From 42abe3c5d6a1b99b4460998249d7b12cd5b4f0e5 Mon Sep 17 00:00:00 2001 From: Emmanuelle Gouillart Date: Tue, 4 Feb 2020 22:19:05 -0500 Subject: [PATCH] fixed pandas 1.0 pb in sunburst/treemap example --- doc/python/sunburst-charts.md | 4 ++-- doc/python/treemaps.md | 8 ++++---- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/doc/python/sunburst-charts.md b/doc/python/sunburst-charts.md index 69f89133c35..26ad08fbf1a 100644 --- a/doc/python/sunburst-charts.md +++ b/doc/python/sunburst-charts.md @@ -5,7 +5,7 @@ jupyter: text_representation: extension: .md format_name: markdown - format_version: "1.2" + format_version: '1.2' jupytext_version: 1.3.0 kernelspec: display_name: Python 3 @@ -314,7 +314,7 @@ def build_hierarchical_dataframe(df, levels, value_column, color_columns=None): df_all_trees = pd.DataFrame(columns=['id', 'parent', 'value', 'color']) for i, level in enumerate(levels): df_tree = pd.DataFrame(columns=['id', 'parent', 'value', 'color']) - dfg = df.groupby(levels[i:]).sum(numerical_only=True) + dfg = df.groupby(levels[i:]).sum() dfg = dfg.reset_index() df_tree['id'] = dfg[level].copy() if i < len(levels) - 1: diff --git a/doc/python/treemaps.md b/doc/python/treemaps.md index 36dd866e008..e399ce07163 100644 --- a/doc/python/treemaps.md +++ b/doc/python/treemaps.md @@ -5,8 +5,8 @@ jupyter: text_representation: extension: .md format_name: markdown - format_version: "1.2" - jupytext_version: 1.3.1 + format_version: '1.2' + jupytext_version: 1.3.0 kernelspec: display_name: Python 3 language: python @@ -20,7 +20,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.6.8 + version: 3.7.3 plotly: description: How to make Treemap Charts with Plotly display_as: basic @@ -266,7 +266,7 @@ def build_hierarchical_dataframe(df, levels, value_column, color_columns=None): df_all_trees = pd.DataFrame(columns=['id', 'parent', 'value', 'color']) for i, level in enumerate(levels): df_tree = pd.DataFrame(columns=['id', 'parent', 'value', 'color']) - dfg = df.groupby(levels[i:]).sum(numerical_only=True) + dfg = df.groupby(levels[i:]).sum() dfg = dfg.reset_index() df_tree['id'] = dfg[level].copy() if i < len(levels) - 1: