],dir:58,direct:[80,87],directli:[66,67,70,85,86],directori:[18,19,20,21,42,43,44,45,49,58,85,86],disabl:[52,54,55,56,57,58,69,74,75,85,89],disable_calib:58,disable_qu:58,disable_tf32:[45,48,72,86],disclos:85,disconnect:76,discret:76,discuss:[55,88],disp:[51,52,54,55,56],displai:[69,74,89],display_github:74,display_gitlab:74,display_vers:74,disregard:52,dist:85,distanc:51,distdir:85,distribut:[51,52,53,54,55,56,57,58,71,83,86,87],div:68,div_:68,divis:51,divisor_overrid:68,django:75,dl:76,dl_open:87,dla:[1,45,46,67,71,72,89],dla_cor:[45,46,71,86,89,90,91],dla_standalon:89,dlacor:89,doc:[58,64,65,74,75,76,81,85],docker:[51,52,53,54,56,57,88],docopt:51,docsrc:64,docstr:[76,77],document:[42,43,44,45,49,52,54,55,64,74,76,77,81,82,83,86,87,88,90],docutil:[51,76,77],doe:[43,44,53,57,60,61,66,76,86],doesn:[58,76,82,83],dog:58,dolor:[77,79],domain:[77,86],don:[56,66,74,76,77,86,88],done:[51,55,57,59,61,64,88],donec:[77,79],dont:42,dothismethod:76,dotpai:75,dotpayprovid:75,doubl:[48,72,76,89],down:[52,54,56,57,74,85],download:[51,52,54,56,57,58,80,85,86,88],downsampl:[54,55],doxygen_should_skip_thi:[44,45],dpython:[71,72],dream:77,driver:[51,52,54,55,56,85],drop:[57,74,85],dt:76,dtype:[45,47,48,51,52,53,54,55,56,57,58,68,71,72,84,89],dual:76,due:[3,4,52,54,56,57,58,75,76,85],dui:[77,79],dummi:53,dump:[36,85,89],dump_build_info:[21,38,45,49,71],durat:76,dure:[48,58,66,70,86,87,89],dynam:[47,48,57,58,71,72],e1109:58,e:[29,30,52,53,54,57,60,66,71,82,83,85,86,89],each:[3,4,48,53,57,58,59,60,61,63,66,74,76,83,85],eager:[52,54,56,57],ear:76,earliest:58,eas:43,easi:[59,60,83,86,89],easier:[53,58,62,64,66,83,86],easiest:85,easili:[3,4],ecc:[51,52,54,55,56],echo:76,ecosystem:[52,54,56,57],edg:76,edgecolor:57,edit:74,editdist:51,edu:86,effect:[51,58,60,74,83,86],effici:66,efficientnet:[54,57],efficientnet_b0:52,efficientnet_b0_model:52,efficientnet_preprocess:52,efficitur:79,effort:55,eg:88,egesta:79,eget:79,either:[47,48,51,52,53,54,55,56,57,58,66,71,72,74,76,82,83,85,89],el:68,eleifend:77,element:[53,63,76,77,80],element_typ:44,elementum:79,elit:[77,79],elk:76,els:[43,44,47,51,58,72,76,77],elu:68,emb:[33,72,77,89],embed:[63,68,72,76,89,91],embed_engine_in_new_modul:[21,41,45,49,72],emit:59,emphasi:76,emploi:53,empti:[48,56,72,77,82],emum:[16,17],en:[51,74],enabl:[3,4,24,48,52,54,55,56,57,58,61,62,64,69,70,72,74,89],enable_calib:58,enable_precis:83,enable_qu:58,enabled_precis:[45,48,51,52,53,54,55,56,57,58,71,72,83,84,86,88,90,91],enalbed_precis:91,enc:53,enc_input:53,encdecctcmodelbp:51,encod:[51,53,63],encoded_input:53,encorag:[52,53,54],encount:85,encourag:[55,88],end:[44,66,68,72,76,83,86,89],end_dim:[68,83],end_tim:[51,52,53,54,55,56,57,58],endif:[43,44,45],energi:76,enforc:83,engin:[0,1,17,32,33,37,45,46,47,48,51,53,55,59,61,62,64,67,71,72,74,83,84,86,87,89,90,91],engine_converted_from_jit:83,enginecap:[21,38,45,48,49,71,72,90],english:53,enhanc:[57,76],enim:79,enjoi:53,enough:58,ensur:[30,58,60,61],enter:[53,59],entir:[58,76],entiti:76,entri:[48,66],entropi:[29,30,58,86],entropy_calibr:70,entropy_calibration_2:[70,86],entrypoint:[51,54,55,56,57],enumer:[0,1,2,16,17,46,53,58,70],environ:[51,52,53,54,55,56,57,88],ep:[54,55,68],epoch:58,eq:[68,76],equat:76,equival:[32,56,57,62,64,66,72,82,83,86],equivil:37,erat:79,erf:68,eric:76,ero:79,error:[16,48,51,52,53,54,56,57,59,60,64,69,72,76,83,85,89],eskimo_dog:52,essenc:76,essenti:55,est:79,et:79,eta:[52,54,56,57],etc:[74,76,91],etiam:79,eu:79,euismod:79,eval:[51,52,54,55,56,57,58,83,84,88],evalu:[57,62,63,64],evaluated_value_map:[59,66],even:83,event:47,everi:[61,83],everyth:16,ex:[0,1,2,33,46,72,77,79],exact:88,exactli:[53,57],examin:53,exampl:[47,52,54,55,56,57,58,61,63,64,66,69,71,72,74,75,77,80,82,83,86,87,88],exceedingli:76,except:[51,52,53,54,55,56,57,58],exception_elimin:60,excerpt:77,excit:51,execpt:60,execut:[33,51,52,54,55,56,57,60,62,63,64,71,72,82,83,86,88,89],execute_engin:[63,83],exert:76,exeuct:63,exhaust:83,exist:[4,31,32,37,51,70,71,72,85,86],exit:88,exp:68,expand:[60,68],expand_a:68,expanded_pad:58,expect:[47,48,52,53,54,55,56,57,60,66,71,83],experi:[52,53,54,56,57],experiment:58,explic:[44,58],explicit:[0,1,2,3,4,45,46,55,60,67,76,86],explicitli:[53,58,61,62,64,86,90],explict:44,explictli:0,expon:68,export_util:51,expos:86,express:[51,52,53,54,55,56,57,58,76],ext:[76,77],extend:[51,62,64,66,68,83],extens:[51,53,55,57],extent:[67,83],extern:[74,76],extra:[48,83],extract:83,extractor:56,extrem:76,ey:76,f16:[83,89,91],f1:[52,54,55],f32:89,f:[51,56,58,76,82,85],facecolor:57,facilisi:79,fact:85,facto:76,factori:[4,29,30,86],fail:[83,91],fake:58,fake_quantize_per_:58,fake_quantize_per_channel_affin:[58,68],fake_quantize_per_tensor_affin:[58,68],fall:71,fallback:[62,64,66,89,91],fals:[0,1,2,3,4,44,45,46,48,51,54,55,57,58,68,71,72,74,75,76,77,83,86,90],fame:79,famili:[52,54,56,57,58],familiar:88,familyhandyman:[52,54,55],fan:[51,52,54,55,56],far:76,fashion:83,faster:58,fastjsonschema:55,fasttext:51,faucibu:79,fbed:[52,54,55],fc1:[56,82,83],fc2:[56,82,83],fc3:[56,82,83],fc:[48,54,55,57,58,60,89],feat:[56,82,83],featur:[51,52,53,54,55,56,57,58,61,83,86,89,90],feb:[52,54,56],fed:[3,4,47],feed:[29,30,58,83],feel:[55,67],feli:79,feugiat:[77,79],few:[52,54,56,57,71],ffedb78:76,ffmpeg:51,field:[3,4,86],fifth:77,fig:[52,54,55,57],figur:[61,77,79],file:[0,1,2,3,4,5,6,7,8,9,10,11,12,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,51,52,53,54,55,56,57,58,61,63,64,70,71,72,74,75,77,81,83,85,86,88,89],file_path:89,filelock:[51,53],filer_publ:[52,54,55],filer_public_thumbnail:[52,54,55],fill:[51,52,53,54,56],filter:[51,57,58],find:[4,53,57,83],fine:[51,58],finetun:58,finibu:79,finish:57,first:[47,51,53,56,57,58,59,60,76,77,83,84,86,88],firstli:88,fit:76,five:57,fix:[48,54,57,76,91],fixed_s:[45,48],flag:[58,61,62,64,70,85,87,89],flatten:[56,68,82,83],flatten_convert:83,flesh:88,flexibl:[52,54,56,57],float16:[51,52,54,56,57,71,89],float32:[47,48,51,52,53,54,55,58,71,72,89],float64:72,float_int:68,floor:68,floor_divid:68,floordiv:68,flow:[56,57,58,66,76,82],flox:76,fluent:53,flush:76,fly:82,fmax:51,fmin:51,focal:51,fold:77,follow:[33,51,52,53,54,55,56,57,58,61,63,72,74,76,77,81,82,83,85,86,87,88,89],fonttool:51,foo:[76,77],footprint:[52,54,56,57],forc:[72,74,89],forced_fallback_op:61,form:[51,53,59,71,76,88],format:[33,45,47,48,51,52,53,54,55,56,57,58,68,71,72,76,77,84,88,89],forth:77,forum:85,forward:[29,30,32,33,56,58,61,63,66,71,72,82,83,86,90],found:[42,43,44,45,51,52,54,55,56,57,76,83,85,86,87],four:[76,77],fp16:[0,47,48,53,55,56,57,58,67,83,84,89,91],fp32:[0,47,48,53,55,56,57,58,67,72,86,88,89],frac:76,framework:[52,54,56,57],franc:53,freed:66,freeli:55,freeze_modul:60,fri:52,friend:45,fringilla:79,frog:58,from:[0,1,2,3,4,29,30,44,46,47,48,51,52,53,54,56,57,58,59,60,61,62,63,64,66,67,72,74,75,76,77,82,83,86,88,89],from_pretrain:[51,53],frozen:58,frozendict:51,frozenlist:51,fssl:85,fsspec:51,fstream:[20,44],full:[48,58,66,69,83,86,87,88,89,91],fulli:[31,60,72,83,86,89,91],fusc:79,fuse:[52,54,56,57],fuse_addmm_branch:60,fuse_flatten_linear:60,fuse_linear:60,fusion:66,futur:[51,52,53,54,56,58],futurewarn:51,g2p:51,g:[29,30,51,53,60,71,76,85,86,89],g_:76,gain:57,game:53,gamma:68,gatewai:75,gaurd:43,gcc:[64,83],gdown:51,ge:68,gear:86,geforc:[52,54,56],gener:[3,4,30,51,52,53,54,55,56,57,58,60,63,64,66,74,76,77,80,82,83,85,86,89],genutil:[51,54,55,56,57],geometr:53,get:[0,1,2,3,4,23,34,44,46,57,58,60,61,66,69,71,85,86,88],get_batch:70,get_batch_impl:44,get_batch_s:70,get_build_info:[21,38,45,49,71],get_cache_mode_batch:70,get_coco_object_dictionari:57,get_is_colored_output_on:[18,39,42,49,69],get_logging_prefix:[18,39,42,49,69],get_model_size_mb:51,get_reportable_log_level:[18,39,42,49,69],getattr:[51,60,63,82,83],getbatch:[3,4,44],getbatchs:[3,4,44],getdimens:[66,83],getoutput:[66,83],gi:[51,52,54,55,56],git:80,gitdb:51,github:[51,52,53,54,56,57,65,74,83,85,86,87,88],github_url:74,gitlab:74,gitlab_url:74,gitpython:51,give:[56,74,76],given:[47,48,53,57,60,70,71,72,82,83,89,90],global:[26,58,83],gnu:85,go:[44,52,54,55,56,57,58,60,61,67,82,83,88],goal:66,goe:[58,76],good:[44,66,76],goodger:77,googl:[51,53,74],got:[76,83],govern:[51,52,53,54,55,56,57,58],gpu:[1,32,35,37,45,46,51,52,53,54,55,56,57,58,71,72,83,86,88,89,90,91],gpu_id:[35,45,46,71,86,89,90,91],granular:56,graph:[16,31,32,37,45,51,52,54,55,56,57,58,59,61,62,64,66,67,69,72,82,83,89],graphic:55,graphnam:[51,53],gravida:79,great:[52,54,56,57,76,83],greater:69,green_mamba:[54,55],group:[58,68,76,77],grpc:88,grpcio:51,gru_cel:68,gt:[51,52,53,54,55,56,57,68],gtc:67,guangzhou:77,guard:60,guard_elimin:60,guess:53,gui:76,guid:75,gulf:[52,54,55,88],gz:[76,77,85,86],h5py:51,h:[0,1,2,3,4,5,6,7,8,9,10,11,12,15,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,49,50,52,54,57,60,83,86,89],ha:[51,52,53,54,55,56,57,58,59,60,61,62,64,66,76,77,82,83,86],habit:79,habitass:79,hac:79,hack:44,hakaimagazin:[52,54,55,88],half:[53,55,56,57,58,71,76,83,84,86,88,89,90,91],hand:88,handl:[57,60,63],happen:[56,58,82],hardtanh:[66,68],hardtanh_:68,hardwar:[52,54,56,57,91],hasattr:51,hash:85,have:[30,33,44,51,52,53,54,55,56,57,59,60,66,67,71,72,76,82,83,85,86,88,89],haven:83,head:57,header:[52,54,55,74,76,77,83,88],heart:77,heaven:76,heck:76,heh:77,hehe:77,height:76,help:[27,51,52,53,54,56,58,59,66,83,87,89],helper:[51,56,57,58,66],henc:53,hendrerit:79,here:[44,51,52,53,54,55,56,57,59,61,63,74,76,77,82,83,85,86,87,88],hermet:85,hexagram:76,hfile:49,hi:[68,76,77],hidden:[43,53,74],hierarchi:58,high:[52,54,57,60,61,74],higher:[53,60,74,76,82],highfreq:51,highli:[55,88],highlight:76,hinton:86,hist_percentil:58,histogram:58,historgram:58,hit:51,hold:[46,47,59,66,86],holder:[63,78],holi:76,home:85,hood:[64,84],hope:77,hors:58,host:[54,55,56,57,58,85,88],how:[3,4,52,53,54,55,57,58,76,78,80,82,87,88,90],howev:[30,52,54,56,57,74,75,85,88],html:[58,65,76,82,85,86],html_theme:81,html_theme_opt:74,html_theme_path:81,htmlhelp:51,http:[51,52,53,54,55,56,57,58,65,74,76,82,83,85,86,87,88],http_archiv:85,httpclient:88,hub:[51,53,54,57,88],huge:53,huggingfac:[51,53],human:76,humankind:77,huski:[52,54,55],hx:68,hybrid:72,hydra:51,hyperlink:76,hyphen:76,i8:89,i:[51,52,53,54,55,56,57,58,60,66,76,77,82,83,86,89],iaculi:79,icon:[74,76],id:[35,45,51,52,54,55,56,57,71,74,75,79,89,91],idea:[60,76],ident:[53,89],idna:[51,53],idx:[57,68],ifndef:[44,45],ifstream:44,ignor:71,iii:77,iint8calibr:[3,4,29,30,44,45,48,72,86],iint8entropycalibrator2:[3,4,29,30,44,86],iint8minmaxcalibr:[29,30,86],ilay:66,illustr:58,imag:[52,54,55,57,58,86,88],image_classif:57,image_idx:57,imageio:57,imagenet:[52,54,55,58],imagenet_cla:[52,54,55],imagenet_class_index:[52,54,55],images:51,images_:86,img0:[52,54,55],img1:[52,54,55,88],img2:[52,54,55],img3:[52,54,55],img:[52,54,55,88],img_path:[52,54,55,88],impact:[52,53,54,56,57],imperdiet:79,implement:[3,4,52,53,54,55,56,57,60,61,63,75,83,86,87],impli:[51,52,53,54,55,56,57,58],implic:60,implicit:[68,76],implicitli:71,implictli:71,importlib:[51,54,55,56,57],improv:[58,77],imshow:[52,54,55,57],in_featur:[54,55,56],in_shap:83,in_tensor:82,incas:44,includ:[13,15,16,34,36,42,43,44,45,50,52,54,56,57,61,62,63,64,74,76,82,83,85,86,89],includedirectori:49,includehidden:74,incompat:85,incorpor:77,incorrect:58,ind:[52,54,55],inde:[52,54,56,57],indent:76,independ:57,index:[33,51,52,53,54,55,56,57,58,65,67,68,72,74,80,86],indic:[51,53,68,74,76],indigo_bunt:52,indirect:76,inetworkdefinit:59,infer:[51,52,53,54,56,58,60,71,72,83,86],inference_output:88,inferenceservercli:88,inferinput:88,inferrequestedoutput:88,inflect:51,info:[16,32,37,45,48,66,69,71,83,89],inform:[25,33,34,36,47,51,55,57,58,59,61,63,67,69,71,76,82,83,85,86,89,90],infrastructur:[86,88],ingest:64,inherit:[49,86],iniconfig:51,init_weight:58,initi:[51,53,58,76],injuri:76,inlin:[0,1,2,3,4,29,30,44,46,48,51,54,55,56,57,60,77,80,83],inner:[48,77],innings:53,inplac:[54,55],input0:83,input1:83,input2:83,input:[3,4,21,30,33,38,44,45,48,49,51,52,53,54,55,56,57,58,59,60,61,63,66,68,69,71,72,77,82,83,84,86,88,89,90,91],input_0:[63,83],input__0:88,input_batch:[52,54,55],input_data:[52,54,55,56,57,58,82,84],input_file_path:[89,91],input_id:53,input_is_dynam:45,input_s:[61,83],input_scal:68,input_shap:[51,52,54,55,56,57,58,86,91],input_spec:89,input_tensor1:53,input_tensor2:53,input_tensor3:53,input_tensor:[51,52,54,55],inputclass:49,inputrang:[61,83],inreleas:51,insert:[58,83,86],insid:[76,88],inspect:[52,54,56,57,66,82,83],instal:[51,52,53,54,55,56,57,58,67,80,83,87,88],instanc:[53,56,60,70,82,83],instance_norm:68,instanti:[51,62,63,64,66,83],instatin:[0,1,2,46],instead:[48,51,52,53,54,55,56,57,58,59,60,83,87,89],instnanti:63,instruct:[61,62,64,83,85,88],insur:85,int32:[53,55,71,72],int64:72,int64_t:[45,46,47,48,86,91],int8:[0,44,47,48,55,67,71,72,86,89,91],int8_t:[17,45],int8cachecalibr:[20,30,40,44,49],int8cachecalibratortempl:49,int8calibr:[3,20,29,40,44,49],int8calibratornamespac:49,int_float:68,integ:[58,71,79],integr:[52,53,54,55,56,57,67],intend:[51,85],intent:[60,76],interact:76,intercompat:57,interdum:79,interest:[60,76],interfac:[0,1,2,46,63,64,66,86],interfer:76,intermedi:[16,52,54,56,57,69,82],intern:[1,16,46,52,54,56,57,58,66,69,76,83],internal_error:69,internalerror:69,interpol:[52,76],interpolationmod:52,interpret:[52,54,56,57,63,76],intro_to_torchscript_tutori:82,introduc:[52,54,56,57,58],introduct:53,invalid:58,invok:[82,83],involv:[51,52,53,54,56],io:[44,51,52,53,54,55,56,57,88],iostream:[20,21,44,45,83],ipad:51,ipso:76,ipsum:[77,79],ipykernel:[51,54,55,56,57],ipython:[51,54,55,56,57],ipywidget:[51,54,55,56,57,58],ir:[52,54,56,57,62,64,66,71,82],is_avail:[52,54,55],is_floating_point:68,is_tar:51,is_train:86,iscustomclass:66,isinst:58,isn:[74,76],isort:51,issu:[3,4,51,52,53,54,56,83,85],istensor:66,istream_iter:44,it_:44,ital:76,item:[51,52,53,54,55,58,75,77],itensor:[59,66,83],iter:[20,44,48,51,52,53,54,55,56,57,58,59,70,72,89],its:[30,52,54,56,57,59,63,66,76],itself:[0,1,2,46,60,85,88,89,90],iv:77,ivalu:[59,63,66,83],ja:51,jan:77,jarowinkl:51,jedi:[51,54,55,56,57],jetpack:85,jetpack_4:85,jetson:[52,54,56,57,71],jieba:51,jinja2:[51,54,55,56,57],jit:[31,32,33,37,45,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,71,72,82,83,84,88,89,90],jit_model:58,jmespath:51,joblib:[51,53],join:58,jpeg:[52,54,55],jpg:[52,54,55,57,88],jpg__1920x1080_q85_subject_loc:[52,54,55],jsmath:51,json:[52,54,55],json_fil:[52,54,55],jsonschema:[51,54,55,56,57],jump:88,jupyt:[51,54,55,56,57],jupyterlab:[51,54,55,56,57],jupyterlab_widget:[54,56,57],just:[44,45,52,53,54,55,57,60,67,69,76,78,82,83,84,87,90],justo:[77,79],k:[53,68,86],kaldi:51,kaldiio:51,kb:[52,54,55,56,57],kbool:[0,45],kchannelslast:[2,45],kchar:[0,45],kclip:66,kcontigu:[2,45,47],kcpu:[1,46],kcuda:[1,46,61,83],kdebug:[16,42,44],kdla:[1,45,46,91],kdla_standalon:[17,45],keepdim:68,kei:[53,58,76,82,88],kept:[58,77],kernel:[47,48,52,54,56,57,66,71,72,89],kernel_s:[54,55,56,68],kerror:[16,42],keyboard:76,keyword:[51,71,72],kf16:[86,91],kfloat:[0,45,48],kgpu:[1,45,46],kgraph:[16,42,60],khalf:[0,45,83],ki8:86,kind:[51,52,53,54,55,56,57,58,59,71],kinfo:[16,42,44],kint:[0,45],kinternal_error:[16,42],kiwisolv:51,know:[42,66,74,76],knowledg:76,kriz:86,krizhevski:86,ksafeti:[17,45],kstandard:[17,45,48],ktest:86,ktrain:86,kunknown:[0,2,45],kwarg:[55,58,70,71],kwarn:[16,42],l:68,label:[52,54,55,57,58,76,86,88],lacinia:79,lack:[61,62,64],lacu:79,laid:83,lambda:[54,55,57,66,76,83,88],lang:75,languag:[51,52,54,55,56,57,58,75,76,77,82,88],laoreet:79,larg:[52,53,54,56,57,58,62,64,74,76,83,86],larger:[74,86],largest:68,last:[2,51,57,60,71],lastli:88,latenc:[51,53],later:[30,53,83],latest:[52,53,54,74,85],latexcodec:51,launch:88,law:[51,52,53,54,55,56,57,58],layer1:[54,55],layer2:[54,55],layer3:[54,55],layer4:[54,55],layer:[46,48,52,54,56,57,58,59,60,66,72,83,86,88,89,91],layer_norm:68,layout:[2,47,68,71,72],ld_library_path:85,ld_preload:87,ldd:85,le:68,lead:76,leader:76,leaky_relu:68,leaky_relu_:68,learn:[55,58,67,83,85,86,88,91],leas:77,least:[52,53,54,76,77],leav:[56,58,60],lectu:[77,79],left:[57,74,76],legacy_calibr:70,legend:76,len:[51,53,57,58,68],lenet:[82,83],lenet_script:[82,83],lenetclassifi:[56,82],lenetfeatextractor:[56,82],length:[3,4,44,52,53,54,55,68,77],leo:79,let:[46,51,52,54,55,56,57,60,66,71,72,74,76,88,89],letter:[51,77],level:[18,23,25,26,39,42,44,49,52,53,54,56,57,58,60,61,64,69,80,82,88],levelnamespac:49,leverag:[52,54,55,56,57,86],lib:[51,52,53,54,55,56,57,58,60,83,85],libero:[77,79],librari:[34,42,43,44,45,52,54,55,56,57,58,62,63,64,66,83],librosa:51,libsndfile1:51,libtorch:[4,36,52,54,56,57,66,83,85,86],libtorch_pre_cxx11_abi:85,libtorchtrt:[83,85,89],libtorchtrt_plugin:87,libtorchtrt_runtim:87,licens:[42,43,44,45,51,52,53,54,55,56,57,58,83],light:76,lightn:51,lightningdeprecationwarn:51,lightningmodul:51,ligula:79,like:[52,54,56,57,59,60,63,66,75,76,82,83,84,85,86,87,88,89],limit:[51,52,53,54,55,56,57,58,60,69,75,86],line:[77,83,89],linear:[2,54,55,56,58,68,71,82],linewidth:57,link:[59,67,74,75,80,83,87,89],linux:[64,83,85],list:[18,19,20,21,31,48,50,51,53,57,58,59,61,63,66,68,71,72,80,83,84,85,88],listconstruct:[59,63,83],listunpack:[63,83],liter:77,literal:77,literal_block:76,live:[66,76],ll:53,llvmlite:51,lo:68,load:[51,52,54,55,57,58,61,63,70,72,83,84,86,87,88,89,90],load_calib_amax:58,load_librari:87,load_state_dict:58,loader:[51,52,54,56,57],loading_data_recip:86,loborti:[77,79],local:[57,58,60,74,83],localhost:88,locat:[57,85,86],lock:75,log:[15,16,19,20,38,44,49,50,53,58,60,66,67,68,71],log_debug:66,logger:69,loggingenum:49,login:88,loglevel:69,logo_onli:74,lone:77,longer:[52,54,56,57,74,87],look:[51,52,53,54,55,56,57,58,59,60,82,86,88,90],loop_unrol:60,lorem:[77,79],lorikeet:[54,55],lose:74,loss:[58,86],lot:66,lower:[16,55,69,71,77],lower_graph:60,lower_tupl:60,loweralltupl:60,lowersimpletupl:60,lowfreq:51,lr:58,lstm_cell:68,lt:[51,53,54,55,56,57,58,68],ltorchtrt:87,luctu:79,lvl:[25,26,42],m:[51,52,54,55,56,77],machin:[52,54,56,57,63,85,86,88],macro:[5,6,7,8,9,10,11,12,15,18,21,42,45,49,50],mad:76,made:[57,60,62,64,76],maecena:79,magna:79,mai:[51,52,53,54,55,56,57,58,59,63,64,76,77,82,83,85,86,88],main:[57,60,61,62,63,64,66,74,76,78,83],maintain:[53,61,63,66],major:[52,54,56,57,64],make:[52,53,54,55,56,57,59,76,78,83,84,85,86,88,91],make_data_load:[4,86],make_int8_cache_calibr:[20,40,44,49,86],make_int8_calibr:[20,30,40,44,49,86],malesuada:79,man:[76,77],manag:[51,52,53,54,55,56,57,59,62,64,66,69,71,83],mangag:60,mani:[74,76,77],manifest_filepath:51,mantissa:[48,72],manual:[75,76,85],manual_se:51,manylinux2014_x86_64:57,manylinux_2_17_x86_64:57,map:[1,46,59,60,62,64,66,83,86,88,90],mark:[52,60,74],markdown:51,marknodesforfallback:60,markup:[77,80],markup_process:76,markupsaf:[51,54,55,56,57],marshmallow:51,mask:[51,68],masked_fil:68,masked_sent:53,massa:79,master:[65,76,85,86,87],mat2:68,match:[48,60,85],math:80,mathemat:53,matmul:[60,68,83],matplotlib:[51,52,54,55,56,57],matric:53,matrix:65,matti:77,matur:64,mauri:[77,79],max:[47,48,54,55,56,57,58,66,68,71,74,89],max_batch_s:88,max_bound:58,max_c:89,max_dur:51,max_h:89,max_length:53,max_n:89,max_pool1d:68,max_pool2d:[56,68,82,83],max_pool3d:68,max_shap:[45,47,55,56,71,72,84],max_val:[66,68],max_valu:58,max_w:89,maxcalibr:58,maxim:55,maximu:79,maximum:[47,48,52,53,54,55,58,72,88,89],maxpool2d:[54,55],maxpool:[54,55],mayb:[55,76],mb:[52,54,55,56,57,89],md:65,me:[76,77],mean:[51,52,53,54,55,56,57,58,61,66,67,68,88],mecab:51,mechan:[51,53,66],media:[52,54,55],median:[51,53],medium:76,meet:71,mel:51,member:[46,47,48,71],memeori:2,memori:[20,21,44,45,48,51,52,54,55,56,57,60,66,71,72,83,84],memory_format:[68,71],memoryformat:[2,45],men:76,mental:76,menu:[74,76,89],menuselect:76,messag:[16,25,26,69,89],meta:80,metadata:[51,63,66,74],meth:76,method:[31,32,33,37,47,51,52,54,55,56,57,58,60,66,71,72,76,82,83,85,89,90],method_nam:[31,37,45,71,72,83,89],metric:51,metu:79,mi:79,middl:76,mig:[51,52,54,55,56],might:[53,58,60,74,85],min:[47,48,66,68,71,89],min_block_s:[45,48,61,72],min_bound:58,min_c:89,min_h:89,min_n:89,min_shap:[45,47,55,56,71,72,84],min_val:[66,68],min_valu:58