From f29c969d17971268aeb3697b7c57bfad6aa5b492 Mon Sep 17 00:00:00 2001 From: thomasyu888 Date: Thu, 4 Mar 2021 17:06:26 +0800 Subject: [PATCH 1/3] Fix styling --- pandas/tests/resample/test_datetime_index.py | 62 +++++++++---------- pandas/tests/resample/test_deprecated.py | 4 +- pandas/tests/resample/test_period_index.py | 24 +++---- pandas/tests/resample/test_resample_api.py | 28 ++++----- .../tests/resample/test_resampler_grouper.py | 22 +++---- pandas/tests/resample/test_time_grouper.py | 8 +-- pandas/tests/resample/test_timedelta.py | 16 ++--- 7 files changed, 82 insertions(+), 82 deletions(-) diff --git a/pandas/tests/resample/test_datetime_index.py b/pandas/tests/resample/test_datetime_index.py index cbf69696d5801..ea8b8fc7aa6a2 100644 --- a/pandas/tests/resample/test_datetime_index.py +++ b/pandas/tests/resample/test_datetime_index.py @@ -125,12 +125,12 @@ def test_resample_basic(series, closed, expected): def test_resample_integerarray(): # GH 25580, resample on IntegerArray ts = Series( - range(9), index=pd.date_range("1/1/2000", periods=9, freq="T"), dtype="Int64" + range(9), index=date_range("1/1/2000", periods=9, freq="T"), dtype="Int64" ) result = ts.resample("3T").sum() expected = Series( [3, 12, 21], - index=pd.date_range("1/1/2000", periods=3, freq="3T"), + index=date_range("1/1/2000", periods=3, freq="3T"), dtype="Int64", ) tm.assert_series_equal(result, expected) @@ -138,7 +138,7 @@ def test_resample_integerarray(): result = ts.resample("3T").mean() expected = Series( [1, 4, 7], - index=pd.date_range("1/1/2000", periods=3, freq="3T"), + index=date_range("1/1/2000", periods=3, freq="3T"), dtype="Float64", ) tm.assert_series_equal(result, expected) @@ -529,8 +529,8 @@ def test_resample_ohlc(series): def test_resample_ohlc_result(): # GH 12332 - index = pd.date_range("1-1-2000", "2-15-2000", freq="h") - index = index.union(pd.date_range("4-15-2000", "5-15-2000", freq="h")) + index = date_range("1-1-2000", "2-15-2000", freq="h") + index = index.union(date_range("4-15-2000", "5-15-2000", freq="h")) s = Series(range(len(index)), index=index) a = s.loc[:"4-15-2000"].resample("30T").ohlc() @@ -805,7 +805,7 @@ def test_resample_bad_offset(offset): def test_resample_origin_prime_freq(): # GH 31809 start, end = "2000-10-01 23:30:00", "2000-10-02 00:30:00" - rng = pd.date_range(start, end, freq="7min") + rng = date_range(start, end, freq="7min") ts = Series(np.random.randn(len(rng)), index=rng) exp_rng = date_range("2000-10-01 23:14:00", "2000-10-02 00:22:00", freq="17min") @@ -863,7 +863,7 @@ def test_resample_origin_with_tz(): def test_resample_origin_epoch_with_tz_day_vs_24h(): # GH 34474 start, end = "2000-10-01 23:30:00+0500", "2000-12-02 00:30:00+0500" - rng = pd.date_range(start, end, freq="7min") + rng = date_range(start, end, freq="7min") random_values = np.random.randn(len(rng)) ts_1 = Series(random_values, index=rng) @@ -880,7 +880,7 @@ def test_resample_origin_epoch_with_tz_day_vs_24h(): # check that we have the similar results with two different timezones (+2H and +5H) start, end = "2000-10-01 23:30:00+0200", "2000-12-02 00:30:00+0200" - rng = pd.date_range(start, end, freq="7min") + rng = date_range(start, end, freq="7min") ts_2 = Series(random_values, index=rng) result_5 = ts_2.resample("D", origin="epoch").mean() result_6 = ts_2.resample("24H", origin="epoch").mean() @@ -903,7 +903,7 @@ def _create_series(values, timestamps, freq="D"): # test classical behavior of origin in a DST context start = Timestamp("2013-11-02", tz=tz) end = Timestamp("2013-11-03 23:59", tz=tz) - rng = pd.date_range(start, end, freq="1h") + rng = date_range(start, end, freq="1h") ts = Series(np.ones(len(rng)), index=rng) expected = _create_series([24.0, 25.0], ["2013-11-02", "2013-11-03"]) @@ -914,7 +914,7 @@ def _create_series(values, timestamps, freq="D"): # test complex behavior of origin/offset in a DST context start = Timestamp("2013-11-03", tz=tz) end = Timestamp("2013-11-03 23:59", tz=tz) - rng = pd.date_range(start, end, freq="1h") + rng = date_range(start, end, freq="1h") ts = Series(np.ones(len(rng)), index=rng) expected_ts = ["2013-11-02 22:00-05:00", "2013-11-03 22:00-06:00"] @@ -969,7 +969,7 @@ def test_period_with_agg(): # aggregate a period resampler with a lambda s2 = Series( np.random.randint(0, 5, 50), - index=pd.period_range("2012-01-01", freq="H", periods=50), + index=period_range("2012-01-01", freq="H", periods=50), dtype="float64", ) @@ -1003,7 +1003,7 @@ def test_resample_dtype_preservation(): df = DataFrame( { - "date": pd.date_range(start="2016-01-01", periods=4, freq="W"), + "date": date_range(start="2016-01-01", periods=4, freq="W"), "group": [1, 1, 2, 2], "val": Series([5, 6, 7, 8], dtype="int32"), } @@ -1022,7 +1022,7 @@ def test_resample_dtype_coercion(): # GH 16361 df = {"a": [1, 3, 1, 4]} - df = DataFrame(df, index=pd.date_range("2017-01-01", "2017-01-04")) + df = DataFrame(df, index=date_range("2017-01-01", "2017-01-04")) expected = df.astype("float64").resample("H").mean()["a"].interpolate("cubic") @@ -1056,12 +1056,12 @@ def test_nanosecond_resample_error(): # Resampling using pd.tseries.offsets.Nano as period start = 1443707890427 exp_start = 1443707890400 - indx = pd.date_range(start=pd.to_datetime(start), periods=10, freq="100n") + indx = date_range(start=pd.to_datetime(start), periods=10, freq="100n") ts = Series(range(len(indx)), index=indx) r = ts.resample(pd.tseries.offsets.Nano(100)) result = r.agg("mean") - exp_indx = pd.date_range(start=pd.to_datetime(exp_start), periods=10, freq="100n") + exp_indx = date_range(start=pd.to_datetime(exp_start), periods=10, freq="100n") exp = Series(range(len(exp_indx)), index=exp_indx) tm.assert_series_equal(result, exp) @@ -1128,8 +1128,8 @@ def test_resample_anchored_multiday(): # # See: https://github.com/pandas-dev/pandas/issues/8683 - index1 = pd.date_range("2014-10-14 23:06:23.206", periods=3, freq="400L") - index2 = pd.date_range("2014-10-15 23:00:00", periods=2, freq="2200L") + index1 = date_range("2014-10-14 23:06:23.206", periods=3, freq="400L") + index2 = date_range("2014-10-15 23:00:00", periods=2, freq="2200L") index = index1.union(index2) s = Series(np.random.randn(5), index=index) @@ -1174,7 +1174,7 @@ def test_anchored_lowercase_buglet(): def test_upsample_apply_functions(): # #1596 - rng = pd.date_range("2012-06-12", periods=4, freq="h") + rng = date_range("2012-06-12", periods=4, freq="h") ts = Series(np.random.randn(len(rng)), index=rng) @@ -1183,7 +1183,7 @@ def test_upsample_apply_functions(): def test_resample_not_monotonic(): - rng = pd.date_range("2012-06-12", periods=200, freq="h") + rng = date_range("2012-06-12", periods=200, freq="h") ts = Series(np.random.randn(len(rng)), index=rng) ts = ts.take(np.random.permutation(len(ts))) @@ -1255,12 +1255,12 @@ def test_resample_consistency(): # GH 6418 # resample with bfill / limit / reindex consistency - i30 = pd.date_range("2002-02-02", periods=4, freq="30T") + i30 = date_range("2002-02-02", periods=4, freq="30T") s = Series(np.arange(4.0), index=i30) s[2] = np.NaN # Upsample by factor 3 with reindex() and resample() methods: - i10 = pd.date_range(i30[0], i30[-1], freq="10T") + i10 = date_range(i30[0], i30[-1], freq="10T") s10 = s.reindex(index=i10, method="bfill") s10_2 = s.reindex(index=i10, method="bfill", limit=2) @@ -1364,8 +1364,8 @@ def test_resample_nunique_preserves_column_level_names(): def test_resample_nunique_with_date_gap(): # GH 13453 - index = pd.date_range("1-1-2000", "2-15-2000", freq="h") - index2 = pd.date_range("4-15-2000", "5-15-2000", freq="h") + index = date_range("1-1-2000", "2-15-2000", freq="h") + index2 = date_range("4-15-2000", "5-15-2000", freq="h") index3 = index.append(index2) s = Series(range(len(index3)), index=index3, dtype="int64") r = s.resample("M") @@ -1462,7 +1462,7 @@ def test_groupby_with_dst_time_change(): df = DataFrame([1, 2], index=index) result = df.groupby(Grouper(freq="1d")).last() - expected_index_values = pd.date_range( + expected_index_values = date_range( "2016-11-02", "2016-11-24", freq="d", tz="America/Chicago" ) @@ -1587,11 +1587,11 @@ def test_downsample_across_dst_weekly(): ) tm.assert_frame_equal(result, expected) - idx = pd.date_range("2013-04-01", "2013-05-01", tz="Europe/London", freq="H") + idx = date_range("2013-04-01", "2013-05-01", tz="Europe/London", freq="H") s = Series(index=idx, dtype=np.float64) result = s.resample("W").mean() expected = Series( - index=pd.date_range("2013-04-07", freq="W", periods=5, tz="Europe/London"), + index=date_range("2013-04-07", freq="W", periods=5, tz="Europe/London"), dtype=np.float64, ) tm.assert_series_equal(result, expected) @@ -1601,7 +1601,7 @@ def test_downsample_dst_at_midnight(): # GH 25758 start = datetime(2018, 11, 3, 12) end = datetime(2018, 11, 5, 12) - index = pd.date_range(start, end, freq="1H") + index = date_range(start, end, freq="1H") index = index.tz_localize("UTC").tz_convert("America/Havana") data = list(range(len(index))) dataframe = DataFrame(data, index=index) @@ -1681,7 +1681,7 @@ def f(data, add_arg): tm.assert_series_equal(result, expected) # Testing dataframe - df = DataFrame({"A": 1, "B": 2}, index=pd.date_range("2017", periods=10)) + df = DataFrame({"A": 1, "B": 2}, index=date_range("2017", periods=10)) result = df.groupby("A").resample("D").agg(f, multiplier) expected = df.groupby("A").resample("D").mean().multiply(multiplier) tm.assert_frame_equal(result, expected) @@ -1707,7 +1707,7 @@ def test_resample_equivalent_offsets(n1, freq1, n2, freq2, k): # GH 24127 n1_ = n1 * k n2_ = n2 * k - s = Series(0, index=pd.date_range("19910905 13:00", "19911005 07:00", freq=freq1)) + s = Series(0, index=date_range("19910905 13:00", "19911005 07:00", freq=freq1)) s = s + range(len(s)) result1 = s.resample(str(n1_) + freq1).mean() @@ -1797,10 +1797,10 @@ def test_resample_calendar_day_with_dst( first: str, last: str, freq_in: str, freq_out: str, exp_last: str ): # GH 35219 - ts = Series(1.0, pd.date_range(first, last, freq=freq_in, tz="Europe/Amsterdam")) + ts = Series(1.0, date_range(first, last, freq=freq_in, tz="Europe/Amsterdam")) result = ts.resample(freq_out).pad() expected = Series( - 1.0, pd.date_range(first, exp_last, freq=freq_out, tz="Europe/Amsterdam") + 1.0, date_range(first, exp_last, freq=freq_out, tz="Europe/Amsterdam") ) tm.assert_series_equal(result, expected) diff --git a/pandas/tests/resample/test_deprecated.py b/pandas/tests/resample/test_deprecated.py index d3672b3d32be1..fdb3a7872ad67 100644 --- a/pandas/tests/resample/test_deprecated.py +++ b/pandas/tests/resample/test_deprecated.py @@ -52,7 +52,7 @@ def _create_index(*args, **kwargs): def test_deprecating_on_loffset_and_base(): # GH 31809 - idx = pd.date_range("2001-01-01", periods=4, freq="T") + idx = date_range("2001-01-01", periods=4, freq="T") df = DataFrame(data=4 * [range(2)], index=idx, columns=["a", "b"]) with tm.assert_produces_warning(FutureWarning): @@ -243,7 +243,7 @@ def test_loffset_returns_datetimeindex(frame, kind, agg_arg): ) def test_resample_with_non_zero_base(start, end, start_freq, end_freq, base, offset): # GH 23882 - s = Series(0, index=pd.period_range(start, end, freq=start_freq)) + s = Series(0, index=period_range(start, end, freq=start_freq)) s = s + np.arange(len(s)) with tm.assert_produces_warning(FutureWarning): result = s.resample(end_freq, base=base).mean() diff --git a/pandas/tests/resample/test_period_index.py b/pandas/tests/resample/test_period_index.py index 5dab0cbafbc59..c311ad71fba0b 100644 --- a/pandas/tests/resample/test_period_index.py +++ b/pandas/tests/resample/test_period_index.py @@ -224,9 +224,9 @@ def test_resample_basic(self): ) def test_resample_count(self, freq, expected_vals): # GH12774 - series = Series(1, index=pd.period_range(start="2000", periods=100)) + series = Series(1, index=period_range(start="2000", periods=100)) result = series.resample(freq).count() - expected_index = pd.period_range( + expected_index = period_range( start="2000", freq=freq, periods=len(expected_vals) ) expected = Series(expected_vals, index=expected_index) @@ -236,7 +236,7 @@ def test_resample_same_freq(self, resample_method): # GH12770 series = Series( - range(3), index=pd.period_range(start="2000", periods=3, freq="M") + range(3), index=period_range(start="2000", periods=3, freq="M") ) expected = series @@ -250,7 +250,7 @@ def test_resample_incompat_freq(self): ) with pytest.raises(IncompatibleFrequency, match=msg): Series( - range(3), index=pd.period_range(start="2000", periods=3, freq="M") + range(3), index=period_range(start="2000", periods=3, freq="M") ).resample("W").mean() def test_with_local_timezone_pytz(self): @@ -261,7 +261,7 @@ def test_with_local_timezone_pytz(self): # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) - index = pd.date_range(start, end, freq="H") + index = date_range(start, end, freq="H") series = Series(1, index=index) series = series.tz_convert(local_timezone) @@ -270,14 +270,14 @@ def test_with_local_timezone_pytz(self): # Create the expected series # Index is moved back a day with the timezone conversion from UTC to # Pacific - expected_index = pd.period_range(start=start, end=end, freq="D") - offsets.Day() + expected_index = period_range(start=start, end=end, freq="D") - offsets.Day() expected = Series(1, index=expected_index) tm.assert_series_equal(result, expected) def test_resample_with_pytz(self): # GH 13238 s = Series( - 2, index=pd.date_range("2017-01-01", periods=48, freq="H", tz="US/Eastern") + 2, index=date_range("2017-01-01", periods=48, freq="H", tz="US/Eastern") ) result = s.resample("D").mean() expected = Series( @@ -302,7 +302,7 @@ def test_with_local_timezone_dateutil(self): year=2013, month=11, day=2, hour=0, minute=0, tzinfo=dateutil.tz.tzutc() ) - index = pd.date_range(start, end, freq="H", name="idx") + index = date_range(start, end, freq="H", name="idx") series = Series(1, index=index) series = series.tz_convert(local_timezone) @@ -312,7 +312,7 @@ def test_with_local_timezone_dateutil(self): # Index is moved back a day with the timezone conversion from UTC to # Pacific expected_index = ( - pd.period_range(start=start, end=end, freq="D", name="idx") - offsets.Day() + period_range(start=start, end=end, freq="D", name="idx") - offsets.Day() ) expected = Series(1, index=expected_index) tm.assert_series_equal(result, expected) @@ -343,7 +343,7 @@ def test_resample_nonexistent_time_bin_edge(self): def test_resample_ambiguous_time_bin_edge(self): # GH 10117 - idx = pd.date_range( + idx = date_range( "2014-10-25 22:00:00", "2014-10-26 00:30:00", freq="30T", tz="Europe/London" ) expected = Series(np.zeros(len(idx)), index=idx) @@ -827,7 +827,7 @@ def test_resample_with_only_nat(self): ) def test_resample_with_offset(self, start, end, start_freq, end_freq, offset): # GH 23882 & 31809 - s = Series(0, index=pd.period_range(start, end, freq=start_freq)) + s = Series(0, index=period_range(start, end, freq=start_freq)) s = s + np.arange(len(s)) result = s.resample(end_freq, offset=offset).mean() result = result.to_timestamp(end_freq) @@ -869,7 +869,7 @@ def test_get_period_range_edges(self, first, last, freq, exp_first, exp_last): def test_sum_min_count(self): # GH 19974 - index = pd.date_range(start="2018", freq="M", periods=6) + index = date_range(start="2018", freq="M", periods=6) data = np.ones(6) data[3:6] = np.nan s = Series(data, index).to_period() diff --git a/pandas/tests/resample/test_resample_api.py b/pandas/tests/resample/test_resample_api.py index 219e407c3e999..48a41c30b0c4e 100644 --- a/pandas/tests/resample/test_resample_api.py +++ b/pandas/tests/resample/test_resample_api.py @@ -57,7 +57,7 @@ def test_groupby_resample_api(): # when appropriate df = DataFrame( { - "date": pd.date_range(start="2016-01-01", periods=4, freq="W"), + "date": date_range(start="2016-01-01", periods=4, freq="W"), "group": [1, 1, 2, 2], "val": [5, 6, 7, 8], } @@ -65,8 +65,8 @@ def test_groupby_resample_api(): # replication step i = ( - pd.date_range("2016-01-03", periods=8).tolist() - + pd.date_range("2016-01-17", periods=8).tolist() + date_range("2016-01-03", periods=8).tolist() + + date_range("2016-01-17", periods=8).tolist() ) index = pd.MultiIndex.from_arrays([[1] * 8 + [2] * 8, i], names=["group", "date"]) expected = DataFrame({"val": [5] * 7 + [6] + [7] * 7 + [8]}, index=index) @@ -82,7 +82,7 @@ def test_groupby_resample_on_api(): df = DataFrame( { "key": ["A", "B"] * 5, - "dates": pd.date_range("2016-01-01", periods=10), + "dates": date_range("2016-01-01", periods=10), "values": np.random.randn(10), } ) @@ -146,7 +146,7 @@ def test_api_compat_before_use(): # make sure that we are setting the binner # on these attributes for attr in ["groups", "ngroups", "indices"]: - rng = pd.date_range("1/1/2012", periods=100, freq="S") + rng = date_range("1/1/2012", periods=100, freq="S") ts = Series(np.arange(len(rng)), index=rng) rs = ts.resample("30s") @@ -175,12 +175,12 @@ def tests_skip_nuisance(test_frame): def test_downsample_but_actually_upsampling(): # this is reindex / asfreq - rng = pd.date_range("1/1/2012", periods=100, freq="S") + rng = date_range("1/1/2012", periods=100, freq="S") ts = Series(np.arange(len(rng), dtype="int64"), index=rng) result = ts.resample("20s").asfreq() expected = Series( [0, 20, 40, 60, 80], - index=pd.date_range("2012-01-01 00:00:00", freq="20s", periods=5), + index=date_range("2012-01-01 00:00:00", freq="20s", periods=5), ) tm.assert_series_equal(result, expected) @@ -191,7 +191,7 @@ def test_combined_up_downsampling_of_irregular(): # ts2.resample('2s').mean().ffill() # preserve these semantics - rng = pd.date_range("1/1/2012", periods=100, freq="S") + rng = date_range("1/1/2012", periods=100, freq="S") ts = Series(np.arange(len(rng)), index=rng) ts2 = ts.iloc[[0, 1, 2, 3, 5, 7, 11, 15, 16, 25, 30]] @@ -252,7 +252,7 @@ def test_transform(): def test_fillna(): # need to upsample here - rng = pd.date_range("1/1/2012", periods=10, freq="2S") + rng = date_range("1/1/2012", periods=10, freq="2S") ts = Series(np.arange(len(rng), dtype="int64"), index=rng) r = ts.resample("s") @@ -289,7 +289,7 @@ def test_agg_consistency(): # similar aggregations with and w/o selection list df = DataFrame( np.random.randn(1000, 3), - index=pd.date_range("1/1/2012", freq="S", periods=1000), + index=date_range("1/1/2012", freq="S", periods=1000), columns=["A", "B", "C"], ) @@ -304,7 +304,7 @@ def test_agg_consistency_int_str_column_mix(): # GH#39025 df = DataFrame( np.random.randn(1000, 2), - index=pd.date_range("1/1/2012", freq="S", periods=1000), + index=date_range("1/1/2012", freq="S", periods=1000), columns=[1, "a"], ) @@ -591,7 +591,7 @@ def test_agg_with_datetime_index_list_agg_func(col_name): # We catch these errors and move on to the correct branch. df = DataFrame( list(range(200)), - index=pd.date_range( + index=date_range( start="2017-01-01", freq="15min", periods=200, tz="Europe/Berlin" ), columns=[col_name], @@ -599,7 +599,7 @@ def test_agg_with_datetime_index_list_agg_func(col_name): result = df.resample("1d").aggregate(["mean"]) expected = DataFrame( [47.5, 143.5, 195.5], - index=pd.date_range( + index=date_range( start="2017-01-01", freq="D", periods=3, tz="Europe/Berlin" ), columns=pd.MultiIndex(levels=[[col_name], ["mean"]], codes=[[0], [0]]), @@ -609,7 +609,7 @@ def test_agg_with_datetime_index_list_agg_func(col_name): def test_resample_agg_readonly(): # GH#31710 cython needs to allow readonly data - index = pd.date_range("2020-01-01", "2020-01-02", freq="1h") + index = date_range("2020-01-01", "2020-01-02", freq="1h") arr = np.zeros_like(index) arr.setflags(write=False) diff --git a/pandas/tests/resample/test_resampler_grouper.py b/pandas/tests/resample/test_resampler_grouper.py