@@ -345,8 +345,8 @@ def sample_prior_predictive(
345
345
var_names : Optional [Iterable [str ]] = None ,
346
346
random_seed : RandomState = None ,
347
347
return_inferencedata : bool = True ,
348
- idata_kwargs : dict = None ,
349
- compile_kwargs : dict = None ,
348
+ idata_kwargs : Optional [ dict ] = None ,
349
+ compile_kwargs : Optional [ dict ] = None ,
350
350
) -> Union [InferenceData , dict [str , np .ndarray ]]:
351
351
"""Generate samples from the prior predictive distribution.
352
352
@@ -446,8 +446,8 @@ def sample_posterior_predictive(
446
446
return_inferencedata : bool = True ,
447
447
extend_inferencedata : bool = False ,
448
448
predictions : bool = False ,
449
- idata_kwargs : dict = None ,
450
- compile_kwargs : dict = None ,
449
+ idata_kwargs : Optional [ dict ] = None ,
450
+ compile_kwargs : Optional [ dict ] = None ,
451
451
) -> Union [InferenceData , dict [str , np .ndarray ]]:
452
452
"""Generate posterior predictive samples from a model given a trace.
453
453
@@ -681,7 +681,7 @@ def sample_posterior_predictive_w(
681
681
random_seed : RandomState = None ,
682
682
progressbar : bool = True ,
683
683
return_inferencedata : bool = True ,
684
- idata_kwargs : dict = None ,
684
+ idata_kwargs : Optional [ dict ] = None ,
685
685
):
686
686
"""Generate weighted posterior predictive samples from a list of models and
687
687
a list of traces according to a set of weights.
0 commit comments