,min_w:89,mind:76,mine:76,mini:[52,54,55],minim:[48,72,86,89],minimum:[47,48,55,61,69,72,89],minmax:[29,30,86],minmax_calibr:70,misbuild:74,miss:[76,83],mistun:[51,54,55,56,57],mix:57,mixin:51,mkdir:[52,54,55,85],mlm_model_t:53,mm:[51,88],mmb:76,mobilenet_v2:90,mod:[51,61,80,83,86,89],mode:[58,84,86],mode_:86,model:[51,61,63,67,69,82,83,84,86,89,90],model_math:57,model_nam:[51,58,88],model_repositori:88,model_s:51,model_state_dict:58,model_torchtrt:69,model_trt:69,modelpt:51,modern:57,modifi:[77,85],modified_state_dict:58,modul:[31,32,33,37,45,48,51,52,53,54,55,56,57,58,61,62,63,64,66,67,71,72,75,76,77,84,86,89,90,91],modular:83,module_fallback:60,module_nam:89,molesti:79,momentum:[54,55,58,68],mon:55,month:51,monthli:[51,55],morbi:79,more:[52,54,55,56,57,58,59,67,71,74,77,82,83,85,86,87,88,90],most:[53,64,85,87,88],most_likely_token_id:53,most_likely_token_ids_trt:53,mother:76,motion:76,mous:76,move:[29,44,45,52,54,55,56,57,60,63,72,83,86],mpmath:51,ms:[52,54,55,56,57,58],mse:58,msg:[26,42,51,53,69],mu:76,much:[66,74,76,86],mul:[58,68],mul_:68,multi:89,multidict:51,multipl:[63,76,77,86,88],multipli:[48,72],must:[33,47,48,53,57,60,61,66,71,72,76,77,83,85,87,89],mutil:77,my:76,myclass:76,mymodel:[61,84],mypi:57,myself:77,n01537544:52,n01739381:52,n01749939:[54,55],n01820546:[54,55],n02109961:52,n02110185:[54,55],n02481823:[52,54,55],n:[51,52,53,54,56,66,83,86,89],n_fft:51,n_mel:51,nabla:76,nam:[77,79],name:[3,4,31,33,37,44,51,52,54,55,56,57,58,61,63,66,70,72,76,77,82,83,85,88,90],named_modul:58,namespac:[42,43,44,45,50,60,67,86],narrow:[58,68],nativ:[58,64,65,83],native_funct:65,natur:[53,76],nav:[74,80],navig:74,navigation_depth:74,nbbind:[3,4,44],nbclient:[51,54,55,56,57],nbconvert:[51,54,55,56,57],nbformat:[51,54,55,56,57],nchw:[2,71,72],ncol:[52,54,55],ne:[60,68],nec:79,necessari:[42,87],need:[0,1,2,25,30,43,46,52,54,55,57,59,60,66,76,83,84,85,86,87,88],neg:68,negative_slop:68,nemo:51,nemo_1:51,nemo_asr:51,nemo_log:51,nemo_toolkit:51,nequ:[77,79],nest:[49,51,54,55,56,57,76,77],net:[52,54,55,66,76,77,83],netu:79,network:[29,30,52,54,56,57,58,66,83,86,88,91],networkx:57,neural:[52,54,57,91],new_lay:66,new_level:53,new_local_repositori:85,new_lr:58,new_siz:86,newer:[52,54,56,57],newest:51,newli:51,next:[3,4,57,58,59,63,74,76,77,86,88],nfilt:51,ngc:[51,52,53,54,55,56,57,85,88],nhwc:[2,71,89],nibh:[77,79],nice:85,nickel:76,night:77,nine:53,ninja:85,nisi:79,nisl:79,nl:[52,54,55],nlp:[29,30,53,86],nltk:51,nn:[51,52,54,55,56,58,60,65,71,72,82,83,84],no_grad:[51,52,53,54,55,56,57,58],node:[58,60,61,62,64,66,83],node_info:[66,83],noexcept:[3,4,44,86],non:[77,79],non_block:[58,68],none:[52,54,56,57,58,66,68,71,72,74,76],nonetheless:76,nonexist:76,noninteract:51,norm:68,normal:[0,1,2,46,51,52,53,54,55,56,57,58,76,82,83,86,88,91],normalized_shap:68,noskipw:44,notatemoduleforfallback:60,note:[1,46,47,53,66,71,74,76,83,85,91],notebook:[51,52,53,54,55,56,57,58,64],notic:[56,57],now:[51,52,53,54,56,57,60,64,66,76,83,85,90],np:[51,52,53,54,55,56,57,58,88],nrow:[52,54,55],nrun:[52,54,55,56,57,58],nu:76,nulla:79,nullptr:[44,45,48],num:[51,53,89],num_avg_timing_it:[45,48,72,90],num_batch:58,num_bit:58,num_calib_batch:58,num_class:58,num_epoch:58,num_it:89,num_loop:[51,53],num_min_timing_it:[45,48,72,90],num_op:89,num_work:[58,86],numba:51,number:[3,4,48,51,52,53,54,58,60,61,66,71,72,74,83,89],numel:68,numer:[51,77,89],numpi:[51,52,53,54,55,56,57,58,88],nunc:79,nvcr:[51,88],nvidia:[32,37,42,43,44,45,51,52,53,54,55,56,57,58,65,71,72,83,85,88,89,91],nvidia_convnets_processing_util:57,nvidia_deeplearningexamples_torchhub:57,nvidia_efficientnet:57,nvidia_efficientnet_b0:57,nvidia_efficientnet_b4:57,nvidia_efficientnet_widese_b0:57,nvidia_efficientnet_widese_b4:57,nvidia_resnet50:57,nvidia_resnext101_32x4d:57,nvidia_resnext:57,nvidia_se_resnext101_32x4d:57,nvidia_ssd:57,nvidia_ssd_processing_util:57,nvidia_ssdpyt_amp_200703:57,nvidia_tacotron2:57,nvidia_tts_util:57,nvidia_waveglow:57,nvinfer1:[3,4,29,30,44,45,48,66,86],nvinfer:[20,44],nwarmup:[52,54,55,56,57,58],o:[52,54,55,76,85,88],oauthlib:51,obj:68,object:[0,1,2,3,4,46,47,48,63,66,69,70,72,86,90],observ:[51,52,53,54,58],obsolet:57,obtain:[51,52,53,54,55,56,57,58,84],obvious:82,octet:[52,54,55],odio:[77,79],off:[51,52,54,55,56,57,61,63],offici:85,ofstream:[44,83],often:76,oh:77,ok:[52,54,55,76,83],okai:48,older:64,omegaconf:51,onc:[42,43,44,45,59,60,63,86,87,88],one:[53,57,58,60,66,69,71,76,82,83,88],ones:[42,52,54,56,57,61,62,64,76,83,85],onli:[1,3,4,16,30,44,46,47,56,57,60,61,64,66,69,71,76,85,86,87,89,91],onnx:[51,60],onto:[63,89],onward:[52,54,55],op:[52,53,54,55,57,58,59,60,62,64,66,71,83,87,89],op_nam:89,op_precis:[52,54,55,57],open:[52,54,55,56,57,88],opencc:51,oper:[0,1,2,3,4,31,44,45,46,48,52,54,55,56,57,58,59,60,61,62,63,64,66,67,71,72,84,86,89,91],oppos:72,opset:[62,64],opt:[47,48,51,52,53,54,55,56,57,58,71,85],opt_c:89,opt_h:89,opt_n:89,opt_shap:[45,47,55,56,71,72,84],opt_state_dict:58,opt_w:89,optim:[47,51,52,53,54,55,56,57,58,60,67,82,83,84,89],optimin:47,optimiz:[52,54,56,57,82],optimized_execut:51,optimz:88,option:[44,47,61,62,64,71,76,80,85,86,87,89,91],orchestra:76,orci:79,order:[48,57,61,66,72,83,84],org:[51,52,53,54,55,56,57,58,65,74,76,82,83,85,86],organ:77,origin:[51,53,57,58],original_nam:56,ornar:[77,79],os:[45,58],ostream:45,other:[0,1,2,45,46,52,54,55,56,57,58,59,60,63,67,68,75,76,83,84,85,87,89],otherwis:[52,53,54,85,87],our:[52,53,54,55,56,57,61,64,82,83,88],out:[31,44,51,52,53,54,55,56,58,59,60,61,62,64,66,69,72,76,83,85,88],out_dir:58,out_featur:[54,55,56],out_shap:83,out_tensor:[66,83],output0:60,output:[24,27,33,48,52,53,54,55,56,57,58,59,60,61,63,66,69,72,74,76,77,83,85,88,89],output__0:88,output_file_path:[89,91],output_pad:68,output_s:[54,55,68],output_trt:53,outself:83,outsid:76,over:[52,54,55,56,62,64,76,88],overkil:56,overrid:[3,4,29,30,44,71,86],overview:[53,65,67],own:[51,52,53,54,56,66,76,83,88],p0:55,p2:51,p8:[51,52,54,56],p:[52,54,55,68,83,88,89,91],packag:[51,52,53,54,55,56,57,58,60,83,89],pad:[51,53,54,55,58,68],padding_idx:68,padding_mod:58,page:[55,67,78,80,88],pair:[51,60,66,76,85,86],panda:51,pandocfilt:[51,54,55,56,57],pane:76,pangu:51,paper:[52,54,57],paragraph:[77,80],parallel:53,param:[70,75],param_group:58,paramet:[0,1,2,3,4,25,26,27,29,30,31,32,33,35,37,46,47,48,58,59,60,66,69,71,72,80,82,83],parameter:51,parent:[14,15,18,19,20,21],pari:53,pars:[58,76,83],parser:76,parso:[51,54,55,56,57],part:[51,61,64,74,75,76,89],parti:55,partial:[52,54,56,57,76,89],particular:56,particularli:53,partit:60,partitioninfo:61,pass:[51,53,58,59,61,62,63,64,66,69,70,82,83,86],past:76,patch:57,path:[4,13,14,15,29,30,56,57,58,70,71,82,83,85,86,88,89],path_to_torchtrt_root:85,pathspec:[51,57],pathtool:51,pathwai:82,pattern:[66,71,83],payment:75,pbtxt:88,peephole_optimz:60,pellentesqu:79,peopl:76,pep:76,per:[55,57,58],percentil:[51,53,58],perf:[51,52,54,55,56],perfom:58,perform:[29,30,52,53,54,55,56,57,86,88],performac:86,permiss:[51,52,53,54,55,56,57,58],permit:76,permut:68,persist:[51,52,54,55,56,76],pesq:51,pexpect:[51,54,55,56,57],pharetra:79,phase:[16,58,66,83],phasellu:79,phi:76,philosoph:76,phrase:76,pi:76,pick:[56,82],pick_best:57,pickler:63,pickleshar:[51,54,55,56,57],pid:[51,52,54,55,56],piec:51,pil:[52,54,55,88],pillow:[51,52,57],pin:75,pin_memori:68,pip3:85,pip:[51,52,53,54,55,56,57,58,85,88],pipelin:[89,91],piplein:83,pipreq:51,pixel_shuffl:68,pl:75,place:[47,60,76,77,78,85,86],placerat:79,plan:[64,89],plane:58,platea:79,platform:[45,52,54,56,57,64,85,88,89,91],platformdir:57,pleas:[51,52,58,76,83,85,88],plot:57,plot_result:57,plt:[52,54,55,57],pluggi:51,plugin:51,po:53,point:[71,74,75,76,83,88],pointer:[3,4,86],polish:75,pooch:51,pool:[54,55,56,57,58,91],pop:63,popular:[53,75,85],portabl:[52,54,56,57,63,72],portalock:51,portion:76,porttitor:[77,79],pos_mask:53,posit:[51,53,71,74,89],possibl:[52,53,54,56,57,76,88],post1:51,post:[29,30,48,67,83,89],posuer:[77,79],potenti:[48,79],pow:68,power:[52,54,56,57,76,83],pr:83,practic:[52,54,56,57],praesent:79,pragma:[42,43,44,45,86],pre:[33,51,52,53,54,58,60,70,72,86,87],pre_cxx11_abi:85,preced:76,precis:[48,53,55,56,57,67,71,83,84,86,89,91],precisions_str:51,pred:[52,54,55,58],pred_label:57,pred_loc:57,predict:[52,53,54,55,57],prefer:83,prefix:[27,28,42,69,76],preinstal:85,prelu:68,prepar:[51,52,53,54,56,57,88],prepare_input:57,prepare_tensor:57,preprint:86,preproc:70,preprocess:[51,52,54,55,58,86,88],preserv:[58,76,82,86],prespect:82,press:76,pretium:79,pretrain:[51,52,53,54,55,57,88,90],pretti:83,prev_next_buttons_loc:74,prevent:[48,89],previou:[53,74],previous:[30,33,83],prim:[59,60,63,68,82,83],prim_devic:68,primal:76,primari:53,primarili:[64,83],print:[16,31,44,51,52,53,54,55,56,57,58,69,71,72,76,83,88,90],print_funct:51,printout:53,printstat:[51,53],priorit:85,privat:[3,4,44,45,86],prob:[52,54,55],probabl:[52,53,54,55,57],probablil:[52,54,55],problem:[53,76],problemat:76,proce:[52,54,55,88],proceed:88,process:[51,52,53,54,55,56,57,58,61,75,76,82,86,88,89,90],prod:68,produc:[47,59,63,66,76,83],product:[48,52,54,56,57],profil:[47,56],program:[18,19,20,21,30,50,55,56,57,62,63,64,67,82,89],programm:76,progress:77,proin:79,project:[75,80],prometheu:[51,54,55,56,57],promis:51,prompt:[51,54,55,56,57],properli:85,properti:[51,53,74],propog:60,prose:76,protobuf:51,provid:[3,4,48,51,52,53,54,55,61,63,66,71,72,76,83,84,85,86,87,88,89,90],providi:[62,64],provok:76,psutil:[51,55],pt:[53,57,58,83,88,89],pth:[54,57,58],ptq:[3,4,15,18,38,49,50,67,71,72,89],ptq_calibr:[3,4,45,48,86],ptqtemplat:49,ptyprocess:[51,54,55,56,57],publish:88,pull:[85,88],purchas:75,pure:[31,51,55,57],purpos:[55,57,85,88],puru:79,push:63,push_back:[44,61],put:76,pwd:88,pwr:[51,52,54,55,56],py2:[54,56,57],py3:[51,52,53,54,56,57,88],py:[51,52,57,58,60,64,74,76,81,82,83,85,86],pyannot:51,pyasn1:51,pybind11:51,pybtex:51,pycpars:[51,54,55,56,57],pycr:51,pydeprec:51,pydub:51,pygment:[51,54,55,56,57],pyindex:88,pypa:[51,52,53,54,55,56,57],pypars:[51,53,54,55,56,57],pypi:[51,52,53,54,55,56,57,58,85],pypinyin:51,pyplot:[52,54,55,57],pyrsist:[51,54,55,56,57],pysock:51,pystoi:51,pytest:51,python3:[51,52,53,54,55,56,57,58,60,83,85],python:[51,52,53,54,55,56,57,58,61,64,71,72,76,77,83,87,88,89,90,91],python_api:65,pythonhost:[54,55,56,57,58],pytorch:[47,48,51,52,53,54,55,57,58,60,61,62,63,64,66,70,71,72,82,83,84,85,86,87,88,89],pytorch_libtorch:88,pytorch_lightn:51,pytorch_quant:[57,58],pytorch_sphinx_them:[74,81],pytorch_vision_v0:55,pytz:51,pywavelet:57,pyyaml:[51,53],pyzmq:[51,54,55,56,57],qat:58,qat_model:58,qthelp:51,qualiti:[52,54,57],quant:58,quant_dim:58,quant_input:58,quant_max:68,quant_min:68,quant_modul:58,quant_nn:58,quant_weight:58,quantconv2d:58,quantdescriptor:58,quantiz:[29,30,57,67,83,89],quantizatiom:48,quantizelay:58,quantlinear:58,quantoz:58,quantpool:58,quartznet:51,question:83,qui:[77,79],quick:58,quickli:[52,54,83,86,89],quisqu:79,quit:[55,66,83],quot:77,r:[57,76],rais:60,raiseexcept:60,rand:83,randn:[51,52,54,55,56,57,58,61,71,72,83,90],random:51,randomcrop:58,randomhorizontalflip:58,rang:[47,48,51,52,53,54,55,56,57,58,71,89],rank:74,rapidfuzz:51,rate:58,rather:60,raw:[57,74],re:[51,76],read:[3,4,29,30,44,51,55,74,76,86],read_calibration_cach:70,readcalibrationcach:[3,4,44],reader:76,readi:[51,55],readm:[51,52,53,54,56,57],realiz:63,realli:66,reason:[0,57,82],reattribut:77,recalibr:30,recip:86,recipi:57,reciproc:68,recognit:[51,54,58,86],recomend:[29,30],recommend:[29,30,51,52,53,54,55,56,57,58,76,83,85,88],recompil:57,record:[56,58,59,82],rect:57,rectangl:57,recurs:59,recursivescriptmodul:56,redistribut:77,reduc:[52,54,56,57,58,60,62,64,86],ref:76,refer:[47,58,62,64,75,80,83,84,86,88],referenc:[57,85],refit:[45,48,72,90],reflect:45,reflection_pad1d:68,reflection_pad2d:68,regard:[76,85],regardless:77,regex:[51,53],regist:[33,63,66,72],registernodeconversionpattern:[66,83],registri:[59,83],regular:58,reinterpret_cast:44,rel:89,relat:[46,76],relationship:49,releas:[51,53,76],relu:[54,55,56,61,68,82,83],relu_:68,remain:[52,53,54,56,57,60,86],remov:[51,52,54,56,57,58,74],remove_contigu:60,remove_dropout:60,remove_to:60,render:74,rent:77,repack:63,repeat:[68,89],replac:[53,57,60],replication_pad1d:68,replication_pad2d:68,replication_pad3d:68,report:[23,44],reportable_log_level:69,repositori:[52,54,57,64,74,81,88],repres:[47,48,58,66,69,76],represent:[52,53,54,56,57,60,66,82],request:[51,52,53,54,55,71,83,88],requir:[30,48,51,52,53,54,55,56,57,58,59,60,69,71,72,74,83,86,87,88,89],require_full_compil:[45,48,52,54,56,57,72],requires_grad:68,resampi:51,research:[52,54,56,57],reserv:[42,43,44,45,51,52,53,54,55,56,57,58],reset:44,reshap:[68,88],residu:54,resiz:[52,54,55,88],resnet50:[54,55,57,88],resnet50_model:[54,55],resnet:[55,57,63,88],resnet_trt:63,resolv:[52,54,55,59,60,62,64],resolve_data_config:52,resourc:[51,54,55,56,57,59,86],respons:[30,52,54,55,58,63,76],respositori:53,rest:[76,77],restor:51,restrict:[48,72],restructuredtext:[76,77],result:[51,52,53,54,55,56,58,59,60,69,72,74,82,84,88],results_per_input:57,ret:60,rethink:52,return_tensor:53,reus:[60,86],revert:74,revis:[76,77],revisit:76,rfc:76,rgb:[52,54],rho_:76,rhoncu:79,right:[42,43,44,45,51,52,53,54,55,56,57,58,60,64,66,76],risu:79,rm:88,rn50_preprocess:[54,55,88],role:76,roll:68,roman:77,room:76,root:[42,43,44,45,51,52,53,54,55,56,57,58,74,85,86],roughli:61,round:[48,58,72],round_:58,rounding_mod:68,row:77,rsa:51,rst:[74,76],rsub:68,rtol:89,ruamel:51,rule:[72,85],ruler:76,run:[1,37,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,67,71,72,76,82,83,84,85,86,87,88,89,90,91],runner:51,running_loss:58,running_mean:68,running_var:68,runtim:[51,52,54,55,56,57,67,83],rutrum:[77,79],s3:[52,54,55],s3transfer:51,s:[47,48,57,58,61,63,66,67,71,74,76,77,82,83,84,86,88],sacrebleu:51,sacremos:[51,53],safe:[66,72],safe_dla:71,safe_gpu:71,safeti:[48,71,89],sage:76,sagitti:[77,79],sai:[55,77],said:76,same:[52,54,55,57,63,74,76,82,83,85,88,90],sampl:[51,52,54,76,86,88],sample_r:51,sapien:79,satisfi:[51,52,53,54,55,56,57,61],save:[30,44,51,52,54,55,56,57,58,63,71,72,83,84,87,88,89],save_checkpoint:58,save_restore_connector:51,saw:83,scalar:[66,68],scalaropt_dim:68,scalartyp:[0,45,68],scale:[52,58,68,86],scale_factor:68,scale_grad_by_freq:68,scales_d:68,scales_h:68,scales_w:68,scelerisqu:79,schedul:[58,71,88],schema:[66,83],scientist:76,scikit:[51,57],scikit_imag:57,scipi:[51,57],scope:60,score:[52,54,55,57],scratch:30,scratch_spac:88,screen:74,script:[31,53,57,58,60,61,71,72,82,83,84,90],script_model:[56,82,90],scriptclass:72,scripted_model:91,scriptmodul:[71,72,83],scroll:[74,78],sdk:[51,52,54,56,57,65],se:51,seamlessli:[55,67],search:[53,67,74],second:[52,53,55,60,76],secondli:88,section:[55,58,74,76,77,78,80,83,86,88],secur:[51,85],sed:[77,79],see:[31,51,52,53,54,55,56,57,58,60,63,71,72,76,82,83,85],seen:[76,77],segment:[51,61],segments_tensor:53,select:[17,29,30,37,48,52,54,56,57,63,68,71,72,75,78,85,86,89],self:[51,53,56,58,60,63,66,68,70,82,83,91],self_1:[63,83],self_int:68,sell:77,seller:75,seller_id:75,sem:79,semant:76,semper:79,send2trash:[51,54,55,56,57],send:88,senectu:79,sens:[76,83],sent:[52,54,55],sentenc:[53,76],sentencepiec:51,sentencepiecetoken:51,sentinel:[0,2],sentri:51,separ:[52,54,56,57,61,62,64],seq_relationship:53,sequenc:[51,53,76],sequenti:[54,55],serial:[33,37,62,64,71,72,83,89],seriali:72,serializ:[63,82],serialized_engin:72,serializinghtml:51,seril:63,serv:[63,67,89],server:51,servic:76,session:76,session_nam:76,set:[3,4,16,21,25,27,30,32,35,37,45,46,47,48,52,54,56,57,58,59,60,61,62,63,64,67,69,71,72,74,78,81,82,83,84,85,86,91],set_data_from_numpi:88,set_devic:[21,38,45,49,71],set_is_colored_output_on:[18,39,42,49,69],set_logging_prefix:[18,39,42,49,69],set_reportable_log_level:[18,39,42,49,53,58,69],set_typecheck_en:51,setalpha:66,setbeta:66,setnam:[66,83],setproctitl:51,setreshapedimens:83,setup:[43,51,58,86,88],setup_multiple_test_data:51,setup_multiple_validation_data:51,setup_test_data:51,setup_training_data:51,setup_validation_data:51,setuptool:[51,54,55,56,57],sever:[16,26,53,69],sgd:58,sh:85,sha256:85,shape:[45,47,48,51,52,53,54,56,57,58,61,66,68,71,72,84,88,89,91],shape_mod:71,share:85,shell_command:76,shellingham:51,shift:[68,76,85],ship:[58,83,87],shorthand:76,shortuuid:51,should:[0,3,4,30,45,48,52,55,58,59,60,61,62,64,66,67,69,71,74,76,79,86,88,89],show:[57,74,76],showcas:[52,54,55],shown:[53,74,76,83],shuffl:[51,58,83,86],shutterstock_780480850:[52,54,55],siberian:[52,54,55],siberian_huski:[54,55],side:[60,74,83],sidebar:[74,80],sigmoid:68,sigmoid_:68,sign:88,signatur:72,signifi:[47,60],signific:[57,58,76],significantli:[60,74],similar:[57,66,83,87,90],simonyan:86,simpil:86,simpl:[51,52,53,54,56,57,58,76,77,82,88],simplejson:51,simplest:[53,88],simpli:[55,56,60],simplic:[52,54,57],simplifi:59,simul:58,sin:[68,76],sinc:[53,56,60,76,82,83,86],sing:76,singl:[47,48,53,56,60,71,76,82,83,86,89],singular:66,sinh:68,sink:76,sit:[77,79],site:[51,52,53,54,55,56,57,58,60,76,83,85],six:[51,53,54,55,56,57,76],sixth:77,size:[3,4,44,47,48,51,52,53,54,55,56,57,58,60,61,68,71,72,74,83,86,89,91],size_t:[3,4,44,86],skip:89,slash:74,slice:68,slither:[52,54,55],sm:63,sm_output:[52,54,55],small:[58,60,88],smaller:51,smallest:53,smi:[51,52,54,55,56],smmap:51,snake:[52,54,55],snowballstemm:51,so:[0,44,52,54,55,56,58,59,60,63,64,66,67,75,76,77,83,85,86,89],sodal:79,softmax:[52,54,55,57,58,60,68],softwar:[51,52,53,54,55,56,57,58,76],sole:86,sollicitudin:79,solv:88,some:[52,53,54,59,60,62,63,64,66,75,76,83,86],some_funct:76,someth:[43,60,76,88],someurl:76,sort:[66,68,90],sortedcontain:51,soundfil:51,soupsiev:[51,55],sourc:[42,43,44,45,52,54,57,64,69,70,71,72],sourceforg:[76,77],sox:51,space:[76,77,86],spaces_and_linebreak:76,span:77,spars:[68,89],sparse_weight:[45,48,72],sparsiti:[48,72,89],speak:53,speaker:53,spec:[47,48,52,54,56,57,69,71,72,89,90],specif:[32,48,51,52,53,54,55,56,57,58,60,62,64,71,72,76],specifi:[3,4,48,52,53,54,55,56,57,58,66,67,69,71,72,74,76,84,88,89,90],specifii:71,speech:51,speed:[51,52,53,54,55,57],speed_m:[51,53],speed_mean:[51,53],speedup:[51,52,53,54],sphinx:[51,74,75,76,77,81],sphinx_rtd_them:[76,77],sphinxcontrib:51,spin:88,spirit:76,split:[53,68],split_siz:68,split_with_s:68,sqrt:68,squeez:[51,68],sr:51,src:[63,65,68],ss:44,ssd300:57,ssd300_trt:63,ssd:63,ssd_300_trace:57,ssd_pyt_ckpt_amp:57,ssd_trace:89,ssd_trt:89,sstream:[20,44],stabl:[58,65,74],stack:[51,55,57,58,63,68,86],stage:59,stand:[63,76],standalon:76,standard:[52,53,54,55,56,57,63,67,76,87,89,90],stapl:77,start:[53,55,57,58,59,61,68,77,85,90],start_dim:[68,83],start_step:68,start_tim:[51,52,53,54,55,56,57,58],startswith:58,stat:58,state:[51,52,53,54,58,59,66,83],state_dict:58,statement:[60,76],static_cast:44,statist:[53,58],statu:[44,77],std:[3,4,22,26,28,29,30,31,33,34,37,42,44,45,47,48,51,52,53,54,55,61,83,86,88,91],std_dev:[51,53],stderr:58,stdout:[36,69,71],steamlin:86,step:[51,52,53,54,55,56,57,58,67,68,86],stft:51,stick:74,sticki:[74,80],sticky_navig:[74,78],still:[44,57,61,86],stitch:[56,61,83],stop:83,storag:86,store:[2,4,59,63,66,82,83],str:[19,43,44,49,52,54,55,68,69,71,72],straight:66,strang:76,strategi:[53,71],stream:[52,54,55],street:77,strict:87,stride:[54,55,56,57,58,68],string:[3,4,18,20,21,22,26,28,29,30,31,33,34,37,42,44,45,48,61,63,66,71,74,83,86],stringstream:44,strip_prefix:85,strong:[52,54,56,57,76],strongli:76,struct:[1,21,38,41,45,86],structur:[30,46,48,52,54,56,57,61,64,66,74,76,80,82,88],structuredtext:76,stt_en_citrinet_256:51,stt_en_citrinet_256_bs128_torch:51,stt_en_citrinet_256_bs1_torch:51,stt_en_citrinet_256_bs32_torch:51,stt_en_citrinet_256_bs8_torch:51,stub:77,stuff:76,style:[42,43,44,45,74,76,77],style_external_link:74,sub:[68,76,82],sub_:68,subdirectori:50,subexpress:60,subgraph:[48,59,60,66,83,89],subject:64,submenu:80,submodul:[56,82],subplot:[52,54,55,57],subscript:76,subsect:76,subset:[58,86],substitut:76,subtitl:76,subtre:81,subword:51,successfulli:[51,52,54,56,57],sudo:85,suffic:60,suggest:88,suit:[55,67],sum:[48,58,68,72],summari:53,summarywrit:58,superscript:76,suppli:76,support:[0,1,2,27,31,46,47,48,52,54