|
| 1 | +import numpy as np |
| 2 | +import pytest |
| 3 | + |
| 4 | +from pymc import Bernoulli, Flat, HalfFlat, Normal, TruncatedNormal, Uniform |
| 5 | +from pymc.distributions import HalfNormal |
| 6 | +from pymc.distributions.shape_utils import rv_size_is_none |
| 7 | +from pymc.initial_point import make_initial_point_fn |
| 8 | +from pymc.model import Model |
| 9 | + |
| 10 | + |
| 11 | +def test_rv_size_is_none(): |
| 12 | + rv = Normal.dist(0, 1, size=None) |
| 13 | + assert rv_size_is_none(rv.owner.inputs[1]) |
| 14 | + |
| 15 | + rv = Normal.dist(0, 1, size=1) |
| 16 | + assert not rv_size_is_none(rv.owner.inputs[1]) |
| 17 | + |
| 18 | + size = Bernoulli.dist(0.5) |
| 19 | + rv = Normal.dist(0, 1, size=size) |
| 20 | + assert not rv_size_is_none(rv.owner.inputs[1]) |
| 21 | + |
| 22 | + size = Normal.dist(0, 1).size |
| 23 | + rv = Normal.dist(0, 1, size=size) |
| 24 | + assert not rv_size_is_none(rv.owner.inputs[1]) |
| 25 | + |
| 26 | + |
| 27 | +def assert_moment_is_expected(model, expected): |
| 28 | + fn = make_initial_point_fn( |
| 29 | + model=model, |
| 30 | + return_transformed=False, |
| 31 | + default_strategy="moment", |
| 32 | + ) |
| 33 | + result = fn(0)["x"] |
| 34 | + expected = np.asarray(expected) |
| 35 | + try: |
| 36 | + random_draw = model["x"].eval() |
| 37 | + except NotImplementedError: |
| 38 | + random_draw = result |
| 39 | + assert result.shape == expected.shape == random_draw.shape |
| 40 | + assert np.allclose(result, expected) |
| 41 | + |
| 42 | + |
| 43 | +@pytest.mark.parametrize( |
| 44 | + "size, expected", |
| 45 | + [ |
| 46 | + (None, 0), |
| 47 | + (5, np.zeros(5)), |
| 48 | + ((2, 5), np.zeros((2, 5))), |
| 49 | + ], |
| 50 | +) |
| 51 | +def test_flat_moment(size, expected): |
| 52 | + with Model() as model: |
| 53 | + Flat("x", size=size) |
| 54 | + assert_moment_is_expected(model, expected) |
| 55 | + |
| 56 | + |
| 57 | +@pytest.mark.parametrize( |
| 58 | + "size, expected", |
| 59 | + [ |
| 60 | + (None, 1), |
| 61 | + (5, np.ones(5)), |
| 62 | + ((2, 5), np.ones((2, 5))), |
| 63 | + ], |
| 64 | +) |
| 65 | +def test_halfflat_moment(size, expected): |
| 66 | + with Model() as model: |
| 67 | + HalfFlat("x", size=size) |
| 68 | + assert_moment_is_expected(model, expected) |
| 69 | + |
| 70 | + |
| 71 | +@pytest.mark.parametrize( |
| 72 | + "lower, upper, size, expected", |
| 73 | + [ |
| 74 | + (-1, 1, None, 0), |
| 75 | + (-1, 1, 5, np.zeros(5)), |
| 76 | + (0, np.arange(1, 6), None, np.arange(1, 6) / 2), |
| 77 | + (0, np.arange(1, 6), (2, 5), np.full((2, 5), np.arange(1, 6) / 2)), |
| 78 | + ], |
| 79 | +) |
| 80 | +def test_uniform_moment(lower, upper, size, expected): |
| 81 | + with Model() as model: |
| 82 | + Uniform("x", lower=lower, upper=upper, size=size) |
| 83 | + assert_moment_is_expected(model, expected) |
| 84 | + |
| 85 | + |
| 86 | +@pytest.mark.parametrize( |
| 87 | + "mu, sigma, size, expected", |
| 88 | + [ |
| 89 | + (0, 1, None, 0), |
| 90 | + (0, np.ones(5), None, np.zeros(5)), |
| 91 | + (np.arange(5), 1, None, np.arange(5)), |
| 92 | + (np.arange(5), np.arange(1, 6), (2, 5), np.full((2, 5), np.arange(5))), |
| 93 | + ], |
| 94 | +) |
| 95 | +def test_normal_moment(mu, sigma, size, expected): |
| 96 | + with Model() as model: |
| 97 | + Normal("x", mu=mu, sigma=sigma, size=size) |
| 98 | + assert_moment_is_expected(model, expected) |
| 99 | + |
| 100 | + |
| 101 | +@pytest.mark.parametrize( |
| 102 | + "sigma, size, expected", |
| 103 | + [ |
| 104 | + (1, None, 1), |
| 105 | + (1, 5, np.ones(5)), |
| 106 | + (np.arange(5), None, np.arange(5)), |
| 107 | + (np.arange(5), (2, 5), np.full((2, 5), np.arange(5))), |
| 108 | + ], |
| 109 | +) |
| 110 | +def test_halfnormal_moment(sigma, size, expected): |
| 111 | + with Model() as model: |
| 112 | + HalfNormal("x", sigma=sigma, size=size) |
| 113 | + assert_moment_is_expected(model, expected) |
| 114 | + |
| 115 | + |
| 116 | +@pytest.mark.skip(reason="aeppl interval transform fails when both edges are None") |
| 117 | +@pytest.mark.parametrize( |
| 118 | + "mu, sigma, lower, upper, size, expected", |
| 119 | + [ |
| 120 | + (0.9, 1, -1, 1, None, 0), |
| 121 | + (0.9, 1, -np.inf, np.inf, 5, np.full(5, 0.9)), |
| 122 | + (np.arange(5), 1, None, 10, (2, 5), np.full((2, 5), 9)), |
| 123 | + (1, np.ones(5), -10, np.inf, None, np.full((2, 5), -9)), |
| 124 | + ], |
| 125 | +) |
| 126 | +def test_truncatednormal_moment(mu, sigma, lower, upper, size, expected): |
| 127 | + with Model() as model: |
| 128 | + TruncatedNormal("x", mu=mu, sigma=sigma, lower=lower, upper=upper, size=size) |
| 129 | + assert_moment_is_expected(model, expected) |
| 130 | + |
| 131 | + |
| 132 | +@pytest.mark.parametrize( |
| 133 | + "p, size, expected", |
| 134 | + [ |
| 135 | + (0.3, None, 0), |
| 136 | + (0.9, 5, np.ones(5)), |
| 137 | + (np.linspace(0, 1, 4), None, [0, 0, 1, 1]), |
| 138 | + (np.linspace(0, 1, 4), (2, 4), np.full((2, 4), [0, 0, 1, 1])), |
| 139 | + ], |
| 140 | +) |
| 141 | +def test_bernoulli_moment(p, size, expected): |
| 142 | + with Model() as model: |
| 143 | + Bernoulli("x", p=p, size=size) |
| 144 | + assert_moment_is_expected(model, expected) |
0 commit comments