index 50775b9ef3a47..999d8a6c90ba2 100644 --- a/pandas/tests/resample/test_resampler_grouper.py +++ b/pandas/tests/resample/test_resampler_grouper.py @@ -72,7 +72,7 @@ def f(x): df = DataFrame( { - "date": pd.date_range(start="2016-01-01", periods=4, freq="W"), + "date": date_range(start="2016-01-01", periods=4, freq="W"), "group": [1, 1, 2, 2], "val": [5, 6, 7, 8], } @@ -106,7 +106,7 @@ def test_getitem_multiple(): # GH 13174 # multiple calls after selection causing an issue with aliasing data = [{"id": 1, "buyer": "A"}, {"id": 2, "buyer": "B"}] - df = DataFrame(data, index=pd.date_range("2016-01-01", periods=2)) + df = DataFrame(data, index=date_range("2016-01-01", periods=2)) r = df.groupby("id").resample("1D") result = r["buyer"].count() expected = Series( @@ -126,7 +126,7 @@ def test_getitem_multiple(): def test_groupby_resample_on_api_with_getitem(): # GH 17813 df = DataFrame( - {"id": list("aabbb"), "date": pd.date_range("1-1-2016", periods=5), "data": 1} + {"id": list("aabbb"), "date": date_range("1-1-2016", periods=5), "data": 1} ) exp = df.set_index("date").groupby("id").resample("2D")["data"].sum() result = df.groupby("id").resample("2D", on="date")["data"].sum() @@ -140,7 +140,7 @@ def test_groupby_with_origin(): start, end = "1/1/2000 00:00:00", "1/31/2000 00:00" middle = "1/15/2000 00:00:00" - rng = pd.date_range(start, end, freq="1231min") # prime number + rng = date_range(start, end, freq="1231min") # prime number ts = Series(np.random.randn(len(rng)), index=rng) ts2 = ts[middle:end] @@ -178,7 +178,7 @@ def test_nearest(): # GH 17496 # Resample nearest - index = pd.date_range("1/1/2000", periods=3, freq="T") + index = date_range("1/1/2000", periods=3, freq="T") result = Series(range(3), index=index).resample("20s").nearest() expected = Series( @@ -263,7 +263,7 @@ def f(x): def test_apply_with_mutated_index(): # GH 15169 - index = pd.date_range("1-1-2015", "12-31-15", freq="D") + index = date_range("1-1-2015", "12-31-15", freq="D") df = DataFrame(data={"col1": np.random.rand(len(index))}, index=index) def f(x): @@ -338,7 +338,7 @@ def test_median_duplicate_columns(): df = DataFrame( np.random.randn(20, 3), columns=list("aaa"), - index=pd.date_range("2012-01-01", periods=20, freq="s"), + index=date_range("2012-01-01", periods=20, freq="s"), ) df2 = df.copy() df2.columns = ["a", "b", "c"] @@ -352,11 +352,11 @@ def test_apply_to_one_column_of_df(): # GH: 36951 df = DataFrame( {"col": range(10), "col1": range(10, 20)}, - index=pd.date_range("2012-01-01", periods=10, freq="20min"), + index=date_range("2012-01-01", periods=10, freq="20min"), ) result = df.resample("H").apply(lambda group: group.col.sum()) expected = Series( - [3, 12, 21, 9], index=pd.date_range("2012-01-01", periods=4, freq="H") + [3, 12, 21, 9], index=date_range("2012-01-01", periods=4, freq="H") ) tm.assert_series_equal(result, expected) result = df.resample("H").apply(lambda group: group["col"].sum()) @@ -402,7 +402,7 @@ def test_resample_groupby_agg(): @pytest.mark.parametrize("keys", [["a"], ["a", "b"]]) def test_empty(keys): # GH 26411 - df = pd.DataFrame([], columns=["a", "b"], index=TimedeltaIndex([])) + df = DataFrame([], columns=["a", "b"], index=TimedeltaIndex([])) result = df.groupby(keys).resample(rule=pd.to_timedelta("00:00:01")).mean() expected = DataFrame(columns=["a", "b"]).set_index(keys, drop=False) if len(keys) == 1: @@ -415,7 +415,7 @@ def test_empty(keys): def test_resample_groupby_agg_object_dtype_all_nan(consolidate): # https://github.com/pandas-dev/pandas/issues/39329 - dates = pd.date_range("2020-01-01", periods=15, freq="D") + dates = date_range("2020-01-01", periods=15, freq="D") df1 = DataFrame({"key": "A", "date": dates, "col1": range(15), "col_object": "val"}) df2 = DataFrame({"key": "B", "date": dates, "col1": range(15)}) df = pd.concat([df1, df2], ignore_index=True) diff --git a/pandas/tests/resample/test_time_grouper.py b/pandas/tests/resample/test_time_grouper.py index e62c907032938..5dc64a33098f3 100644 --- a/pandas/tests/resample/test_time_grouper.py +++ b/pandas/tests/resample/test_time_grouper.py @@ -60,7 +60,7 @@ def test_numpy_reduction(): def test_apply_iteration(): # #2300 N = 1000 - ind = pd.date_range(start="2000-01-01", freq="D", periods=N) + ind = date_range(start="2000-01-01", freq="D", periods=N) df = DataFrame({"open": 1, "close": 2}, index=ind) tg = Grouper(freq="M") @@ -173,7 +173,7 @@ def test_aggregate_normal(request, resample_method): ], ) def test_resample_entirely_nat_window(method, method_args, unit): - s = Series([0] * 2 + [np.nan] * 2, index=pd.date_range("2017", periods=4)) + s = Series([0] * 2 + [np.nan] * 2, index=date_range("2017", periods=4)) result = methodcaller(method, **method_args)(s.resample("2d")) expected = Series( [0.0, unit], index=pd.DatetimeIndex(["2017-01-01", "2017-01-03"], freq="2D") @@ -284,7 +284,7 @@ def test_repr(): ], ) def test_upsample_sum(method, method_args, expected_values): - s = Series(1, index=pd.date_range("2017", periods=2, freq="H")) + s = Series(1, index=date_range("2017", periods=2, freq="H")) resampled = s.resample("30T") index = pd.DatetimeIndex( ["2017-01-01T00:00:00", "2017-01-01T00:30:00", "2017-01-01T01:00:00"], @@ -301,7 +301,7 @@ def test_groupby_resample_interpolate(): df = DataFrame(d) - df["week_starting"] = pd.date_range("01/01/2018", periods=3, freq="W") + df["week_starting"] = date_range("01/01/2018", periods=3, freq="W") result = ( df.set_index("week_starting") diff --git a/pandas/tests/resample/test_timedelta.py b/pandas/tests/resample/test_timedelta.py index ee08dac09695b..e602b53a9ee2c 100644 --- a/pandas/tests/resample/test_timedelta.py +++ b/pandas/tests/resample/test_timedelta.py @@ -49,7 +49,7 @@ def test_resample_with_timedeltas(): expected = DataFrame({"A": np.arange(1480)}) expected = expected.groupby(expected.index // 30).sum() - expected.index = pd.timedelta_range("0 days", freq="30T", periods=50) + expected.index = timedelta_range("0 days", freq="30T", periods=50) df = DataFrame( {"A": np.arange(1480)}, index=pd.to_timedelta(np.arange(1480), unit="T") @@ -65,10 +65,10 @@ def test_resample_with_timedeltas(): def test_resample_single_period_timedelta(): - s = Series(list(range(5)), index=pd.timedelta_range("1 day", freq="s", periods=5)) + s = Series(list(range(5)), index=timedelta_range("1 day", freq="s", periods=5)) result = s.resample("2s").sum() expected = Series( - [1, 5, 4], index=pd.timedelta_range("1 day", freq="2s", periods=3) + [1, 5, 4], index=timedelta_range("1 day", freq="2s", periods=3) ) tm.assert_series_equal(result, expected) @@ -76,7 +76,7 @@ def test_resample_single_period_timedelta(): def test_resample_timedelta_idempotency(): # GH 12072 - index = pd.timedelta_range("0", periods=9, freq="10L") + index = timedelta_range("0", periods=9, freq="10L") series = Series(range(9), index=index) result = series.resample("10L").mean() expected = series @@ -146,10 +146,10 @@ def test_resample_timedelta_values(): def test_resample_timedelta_edge_case(start, end, freq, resample_freq): # GH 33498 # check that the timedelta bins does not contains an extra bin - idx = pd.timedelta_range(start=start, end=end, freq=freq) + idx = timedelta_range(start=start, end=end, freq=freq) s = Series(np.arange(len(idx)), index=idx) result = s.resample(resample_freq).min() - expected_index = pd.timedelta_range(freq=resample_freq, start=start, end=end) + expected_index = timedelta_range(freq=resample_freq, start=start, end=end) tm.assert_index_equal(result.index, expected_index) assert result.index.freq == expected_index.freq assert not np.isnan(result[-1]) @@ -159,13 +159,13 @@ def test_resample_with_timedelta_yields_no_empty_groups(): # GH 10603 df = DataFrame( np.random.normal(size=(10000, 4)), - index=pd.timedelta_range(start="0s", periods=10000, freq="3906250n"), + index=timedelta_range(start="0s", periods=10000, freq="3906250n"), ) result = df.loc["1s":, :].resample("3s").apply(lambda x: len(x)) expected = DataFrame( [[768.0] * 4] * 12 + [[528.0] * 4], - index=pd.timedelta_range(start="1s", periods=13, freq="3s"), + index=timedelta_range(start="1s", periods=13, freq="3s"), ) tm.assert_frame_equal(result, expected) From ee5ed79b231c0e6bd88a576acb5700ee1a9db67c Mon Sep 17 00:00:00 2001 From: thomasyu888 Date: Thu, 4 Mar 2021 17:21:57 +0800 Subject: [PATCH 2/3] Fix other linting issues --- .pre-commit-config.yaml | 4 +++- pandas/tests/resample/test_period_index.py | 4 +--- pandas/tests/resample/test_resample_api.py | 4 +--- pandas/tests/resample/test_timedelta.py | 4 +--- 4 files changed, 6 insertions(+), 10 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 3966e8931162c..78b9d9ad05ec6 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -140,7 +140,9 @@ repos: entry: python scripts/check_for_inconsistent_pandas_namespace.py language: python types: [python] - files: ^pandas/tests/frame/ + files: ^pandas/tests/(frame|tseries)/ + additional_dependencies: [tokenize-rt] + args: [--replace] - id: FrameOrSeriesUnion name: Check for use of Union[Series, DataFrame] instead of FrameOrSeriesUnion alias entry: Union\[.*(Series,.*DataFrame|DataFrame,.*Series).*\] diff --git a/pandas/tests/resample/test_period_index.py b/pandas/tests/resample/test_period_index.py index c311ad71fba0b..e2b13f6a00677 100644 --- a/pandas/tests/resample/test_period_index.py +++ b/pandas/tests/resample/test_period_index.py @@ -235,9 +235,7 @@ def test_resample_count(self, freq, expected_vals): def test_resample_same_freq(self, resample_method): # GH12770 - series = Series( - range(3), index=period_range(start="2000", periods=3, freq="M") - ) + series = Series(range(3), index=period_range(start="2000", periods=3, freq="M")) expected = series result = getattr(series.resample("M"), resample_method)() diff --git a/pandas/tests/resample/test_resample_api.py b/pandas/tests/resample/test_resample_api.py index 48a41c30b0c4e..76ac86d798086 100644 --- a/pandas/tests/resample/test_resample_api.py +++ b/pandas/tests/resample/test_resample_api.py @@ -599,9 +599,7 @@ def test_agg_with_datetime_index_list_agg_func(col_name): result = df.resample("1d").aggregate(["mean"]) expected = DataFrame( [47.5, 143.5, 195.5], - index=date_range( - start="2017-01-01", freq="D", periods=3, tz="Europe/Berlin" - ), + index=date_range(start="2017-01-01", freq="D", periods=3, tz="Europe/Berlin"), columns=pd.MultiIndex(levels=[[col_name], ["mean"]], codes=[[0], [0]]), ) tm.assert_frame_equal(result, expected) diff --git a/pandas/tests/resample/test_timedelta.py b/pandas/tests/resample/test_timedelta.py index e602b53a9ee2c..c6ee295208607 100644 --- a/pandas/tests/resample/test_timedelta.py +++ b/pandas/tests/resample/test_timedelta.py @@ -67,9 +67,7 @@ def test_resample_single_period_timedelta(): s = Series(list(range(5)), index=timedelta_range("1 day", freq="s", periods=5)) result = s.resample("2s").sum() - expected = Series( - [1, 5, 4], index=timedelta_range("1 day", freq="2s", periods=3) - ) + expected = Series([1, 5, 4], index=timedelta_range("1 day", freq="2s", periods=3)) tm.assert_series_equal(result, expected) From ecb4d51c6c12d0e844249e5fdb2cb202eb0e575b Mon Sep 17 00:00:00 2001 From: thomasyu888 Date: Thu, 4 Mar 2021 17:22:33 +0800 Subject: [PATCH 3/3] Revert --- .pre-commit-config.yaml | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 78b9d9ad05ec6..3966e8931162c 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -140,9 +140,7 @@ repos: entry: python scripts/check_for_inconsistent_pandas_namespace.py language: python types: [python] - files: ^pandas/tests/(frame|tseries)/ - additional_dependencies: [tokenize-rt] - args: [--replace] + files: ^pandas/tests/frame/ - id: FrameOrSeriesUnion name: Check for use of Union[Series, DataFrame] instead of FrameOrSeriesUnion alias entry: Union\[.*(Series,.*DataFrame|DataFrame,.*Series).*\]