,55,56,57,58,61,65,67,71,72,74,75,82,83,85,88,89,91],sure:[83,84,85,88,91],suscipit:[77,79],suspendiss:79,swap:51,sy:58,symbol:[33,72,76,85,87],symlink:81,sympi:51,synchron:[51,52,53,54,55,56,57,58],system:[51,52,53,54,55,56,57,59,66,67,72,85],t1:68,t2:68,t:[0,1,2,45,46,55,56,58,60,66,68,74,76,77,82,83,85,86,88],t_:76,tabl:[80,85],tabul:51,tag:[76,88],take:[31,32,33,37,51,52,54,56,57,59,62,63,64,66,71,72,74,76,83,86,90],taken:[52,54,57,76],talk:67,tan:68,tanh:68,tanh_:68,tar:[76,85,86],tarbal:[83,86],target:[1,33,45,46,47,48,52,54,55,56,57,63,64,67,71,72,84,86,89,90,91],targets_:86,tarred_audio_filepath:51,task:[29,30,51,53,86],techinqu:83,techniqu:[58,86],tell:[60,61,62,63,64,66,76],tellu:79,tem:89,temp:[51,52,54,55,56],templat:[20,40,44,45,49,74,83],tempu:79,tensor:[2,33,44,45,47,48,51,52,53,54,55,56,57,58,59,60,61,63,66,68,71,72,82,83,86],tensor_mod:68,tensor_qu:58,tensor_quant:58,tensor_scalar:68,tensor_tensor:68,tensorboard:[51,58],tensorcontain:66,tensorformat:[21,38,45,47,49,71],tensorformatenum:49,tensorlist:[61,66],tensorquant:58,tensorrt:[0,1,3,4,29,30,31,32,33,36,37,44,45,46,47,48,53,59,60,61,62,64,66,70,71,72,82,86,89],tensorrtcompilespec:[72,90],teo:89,term:[55,71,76,77,86],termin:[27,83,89],terminado:[51,54,55,56,57],test:[51,52,53,54,55,56,57,58,64,76,77,86,88,89],test_acc:58,test_loss:58,test_pr:58,test_prob:58,test_ptq_dataloader_calibr:86,test_ptq_trt_calibr:86,test_py_modul:[76,80],testing_dataload:[58,86],testing_dataset:[58,86],testpath:[51,54,56,57],text:[51,53,57,69,77,79],tf32:[48,89],tgz:85,than:[51,53,55,60,67,75,76,87],thats:[59,86],the_model_repositori:88,thei:[46,53,57,58,59,60,63,66,71,74,76,85,89],them:[51,52,53,54,56,57,60,61,63,74,83,85],theori:[59,76],therebi:63,therefor:[30,51,52,54,56,57,63,76,83],theres:87,therfor:87,theta:76,thi:[0,1,2,29,30,42,43,44,45,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,71,72,74,75,76,78,79,82,83,85,86,87,88,89,90],thicker:76,thin:76,thing1:76,thing2:76,thing3:76,thing:[56,76,85],think:[66,76],third:[55,77],third_parti:[64,85],those:[53,59,76],though:[57,64,66,82,83,89],thought:76,threadpoolctl:51,three:[47,55,62,64,71,76,77,88],threshold:89,through:[47,51,52,53,54,55,56,57,59,60,61,63,67,69,70,76,83],throughout:[52,54],throughput:52,thrown:[48,72],thu:[51,56,76],tifffil:57,time:[48,51,52,53,54,55,56,57,58,59,60,62,63,64,66,72,74,76,83,86,89],time_99th:[51,53],time_m:[51,53],time_mean:[51,53],time_std:[51,53],timegraph:[51,53],timeit:[51,53],timeout:51,timm:[52,54],tincidunt:79,tini:86,tinycss2:55,titan:[51,52,54,56,57],titl:[52,54,55],titles_onli:74,tmp:83,toctre:74,tocustomclass:66,todim:83,todo:74,togeth:[56,59,66,83],toilet:[52,54,55],token:[51,53],token_type_id:53,tokens_tensor:53,toler:89,toml:51,tomli:57,too:[74,76,77,85],took:53,tool:[52,53,54,56,57,66,83],toolchain:[64,85],toolkit:[51,54,55,56,57,58],top:[57,64,74,78],topk:68,topolog:53,torch:[0,1,2,4,20,29,30,31,32,33,36,37,44,45,46,47,48,53,59,60,61,62,63,64,66,71,72,82,85,86,89,91],torch_executed_modul:[45,48,61,72],torch_executed_op:[45,48,61,72],torch_scirpt_modul:82,torch_script_modul:83,torch_tensorrt:[0,1,2,3,4,14,16,17,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,61,67,83,84,86,87,88,89,90,91],torch_tensorrt_major_vers:[19,43,49],torch_tensorrt_minor_vers:[19,43,49],torch_tensorrt_patch_vers:[19,43,49],torch_tensorrt_vers:[19,43,49],torch_tensorrtfil:49,torch_tensorrtnamespac:49,torchbind:63,torchhub:[57,88],torchmetr:51,torchscript:[19,21,38,43,45,48,49,51,52,53,54,55,57,58,62,63,64,71,72,84,89,90,91],torchscriptstruct:49,torchtrt:[43,51,61],torchtrt_api:[19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,42,43,44,45,49],torchtrt_check:66,torchtrt_hidden:[19,43,49],torchtrt_runtime_exampl:87,torchtrt_unus:66,torchtrtc:[67,91],torchvis:[51,52,54,55,58,63,86,88,90],tornado:[51,54,55,56,57],toronto:86,tortor:79,total:58,totensor:[52,54,55,58,86,88],tovec:83,toward:86,tqdm:[51,53,58],trace:[51,53,57,58,61,72,82,83,84],traced_mlm_model:53,traced_model:[56,57,82],tracerwarn:58,track:[66,86],track_running_stat:[54,55],trade:57,tradit:[47,72,86],traget:32,trail:74,train:[29,30,48,51,52,53,54,57,67,68,83,84,89],trainabl:60,trained_vgg16_qat:58,trainer:51,training_dataload:58,training_dataset:58,traitlet:[51,54,55,56,57],transcrib:51,transfer:75,transform:[51,52,54,55,56,57,58,83,86,88],transformed_img:88,transforms_factori:52,translat:[57,83],transmit:76,transpos:68,trash:76,travers:[62,64],treat:[58,89],tree:[42,43,44,45,51,74,86,87],trigger:[56,83],trim:86,trim_sil:51,tristiqu:79,triton:67,triton_to_np_dtyp:88,tritoncli:88,tritonserv:88,trt:[0,1,3,4,46,47,51,59,60,63,66,68,83],trt_lenet_script:83,trt_mod:[58,61,83,86,91],trt_model:[53,57,61,88,90],trt_model_fp16:[52,53,54],trt_model_fp32:[52,54],trt_model_with_d:55,trt_model_without_d:55,trt_script_modul:56,trt_ts_modul:[51,56,61,84],trtorch:51,truck:58,truncat:[48,72,89],truncate_long_and_doubl:[45,48,51,53,72],trust:[54,55,56,57,58],ts:[43,51,56,61,67,71,82,83,84,89,90],ts_model:[61,83],tt:76,tue:[54,77],tune:[51,52,54,56,57,58],tupl:[63,71,72],tupleconstruct:[60,63],tupleunpack:60,turn:51,turpi:79,tutori:[52,54,55,82,86],two:[51,56,57,60,66,76,77,81,82,85,86,88,89],type:[0,1,2,29,47,48,49,51,52,53,54,55,56,57,58,59,63,66,69,71,72,76,83,86,89],type_fp32:88,typecheck:51,typenam:[3,4,29,30,44],typer:51,typic:[59,66,88],typing_extens:52,ubuntu:[51,85],ugli:76,ui:75,uint64_t:[45,48],ultric:79,un:[52,54,86],unabl:[66,83],unbind:68,unbroken:76,uncas:53,unchang:53,uncom:85,uncorr:[51,52,54,55,56],undefin:57,under:[42,43,44,45,51,52,53,54,55,56,57,58,64,76,84],underli:[0,1,2,46,66],understand:[52,54],unidecod:51,union:[66,71,72,83],uniqu:4,unique_ptr:[4,29],unit:[53,56],univers:76,unknown:71,unless:[51,52,53,54,55,56,57,58],unlik:[55,67,85,90],unlimit:74,unmask:53,unmasked_sent:53,unmasked_sentences_trt:53,unmasked_token:53,unmasked_tokens_trt:53,unpack_addmm:60,unpack_log_softmax:60,unqiue_ptr:4,unreferenc:76,unrestrict:76,unsign:58,unsqueez:[52,54,55,68],unstabl:64,unsupport:[31,48],unsur:66,untest:64,until:[55,59,64,66,85],unwrap:66,unwraptodoubl:66,unwraptoint:83,unzip:85,up:[51,52,53,54,56,57,58,59,60,62,63,64,76,82],updat:[51,55,58],upgrad:51,upload:[52,54,55,88],upon:74,upper:[58,77],upsample_bilinear2d:68,upsample_linear1d:68,upsample_nearest1d:68,upsample_nearest2d:68,upsample_nearest3d:68,upsample_trilinear3d:68,upscale_factor:68,upstream:83,uri:[57,76],url:[74,85,88],urllib3:[51,53],urna:79,us:[0,1,2,3,4,29,30,32,35,37,43,44,45,46,47,48,51,52,53,54,56,57,59,61,63,64,66,67,69,70,71,72,74,75,76,77,82,86,87,88,89,91],usag:[51,52,54,55,56,70,76,83],use_amp:51,use_cach:[3,4,29,44,70,86],use_cache_:44,use_fb_fake_qu:58,use_input_stat:68,use_start_end_token:51,use_subset:86,usecas:85,user:[42,47,48,51,52,53,54,55,56,57,61,62,63,64,76,77,83,85,86,88],userguid:58,userwarn:[51,52,57],using_int:[68,83],usr:85,usual:[57,58,74],ut:79,utf:[76,77],util:[52,54,56,58,66,72,83,86,88],v0:[54,55,73,88],v1:51,v2:[29,30,57],v8:85,v:[51,52,53,54,56,57,77,88,89],val2017:57,val:[57,58],valid:[1,46,51,56,57,58,66],valu:[0,1,2,16,17,45,46,47,53,56,58,59,63,66,68,69,70,71,74,83],value_tensor_map:[59,66],vari:[52,53,54,55],variabl:[47,71],variant:[51,87],varient:60,varieti:88,variou:[51,91],variu:79,vcs_pageview_mod:74,vec:68,vector:[20,21,44,45,47,48,61,63,83,86,91],vehicula:79,vel:79,velit:79,venenati:79,venv:[51,52,53,54,55,56,57],verbios:89,verbos:[77,89],veri:[58,77,78,86,88,90],verifi:[53,58,61],version:[34,36,51,52,53,54,55,56,57,58,64,74,77,85,88],vertic:[74,76],vestibulum:[77,79],vgg16:[58,86],vgg16_base_ckpt:58,vgg16_qat_ckpt:58,vgg:[57,58,86],vi:76,via:[51,55,57,67,71,72,74,80,84,86,87],view:[68,74],vine_snak:52,virtual:[51,52,53,54,55,56,57,86],vision:[52,53,54,55,88],visit:[52,54,55,57],visitor:74,visual:55,vita:[77,79],vivamu:79,viverra:79,vm:77,volatil:[51,52,54,55,56],volta:[52,54,56,57],volutpat:79,vs:[0,1,2,46,60,72,90],vulput:79,w1109:58,w:[51,52,54,57,89],w_hh:68,w_ih:68,wa:[51,52,53,54,56,57,60,63,76,83],wai:[52,54,58,82,83,85,86,89],walk:[51,52,53,54,56,57],walkthrough:55,wandb:51,want:[42,52,54,56,57,61,82,83,86,88,90],warm:[51,52,53,54,55,56,57,58],warn:[16,44,51,52,53,54,55,56,57,58,66,69,89],warranti:[51,52,53,54,55,56,57,58],wash:76,wcwidth:[51,54,55,56,57],we:[42,44,51,52,53,54,55,56,57,58,59,60,62,63,64,66,74,76,82,83,86,88],weak:76,web:76,webdataset:51,webencod:[51,54,55,56,57],websit:85,weight:[47,48,53,58,59,68,72,76,83,89],weight_decai:58,welcom:83,welecom:[52,54],well:[48,52,53,54,56,57,69,76,83,85,86],were:[53,57,83],werkzeug:51,wget:[51,52,54,55,88],what:[4,57,60,76,82,83],whatev:63,wheel:[51,85],when:[27,44,45,46,52,53,54,56,57,58,59,60,62,63,64,66,69,71,72,74,76,78,82,83,85,86,89],where:[51,52,54,56,59,60,66,72,77,83,86],whether:[4,71,75,86,89],which:[1,2,30,32,37,46,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,70,72,74,76,77,82,83,84,85,86,87,88,90],white:[57,76],whitespac:76,whl:[52,54,56,57,85],who:76,whole:[52,54,56,57],whose:60,why:76,wide:[55,80],widespread:53,widget:[51,54,55,56,57],widgetsnbextens:[51,54,55,56,57],width:[52,54,55,76],window:76,window_nam:76,wish:77,wit:51,within:[51,52,53,54,55,56,57,62,64,72,74,76],without:[51,52,53,54,56,57,58,66,74,76,83,86],wl:87,won:55,wooden:76,word:[51,53,76],wordninja:51,work:[44,56,60,64,66,76,77,86],worker:86,workflow:[58,90],workspac:[48,72,85,86,89,91],workspace_s:[45,48,51,52,53,54,55,57,72,86,89,91],world:[52,54,56,57,76],would:[66,83,85,87,88,89,90],wp:[52,54,55,88],wrap:[58,62,63,64,76,79,83,90],wrapper:66,wrapt:51,write:[3,4,29,30,44,51,52,53,54,55,56,57,58,59,67,76,83,86,88],write_calibration_cach:70,writecalibrationcach:[3,4,44],writer:58,written:[52,54],wrote:76,www:[51,52,53,54,55,56,57,58,74,76,83,85,86,88],x64:85,x86:87,x86_64:[64,85],x9:60,x:[5,10,33,43,52,54,56,57,58,60,72,77,82,83,85],x_0:76,x_1:76,x_2:76,x_3:76,x_4:76,x_:76,xavier:[45,52,54,56,57,91],xstr:[19,43,49],xx:88,y:[33,51,57,72,77],yahoo:77,yaml:[51,65],yarg:51,yarl:51,year:51,yield:53,you:[0,1,2,29,30,46,47,48,51,52,53,54,55,56,57,58,59,60,61,63,64,66,67,71,72,74,76,77,78,82,83,84,85,86,87,88,89,90],your:[51,52,53,54,55,56,57,58,66,67,74,76,77,81,82,83,84,85,87,90],yourself:[52,53,54,83],youtokentom:51,yy:[51,88],z:77,zero_grad:58,zero_point:68,zeroth:55,zip:[54,57,63,85],zipp:[51,54,55,56,57],zisserman:86},titles:["Class