diff --git a/doc/source/development/extending.rst b/doc/source/development/extending.rst index d5b45f5953453..f7beff2dd81cc 100644 --- a/doc/source/development/extending.rst +++ b/doc/source/development/extending.rst @@ -106,7 +106,7 @@ extension array for IP Address data, this might be ``ipaddress.IPv4Address``. See the `extension dtype source`_ for interface definition. -:class:`pandas.api.extension.ExtensionDtype` can be registered to pandas to allow creation via a string dtype name. +:class:`pandas.api.extensions.ExtensionDtype` can be registered to pandas to allow creation via a string dtype name. This allows one to instantiate ``Series`` and ``.astype()`` with a registered string name, for example ``'category'`` is a registered string accessor for the ``CategoricalDtype``. @@ -125,7 +125,7 @@ data. We do require that your array be convertible to a NumPy array, even if this is relatively expensive (as it is for ``Categorical``). They may be backed by none, one, or many NumPy arrays. For example, -``pandas.Categorical`` is an extension array backed by two arrays, +:class:`pandas.Categorical` is an extension array backed by two arrays, one for codes and one for categories. An array of IPv6 addresses may be backed by a NumPy structured array with two fields, one for the lower 64 bits and one for the upper 64 bits. Or they may be backed diff --git a/doc/source/user_guide/sparse.rst b/doc/source/user_guide/sparse.rst index 52d99533c1f60..b2b3678e48534 100644 --- a/doc/source/user_guide/sparse.rst +++ b/doc/source/user_guide/sparse.rst @@ -294,7 +294,7 @@ To convert back to sparse SciPy matrix in COO format, you can use the :meth:`Dat sdf.sparse.to_coo() -meth:`Series.sparse.to_coo` is implemented for transforming a ``Series`` with sparse values indexed by a :class:`MultiIndex` to a :class:`scipy.sparse.coo_matrix`. +:meth:`Series.sparse.to_coo` is implemented for transforming a ``Series`` with sparse values indexed by a :class:`MultiIndex` to a :class:`scipy.sparse.coo_matrix`. The method requires a ``MultiIndex`` with two or more levels.