diff --git a/doc/source/conf.py b/doc/source/conf.py index 0d69e030f913a..9622fd141ca81 100644 --- a/doc/source/conf.py +++ b/doc/source/conf.py @@ -17,6 +17,12 @@ import sys import warnings +warnings.filterwarnings( + "ignore", + category=UserWarning, + message="Matplotlib is currently using agg, which is a" + " non-GUI backend, so cannot show the figure.", +) import jinja2 from numpydoc.docscrape import NumpyDocString from sphinx.ext.autosummary import _import_by_name diff --git a/doc/source/user_guide/missing_data.rst b/doc/source/user_guide/missing_data.rst index 27d7e63f72111..cb702c55a62fe 100644 --- a/doc/source/user_guide/missing_data.rst +++ b/doc/source/user_guide/missing_data.rst @@ -91,6 +91,15 @@ See :ref:`integer_na` for more. Datetimes --------- +.. note:: + If you are adding type checking to your application, you may need access to ``NaTType`` and ``NAType``. + + The code was previously as follows: + .. ipython:: python + from pandas._libs import NaTType + from pandas._libs.missing import NAType + + ``NaTTYPE`` and ``NAType`` have now been added and can be imported from "pandas.api.typing". For datetime64[ns] types, ``NaT`` represents missing values. This is a pseudo-native sentinel value that can be represented by NumPy in a singular dtype (datetime64[ns]).