DataType","Class Device::DeviceType","Class TensorFormat","Template Class Int8CacheCalibrator","Template Class Int8Calibrator","Define STR","Define TORCH_TENSORRT_PATCH_VERSION","Define TORCH_TENSORRT_MAJOR_VERSION","Define TORCH_TENSORRT_MINOR_VERSION","Define TORCHTRT_API","Define XSTR","Define TORCHTRT_HIDDEN","Define TORCH_TENSORRT_VERSION","Directory cpp","Directory include","Directory torch_tensorrt","Enum Level","Enum EngineCapability","File logging.h","File macros.h","File ptq.h","File torch_tensorrt.h","Function torch_tensorrt::logging::get_logging_prefix","Function torch_tensorrt::logging::get_reportable_log_level","Function torch_tensorrt::logging::get_is_colored_output_on","Function torch_tensorrt::logging::set_reportable_log_level","Function torch_tensorrt::logging::log","Function torch_tensorrt::logging::set_is_colored_output_on","Function torch_tensorrt::logging::set_logging_prefix","Template Function torch_tensorrt::ptq::make_int8_calibrator","Template Function torch_tensorrt::ptq::make_int8_cache_calibrator","Function torch_tensorrt::torchscript::check_method_operator_support","Function torch_tensorrt::torchscript::compile","Function torch_tensorrt::torchscript::embed_engine_in_new_module","Function torch_tensorrt::get_build_info","Function torch_tensorrt::set_device","Function torch_tensorrt::dump_build_info","Function torch_tensorrt::torchscript::convert_method_to_trt_engine","Namespace torch_tensorrt","Namespace torch_tensorrt::logging","Namespace torch_tensorrt::ptq","Namespace torch_tensorrt::torchscript","Program Listing for File logging.h","Program Listing for File macros.h","Program Listing for File ptq.h","Program Listing for File torch_tensorrt.h","Struct Device","Struct Input","Struct CompileSpec","Torch-TensorRT C++ API","Full API","Torch-TensorRT Getting Started - CitriNet","Torch-TensorRT Getting Started - EfficientNet-B0","Masked Language Modeling (MLM) with Hugging Face BERT Transformer","Torch-TensorRT Getting Started - ResNet 50","Torch-TensorRT - Using Dynamic Shapes","Torch-TensorRT Getting Started - LeNet","Object Detection with Torch-TensorRT (SSD)","Deploying Quantization Aware Trained models in INT8 using Torch-TensorRT","Conversion Phase","Lowering Phase","Partitioning Phase","Compiler Phases","Runtime Phase","System Overview","Useful Links for Torch-TensorRT Development","Writing Converters","Torch-TensorRT","Operators Supported","torch_tensorrt.logging","torch_tensorrt.ptq","torch_tensorrt","torch_tensorrt.ts","Changelog","Configuration","5. :mod:`test_py_module`","3. Paragraph Level Markup","4. Lists & Tables","1. Long Sticky Nav","1. Structural Elements","<no title>","Installation","Creating a TorchScript Module","Getting Started with C++","Using Torch-TensorRT in Python","Installation","Post Training Quantization (PTQ)","Deploying Torch-TensorRT Programs","Serving a Torch-TensorRT model with Triton","torchtrtc","Using Torch-TensorRT Directly From PyTorch","DLA"],titleterms:{"1":[78,88],"10":78,"11":78,"12":78,"13":78,"14":78,"15":78,"16":78,"17":78,"18":78,"19":78,"2":[78,79,88],"20":78,"3":[78,88],"4":78,"5":78,"50":54,"6":[57,78],"7":[57,78],"8":78,"9":78,"class":[0,1,2,3,4,20,21,38,40,41,49,70,71],"enum":[16,17,18,21,38,39,49,70,71],"function":[18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,49,55,65,71,72],"long":[78,80],A:76,And:76,But:77,By:[18,19],Or:60,The:[76,83],To:60,aarch64:85,abi:[63,85],addmm:60,admonit:76,advic:66,ahead:67,an:80,api:[49,50,65,67,85],applic:86,arg:[66,75],automat:61,avail:65,awar:58,b0:52,background:[63,66],base:[3,4,74],benchmark:[51,55,57,58],bert:53,binari:85,block:76,branch:60,build:[55,74,85,88],bullet:77,c:[49,65,67,83,85,86],can:77,caption:[77,80],center:76,ch:76,changelog:73,check_method_operator_support:31,choos:85,citat:[76,86],citrinet:51,cli:85,client:88,code:[60,76],compil:[32,62,64,67,83,85],compilespec:48,compound:76,conclus:[56,57],configur:74,construct:63,content:[18,19,20,21,38,39,40,41,51,52,53,54,56,57,74,75,76,77,78,79],context:[66,74],contigu:60,contract:66,contributor:67,convers:[59,62,64,66],convert:[59,66,68,83],convert_method_to_trt_engin:37,cpp:[13,18,19,20,21,61],creat:[82,86],creativ:76,cudnn:85,current:68,custom:83,cxx11:85,data:[55,75],datatyp:0,dead:60,debug:85,deeper:77,defin:[5,6,7,8,9,10,11,12,19,49],definit:[18,19,20,21,77],demo:80,depend:85,deploi:[58,87],descript:[52,54,57],deseri:63,detail:57,detect:57,detector:57,develop:65,devic:[1,46],devicetyp:1,dimens:65,direct:76,directli:90,directori:[13,14,15,50],disk:82,distribut:85,dla:91,doctest:76,documen:67,document:[0,1,2,3,4,5,6,7,8,9,10,11,12,16,17,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,46,47,48,65,67,79,80],down:77,download:[55,76,81],dr:55,dropout:60,dump_build_info:36,dynam:55,easier:65,efficientnet:52,element:79,elimin:60,eliminatecommonsubexpress:60,embed_engine_in_new_modul:33,emphas:76,engin:63,enginecap:17,enumer:77,envior:85,evalu:[59,68],exampl:[76,78],execept:60,executor:63,expect:65,explan:55,face:53,fallback:[60,61],field:77,figur:76,file:[15,18,19,20,21,42,43,44,45,49,50],flatten:60,footnot:76,format:63,fp16:[51,52,54],fp32:[51,52,54],freez:60,from:[55,85,90],full:[49,50],fuse:60,gaurd:60,gener:75,get:[51,52,54,55,56,67,83],get_build_info:34,get_is_colored_output_on:24,get_logging_prefix:22,get_reportable_log_level:23,giant:77,git:81,glossari:76,gpu:67,graph:[60,63],grid:77,guarante:66,h:[18,19,20,21,42,43,44,45,61],half:[51,52,54],have:77,hierarchi:49,hlist:77,hole:77,hood:83,how:[74,86],html:74,hub:55,hug:53,ien:76,imag:[76,77],includ:[14,18,19,20,21],incred:80,index:75,indic:67,infer:[57,88],inherit:[3,4],inlin:76,input:47,instal:[81,85],int8:58,int8cachecalibr:3,int8calibr:4,ir:65,jetson:85,jit:67,languag:53,layer:65,learn:[51,52,53,54,56,57],lenet:56,level:[16,74,76,77],librari:[85,87],libtorchtrt:87,like:77,line:76,linear:60,link:[65,76],list:[42,43,44,45,77],liter:76,local:85,log:[18,22,23,24,25,26,27,28,39,42,69],logsoftmax:60,loop:60,lower:[60,62,64],macro:[19,43],make_int8_cache_calibr:30,make_int8_calibr:29,markup:76,mask:53,math:76,measur:57,menu:[78,80],meta:76,mlm:53,mod:75,model:[52,53,54,55,56,57,58,88],modul:[60,82,83],multibox:57,namespac:[18,19,20,21,38,39,40,41,49],nativ:85,native_op:65,nav:78,nest:[1,46],next:[51,52,53,54,55,56],node:59,number:[76,77],nvidia:67,object:[51,52,53,54,56,57],one:77,op:63,oper:[68,83],optim:88,optimz:60,option:[74,75,77],other:66,overview:[51,52,54,56,57,58,64],own:86,packag:[85,87],page:74,paragraph:[76,79],paramet:75,partit:[61,62,64],partitoninfo:61,pass:60,pattern:60,peephol:60,perform:58,phase:[59,60,61,62,63,64],plugin:87,post:86,pre:85,precis:[51,52,54],precompil:85,prerequisit:85,program:[42,43,44,45,87],project:74,ptq:[20,29,30,40,44,70,86],python:[65,67,82,84,85,86],pytorch:[56,65,67,90],quantiz:[58,86],queri:88,quickstart:83,quot:76,rabbit:77,read:65,redund:60,refer:[57,76],regist:83,relationship:[1,3,4,46],releas:85,remov:60,replac:76,resnet:54,respons:66,result:[57,63],right:85,rubric:76,runtim:[62,63,64,87],s:[51,52,53,54,55,56],sampl:[55,57],save:82,script:56,second:77,section:79,segmentedblock:61,serial:63,serv:88,server:88,set:[55,88],set_devic:35,set_is_colored_output_on:27,set_logging_prefix:28,set_reportable_log_level:25,setup:85,shape:55,shape_analysi:61,shot:57,sidebar:76,simpl:55,singl:[51,52,54,57],so:87,sometim:65,sourc:85,speedup:57,ssd:57,start:[51,52,54,56,67,83],step:88,sticki:78,str:5,struct:[46,47,48,49],structur:79,subdirectori:[13,14],submenu:78,submodul:71,subsect:79,subsubmenu:78,subsubsect:79,support:68,system:64,tabl:[74,75,76,77,78,79],tarbal:85,target:76,templat:[3,4,29,30],tensorformat:2,tensorrt:[49,51,52,54,55,56,57,58,63,65,67,83,84,85,87,88,90],test_py_modul:75,text:76,theme:[74,80],thi:[77,80],through:68,time:67,titl:76,tl:55,toc:74,topic:76,torch:[49,51,52,54,55,56,57,58,65,67,83,84,87,88,90],torch_tensorrt:[15,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,45,69,70,71,72],torch_tensorrt_major_vers:7,torch_tensorrt_minor_vers:8,torch_tensorrt_patch_vers:6,torch_tensorrt_vers:12,torchscript:[31,32,33,37,41,56,67,82,83],torchtrt_api:9,torchtrt_hidden:11,torchtrtc:[83,89],trace:56,train:[58,86],transform:53,triton:88,trt:55,ts:72,tupl:60,type:[3,4,46],under:83,unpack:60,unrol:60,unsupport:83,up:[55,88],us:[55,58,60,65,83,84,85,90],util:[51,55,57],version:63,via:81,visual:57,wai:76,weight:66,what:[51,52,53,54,55,56,66],wide:74,without:55,work:[55,82,83],write:66,xstr:10,your:[86,88]}}) \ No newline at end of file diff --git a/docs/src/pytorch-sphinx-theme/docs/changelog.html b/docs/src/pytorch-sphinx-theme/docs/changelog.html index 882544e597..7673017417 100644 --- a/docs/src/pytorch-sphinx-theme/docs/changelog.html +++ b/docs/src/pytorch-sphinx-theme/docs/changelog.html @@ -197,7 +197,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/src/pytorch-sphinx-theme/docs/configuring.html b/docs/src/pytorch-sphinx-theme/docs/configuring.html index 7336967bec..eaec9e3429 100644 --- a/docs/src/pytorch-sphinx-theme/docs/configuring.html +++ b/docs/src/pytorch-sphinx-theme/docs/configuring.html @@ -197,7 +197,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/api.html b/docs/src/pytorch-sphinx-theme/docs/demo/api.html index 98d7cdeadb..4fe78280e0 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/api.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/api.html @@ -197,7 +197,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/demo.html b/docs/src/pytorch-sphinx-theme/docs/demo/demo.html index 657c9acefa..91b4265a83 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/demo.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/demo.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            @@ -546,7 +546,7 @@

            3.4.4.

            3.4.5. Code Blocks

            # parsed-literal test
            -curl -O http://someurl/release-master (1.2.0a0+3a8704db).tar-gz
            +curl -O http://someurl/release-master (1.2.0a0+ffedb78).tar-gz
            Code Blocks can have captions.
            {
            diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html b/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html
            index e459e66e21..e53381d148 100644
            --- a/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html
            +++ b/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html
            @@ -197,7 +197,7 @@
                           
                           
                             
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/long.html b/docs/src/pytorch-sphinx-theme/docs/demo/long.html index fabfe99fd6..1ba6d32b98 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/long.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/long.html @@ -197,7 +197,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/structure.html b/docs/src/pytorch-sphinx-theme/docs/demo/structure.html index 6f6d6c0343..116a3a8f76 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/structure.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/structure.html @@ -197,7 +197,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/src/pytorch-sphinx-theme/docs/index.html b/docs/src/pytorch-sphinx-theme/docs/index.html index 4f2cecd555..262205461f 100644 --- a/docs/src/pytorch-sphinx-theme/docs/index.html +++ b/docs/src/pytorch-sphinx-theme/docs/index.html @@ -197,7 +197,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/src/pytorch-sphinx-theme/docs/installing.html b/docs/src/pytorch-sphinx-theme/docs/installing.html index 35b193ef52..a957814bd1 100644 --- a/docs/src/pytorch-sphinx-theme/docs/installing.html +++ b/docs/src/pytorch-sphinx-theme/docs/installing.html @@ -197,7 +197,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/tutorials/creating_torchscript_module_in_python.html b/docs/tutorials/creating_torchscript_module_in_python.html index 22d0922ff1..cd4f108032 100644 --- a/docs/tutorials/creating_torchscript_module_in_python.html +++ b/docs/tutorials/creating_torchscript_module_in_python.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/tutorials/getting_started_with_cpp_api.html b/docs/tutorials/getting_started_with_cpp_api.html index 805d564f96..e5ccc14ec0 100644 --- a/docs/tutorials/getting_started_with_cpp_api.html +++ b/docs/tutorials/getting_started_with_cpp_api.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/tutorials/getting_started_with_fx_path.html b/docs/tutorials/getting_started_with_fx_path.html deleted file mode 100644 index 617792d8c0..0000000000 --- a/docs/tutorials/getting_started_with_fx_path.html +++ /dev/null @@ -1,916 +0,0 @@ - - - - - - - - - - - - - Torch-TensorRT (FX Path) User Guide — Torch-TensorRT master documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            -
            -
            - - - - - - - - - - - - - - - - -
            - -
              - -
            • - - - Docs - - > -
            • - - -
            • Torch-TensorRT (FX Path) User Guide
            • - - -
            • - - - - - -
            • - -
            - - -
            -
            - -
            - Shortcuts -
            -
            - -
            -
            - - - -
            - -
            -
            - -
            -

            Torch-TensorRT (FX Path) User Guide

            -

            Torch-TensorRT (FX Path) is a tool that can convert a PyTorch model through torch.FX to an TensorRT engine optimized targeting running on Nvidia GPUs. TensorRT is the inference engine developed by Nvidia which composed of various kinds of optimization including kernel fusion, graph optimization, low precision, etc.. -This tool is developed in Python environment providing most usability to researchers and engineers. There are a few stages that a user want to use this tool and we will introduce them here.

            -
            -

            Installation

            -
              -
            • Method 1. Follow the instrucions for Torch-TensorRT

            • -
            • Method 2. To install FX path only (Python path) and avoid the C++ build for torchscript path

            • -
            -
            $ conda create --name python_env python=3.8
            -$ conda activate python_env
            -
            -# Recommend to install PyTorch 1.12 and later
            -$ conda install pytorch torchvision torchtext cudatoolkit=11.3 -c pytorch-nightly
            -
            -# Install TensorRT python package
            -$ pip3 install nvidia-pyindex
            -$ pip3 install nvidia-tensorrt==8.2.4.2
            -$ git clone https://github.com/pytorch/TensorRT.git
            -$ cd TensorRT/py && python setup.py install --fx-only && cd ..
            -
            -$ pyton -c "import torch_tensorrt.fx"
            -# Test an example by
            -$ python py/torch_tensorrt/fx/example/lower_example.py
            -
            -
            -
            -
            -

            Converting a PyTorch Model to TensorRT Engine

            -

            We will go through an example to illustrate the major steps that FX path uses to

            -
              -
            • Step 1: Trace the model with acc_tracer

            • -
            -

            Acc_tracer is a tracer inheritated from FX tracer. It comes with args normalizer to convert all args to kwargs and pass to TRT converters.

            -
            import torch_tensorrt.fx.tracer.acc_tracer.acc_tracer as acc_tracer
            -
            -# Build the model which needs to be a PyTorch nn.Module.
            -my_pytorch_model = build_model()
            -
            -# Prepare inputs to the model. Inputs have to be a List of Tensors
            -inputs = [Tensor, Tensor, ...]
            -
            -# Trace the model with acc_tracer.
            -acc_mod = acc_tracer.trace(my_pytorch_model, inputs)
            -
            -
            -

            Common Errors:

            -

            symbolically traced variables cannot be used as inputs to control flow -This means the model contains dynamic control flow. Please refer to section “Dynamic Control Flow” in FX guide.

            -
              -
            • Step 2: Build TensorRT engine

            • -
            -

            There are two different modes for how TensorRT handles batch dimension, explicit batch dimension and implicit batch dimension. This mode was used by early versions of TensorRT, and is now deprecated but continues to be supported for backwards compatibility. In explicit batch mode, all dimensions are explicit and can be dynamic, that is their length can change at execution time. Many new features, such as dynamic shapes and loops, are available only in this mode. User can still choose to use implicit batch mode when they set explicit_batch_dimension=False in lower_to_trt(). We do not recommend to use it since it will lack of support in future TensorRT versions.

            -

            Explicit batch is the default mode and it must be set for dynamic shape. For most of vision task, user can choose to enable dynamic_batch in lower_to_trt() if they want to get the similar effects as implicit mode where only batch dimension changes. It has some requirements: -1. Shapes of inputs, outputs and activations are fixed except batch dimension. -2. Inputs, outputs and activations have batch dimension as the major dimension. -3. All the operators in the model do not modify batch dimension (permute, transpose, split, etc.) or compute over batch dimension (sum, softmax, etc.).

            -

            For examples of the last path, if we have a 3D tensor t shaped as (batch, sequence, dimension), operations such as torch.transpose(0, 2). If any of these three are not satisfied, we’ll need to specify InputTensorSpec as inputs with dynamic range.

            -
            import deeplearning.trt.fx2trt.converter.converters
            -from torch.fx.experimental.fx2trt.fx2trt import InputTensorSpec, TRTInterpreter
            -
            -# InputTensorSpec is a dataclass we use to store input information.
            -# There're two ways we can build input_specs.
            -# Option 1, build it manually.
            -input_specs = [
            -  InputTensorSpec(shape=(1, 2, 3), dtype=torch.float32),
            -  InputTensorSpec(shape=(1, 4, 5), dtype=torch.float32),
            -]
            -# Option 2, build it using sample_inputs where user provide a sample
            -inputs = [
            -torch.rand((1,2,3), dtype=torch.float32),
            -torch.rand((1,4,5), dtype=torch.float32),
            -]
            -input_specs = InputTensorSpec.from_tensors(inputs)
            -
            -# IMPORTANT: If dynamic shape is needed, we need to build it slightly differently.
            -input_specs = [
            -    InputTensorSpec(
            -        shape=(-1, 2, 3),
            -        dtype=torch.float32,
            -        # Currently we only support one set of dynamic range. User may set other dimensions but it is not promised to work for any models
            -        # (min_shape, optimize_target_shape, max_shape)
            -        # For more information refer to fx/input_tensor_spec.py
            -        shape_ranges = [
            -            ((1, 2, 3), (4, 2, 3), (100, 2, 3)),
            -        ],
            -    ),
            -    InputTensorSpec(shape=(1, 4, 5), dtype=torch.float32),
            -]
            -
            -# Build a TRT interpreter. Set explicit_batch_dimension accordingly.
            -interpreter = TRTInterpreter(
            -    acc_mod, input_specs, explicit_batch_dimension=True/False
            -)
            -
            -# The output of TRTInterpreter run() is wrapped as TRTInterpreterResult.
            -# The TRTInterpreterResult contains required parameter to build TRTModule,
            -# and other informational output from TRTInterpreter run.
            -class TRTInterpreterResult(NamedTuple):
            -    engine: Any
            -    input_names: Sequence[str]
            -    output_names: Sequence[str]
            -    serialized_cache: bytearray
            -
            -#max_batch_size: set accordingly for maximum batch size you will use.
            -#max_workspace_size: set to the maximum size we can afford for temporary buffer
            -#lower_precision: the precision model layers are running on (TensorRT will choose the best perforamnce precision).
            -#sparse_weights: allow the builder to examine weights and use optimized functions when weights have suitable sparsity
            -#force_fp32_output: force output to be fp32
            -#strict_type_constraints: Usually we should set it to False unless we want to control the precision of certain layer for numeric #reasons.
            -#algorithm_selector: set up algorithm selection for certain layer
            -#timing_cache: enable timing cache for TensorRT
            -#profiling_verbosity: TensorRT logging level
            -trt_interpreter_result = interpreter.run(
            -    max_batch_size=64,
            -    max_workspace_size=1 << 25,
            -    sparse_weights=False,
            -    force_fp32_output=False,
            -    strict_type_constraints=False,
            -    algorithm_selector=None,
            -    timing_cache=None,
            -    profiling_verbosity=None,
            -)
            -
            -
            -

            Common Errors:

            -

            RuntimeError: Conversion of function xxx not currently supported! -- This means we don’t have the support for this xxx operator. Please refer to section “How to add a missing op” below for further instructions.

            -
              -
            • Step 3: Run the model

            • -
            -

            One way is using TRTModule, which is basically a PyTorch nn.Module.

            -
            from torch_tensorrt.fx import TRTModule
            -mod = TRTModule(
            -    trt_interpreter_result.engine,
            -    trt_interpreter_result.input_names,
            -    trt_interpreter_result.output_names)
            -# Just like all other PyTorch modules
            -outputs = mod(*inputs)
            -torch.save(mod, "trt.pt")
            -reload_trt_mod = torch.load("trt.pt")
            -reload_model_output = reload_trt_mod(*inputs)
            -
            -
            -

            So far, we give a detailed explanation of major steps in convterting a PyTorch model into TensorRT engine. Users are welcome to refer to the source code for some parameters explanations. In the converting scheme, there are two important actions in it. One is acc tracer which helps us to convert a PyTorch model to acc graph. The other is FX path converter which helps to convert the acc graph’s operation to corresponding TensorRT operation and build up the TensoRT engine for it.

            -
            -
            -

            Acc Tracer

            -

            Acc tracer is a custom FX symbolic tracer. It does a couple more things compare to the vanilla FX symbolic tracer. We mainly depend on it to convert PyTorch ops or builtin ops to acc ops. There are two main purposes for fx2trt to use acc ops:

            -
              -
            1. there’re many ops that do similar things in PyTorch ops and builtin ops such like torch.add, builtin.add and torch.Tensor.add. Using acc tracer, we normalize these three ops to a single acc_ops.add. This helps reduce the number of converters we need to write.

            2. -
            3. acc ops only have kwargs which makes writing converter easier as we don’t need to add additional logic to find arguments in args and kwargs.

            4. -
            -
            -
            -

            FX2TRT

            -

            After symbolic tracing, we have the graph representation of a PyTorch model. fx2trt leverages the power of fx.Interpreter. fx.Interpreter goes through the whole graph node by node and calls the function that node represents. fx2trt overrides the original behavior of calling the function with invoking corresponding converts for each node. Each converter function adds corresponding TensorRT layer(s).

            -

            Below is an example of a converter function. The decorator is used to register this converter function with the corresponding node. In this example, we register this converter to a fx node whose target is acc_ops.sigmoid.

            -
            @tensorrt_converter(acc_ops.sigmoid)
            -def acc_ops_sigmoid(network, target, args, kwargs, name):
            -    """
            -    network: TensorRT network. We'll be adding layers to it.
            -
            -    The rest arguments are attributes of fx node.
            -    """
            -    input_val = kwargs['input']
            -
            -    if not isinstance(input_val, trt.tensorrt.ITensor):
            -        raise RuntimeError(f'Sigmoid received input {input_val} that is not part '
            -                        'of the TensorRT region!')
            -
            -    layer = network.add_activation(input=input_val, type=trt.ActivationType.SIGMOID)
            -    layer.name = name
            -    return layer.get_output(0)
            -
            -
            -
            -

            How to Add a Missing Op

            -

            You can actually add it wherever you want just need to remember import the file so that all acc ops and mapper will be registered before tracing with acc_tracer.

            -
              -
            • Step 1. Add a new acc op

            • -
            -

            TODO: Need to explain more on the logistic of acc op like when we want to break down an op and when we want to reuse other ops.

            -

            In acc tracer, we convert nodes in the graph to acc ops if there’s a mapping registered for the node to an acc op.

            -

            In order to make the conversion to acc ops to happen, there’re two things required. One is that there should be an acc op function defined and the other is there should be a mapping registered.

            -

            Defining an acc op is simple, we first just need a function and register the function as an acc op via this decorator acc_normalizer.py. e.g. the following code adds an acc op named foo() which adds two given inputs.

            -
            # NOTE: all acc ops should only take kwargs as inputs, therefore we need the "*"
            -# at the beginning.
            -@register_acc_op
            -def foo(*, input, other, alpha):
            -    return input + alpha * other
            -
            -
            -

            There’re two ways to register a mapping. One is register_acc_op_mapping(). Let’s register a mapping from torch.add to foo() we just created above. We need to add decorator register_acc_op_mapping to it.

            -
            this_arg_is_optional = True
            -
            -@register_acc_op_mapping(
            -    op_and_target=("call_function", torch.add),
            -    arg_replacement_tuples=[
            -        ("input", "input"),
            -        ("other", "other"),
            -        ("alpha", "alpha", this_arg_is_optional),
            -    ],
            -)
            -@register_acc_op
            -def foo(*, input, other, alpha=1.0):
            -    return input + alpha * other
            -
            -
            -

            op_and_target determines which node will trigger this mapping. op and target are the attributes of FX node. In acc_normalization when we see a node with the same op and target as set in the op_and_target, we will trigger the mapping. Since we want to map from torch.add, then op would be call_function and target would be torch.add. arg_replacement_tuples determines how we construct kwargs for new acc op node using args and kwargs from original node. Each tuple in arg_replacement_tuples represents one argument mapping rule. It contains two or three elements. The third element is a boolean variable that determines whether this kwarg is optional in original node. We only need to specify the third element if it’s True. The first element is the argument name in original node which will be used as the acc op node’s argument whose name is the second element in the tuple. The sequence of the tuples does matter because the position of the tuple determines where the argument is in original node’s args. We use this information to map args from original node to kwargs in acc op node. -We don’t have to specify arg_replacement_tuples if none of the followings are true.

            -
              -
            1. kwargs of original nodes and acc op nodes have different name.

            2. -
            3. there’re optional arguments.

            4. -
            -

            The other way to register a mapping is through register_custom_acc_mapper_fn(). This one is designed to reduce the redundant op registration as it allows you to use a function to map to one or more existing acc ops throught some combinations. In the function, you can do basically whatever you want. Let’s use an example to explain how it works.

            -
            @register_acc_op
            -def foo(*, input, other, alpha=1.0):
            -    return input + alpha * other
            -
            -@register_custom_acc_mapper_fn(
            -    op_and_target=("call_function", torch.add),
            -    arg_replacement_tuples=[
            -        ("input", "input"),
            -        ("other", "other"),
            -        ("alpha", "alpha", this_arg_is_optional),
            -    ],
            -)
            -def custom_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node:
            -    """
            -    `node` is original node, which is a call_function node with target
            -    being torch.add.
            -    """
            -    alpha = 1
            -    if "alpha" in node.kwargs:
            -        alpha = node.kwargs["alpha"]
            -    foo_kwargs = {"input": node["input"], "other": node["other"], "alpha": alpha}
            -    with node.graph.inserting_before(node):
            -        foo_node = node.graph.call_function(foo, kwargs=foo_kwargs)
            -        foo_node.meta = node.meta.copy()
            -        return foo_node
            -
            -
            -

            In the custom mapper function, we construct an acc op node and return it. The node we returns here would take over all the children nodes of original nodes acc_normalizer.py.

            -

            The last step would be adding unit test for the new acc op or mapper function we added. The place to add the unit test is here test_acc_tracer.py.

            -
              -
            • Step 2. Add a new fx2trt converter

            • -
            -

            All the developed converters for acc ops are all in acc_op_converter.py. It could give you a good example of how the converter is added.

            -

            Essentially, the converter is the mapping mechanism that maps the acc ops to a TensorRT layer. If we are able to find all the TensorRT layers we need we can get start to add a converter for the node using TensorRT APIs.

            -
            @tensorrt_converter(acc_ops.sigmoid)
            -def acc_ops_sigmoid(network, target, args, kwargs, name):
            -    """
            -    network: TensorRT network. We'll be adding layers to it.
            -
            -    The rest arguments are attributes of fx node.
            -    """
            -    input_val = kwargs['input']
            -
            -    if not isinstance(input_val, trt.tensorrt.ITensor):
            -        raise RuntimeError(f'Sigmoid received input {input_val} that is not part '
            -                        'of the TensorRT region!')
            -
            -    layer = network.add_activation(input=input_val, type=trt.ActivationType.SIGMOID)
            -    layer.name = name
            -    return layer.get_output(0)
            -
            -
            -

            We need to use tensorrt_converter decorator to register the converter. The argument for the decorator is the target of the fx node that we need to convert. In the converter, we can find the inputs to the fx node in kwargs. As in the example, the original node is acc_ops.sigmoid which only has one argument “input” in acc_ops.py. We get the input and check if it’s a TensorRT tensor. After that, we add a sigmoid layer to TensorRT network and return the output of the layer. The output we returned will be passed to the children nodes of acc_ops.sigmoid by fx.Interpreter.

            -

            What if we can not find corresponding layers in TensorRT that do the same thing as the node.

            -

            In this case, we would need to do a bit more work. TensorRT provides plugins which serves as custom layers. We have not implement this feature yet. We will update once it is enabled.

            -

            Last step would be adding the unit test for the new converter we added. User could add corresponding unit test in this folder.

            -
            -
            -
            - - -
            - -
            -
            - - - - -
            - - - -
            -

            - © Copyright 2021, NVIDIA Corporation. - -

            -
            - -
            - Built with Sphinx using a theme provided by Read the Docs. -
            - - -
            - -
            -
            - - -
            -
            - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            -
            -
            -
            -

            Docs

            -

            Access comprehensive developer documentation for PyTorch

            - View Docs -
            - -
            -

            Tutorials

            -

            Get in-depth tutorials for beginners and advanced developers

            - View Tutorials -
            - -
            -

            Resources

            -

            Find development resources and get your questions answered

            - View Resources -
            -
            -
            -
            - - - - - - - - - -
            -
            -
            -
            - - -
            -
            -
            - - -
            - - - - - - - - \ No newline at end of file diff --git a/docs/tutorials/getting_started_with_python_api.html b/docs/tutorials/getting_started_with_python_api.html index d2a00024d2..e2a0aa0d6f 100644 --- a/docs/tutorials/getting_started_with_python_api.html +++ b/docs/tutorials/getting_started_with_python_api.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/tutorials/installation.html b/docs/tutorials/installation.html index 18bdc09fe3..9b486dde84 100644 --- a/docs/tutorials/installation.html +++ b/docs/tutorials/installation.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/tutorials/ptq.html b/docs/tutorials/ptq.html index 0da616e6b0..1d24461f41 100644 --- a/docs/tutorials/ptq.html +++ b/docs/tutorials/ptq.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/tutorials/runtime.html b/docs/tutorials/runtime.html index 7b8e9d799a..41506380a8 100644 --- a/docs/tutorials/runtime.html +++ b/docs/tutorials/runtime.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/tutorials/serving_torch_tensorrt_with_triton.html b/docs/tutorials/serving_torch_tensorrt_with_triton.html index 1d09be2b1a..82d5f07b63 100644 --- a/docs/tutorials/serving_torch_tensorrt_with_triton.html +++ b/docs/tutorials/serving_torch_tensorrt_with_triton.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/tutorials/torchtrtc.html b/docs/tutorials/torchtrtc.html index 242bffad20..fe52e83d5e 100644 --- a/docs/tutorials/torchtrtc.html +++ b/docs/tutorials/torchtrtc.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/tutorials/use_from_pytorch.html b/docs/tutorials/use_from_pytorch.html index 156510f206..4162f4793c 100644 --- a/docs/tutorials/use_from_pytorch.html +++ b/docs/tutorials/use_from_pytorch.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docs/tutorials/using_dla.html b/docs/tutorials/using_dla.html index ed054d3e0f..79a04f4c23 100644 --- a/docs/tutorials/using_dla.html +++ b/docs/tutorials/using_dla.html @@ -199,7 +199,7 @@
            - master (1.2.0a0+3a8704db) + master (1.2.0a0+ffedb78)
            diff --git a/docsrc/conf.py b/docsrc/conf.py index 4e65020672..b386657e8c 100644 --- a/docsrc/conf.py +++ b/docsrc/conf.py @@ -206,4 +206,4 @@ def handle_item(fieldarg, content): return nodes.field('', fieldname, fieldbody) -TypedField.make_field = patched_make_field +TypedField.make_field = patched_make_field \ No newline at end of file From ac238447b9d2e2183498894f9d2ac2bb71571d89 Mon Sep 17 00:00:00 2001 From: Wei Wei Date: Tue, 28 Jun 2022 15:15:44 -0700 Subject: [PATCH 10/10] update index.rst --- docsrc/index.rst | 2 ++ 1 file changed, 2 insertions(+) diff --git a/docsrc/index.rst b/docsrc/index.rst index 9e9c87d23b..b12d6cc1f4 100644 --- a/docsrc/index.rst +++ b/docsrc/index.rst @@ -29,6 +29,7 @@ Getting Started * :ref:`runtime` * :ref:`using_dla` * :ref:`serving_torch_tensorrt_with_triton` +* :ref:`user_guide` .. toctree:: :caption: Getting Started @@ -45,6 +46,7 @@ Getting Started tutorials/runtime tutorials/using_dla tutorials/serving_torch_tensorrt_with_triton + tutorials/getting_started_with_fx_path .. toctree:: :caption: Notebooks