diff --git a/pandas/core/arrays/floating.py b/pandas/core/arrays/floating.py index 4aed39d7edb92..fe3a7ae3c8631 100644 --- a/pandas/core/arrays/floating.py +++ b/pandas/core/arrays/floating.py @@ -386,9 +386,9 @@ def astype(self, dtype, copy: bool = True) -> ArrayLike: # coerce if is_float_dtype(dtype): # In astype, we consider dtype=float to also mean na_value=np.nan - kwargs = dict(na_value=np.nan) + kwargs = {"na_value": np.nan} elif is_datetime64_dtype(dtype): - kwargs = dict(na_value=np.datetime64("NaT")) + kwargs = {"na_value": np.datetime64("NaT")} else: kwargs = {} diff --git a/pandas/core/arrays/numpy_.py b/pandas/core/arrays/numpy_.py index 4eb67dcd12728..50d12703c3a30 100644 --- a/pandas/core/arrays/numpy_.py +++ b/pandas/core/arrays/numpy_.py @@ -273,12 +273,12 @@ def _values_for_factorize(self) -> Tuple[np.ndarray, int]: # Reductions def any(self, *, axis=None, out=None, keepdims=False, skipna=True): - nv.validate_any((), dict(out=out, keepdims=keepdims)) + nv.validate_any((), {"out": out, "keepdims": keepdims}) result = nanops.nanany(self._ndarray, axis=axis, skipna=skipna) return self._wrap_reduction_result(axis, result) def all(self, *, axis=None, out=None, keepdims=False, skipna=True): - nv.validate_all((), dict(out=out, keepdims=keepdims)) + nv.validate_all((), {"out": out, "keepdims": keepdims}) result = nanops.nanall(self._ndarray, axis=axis, skipna=skipna) return self._wrap_reduction_result(axis, result) @@ -311,7 +311,7 @@ def prod(self, *, axis=None, skipna=True, min_count=0, **kwargs) -> Scalar: return self._wrap_reduction_result(axis, result) def mean(self, *, axis=None, dtype=None, out=None, keepdims=False, skipna=True): - nv.validate_mean((), dict(dtype=dtype, out=out, keepdims=keepdims)) + nv.validate_mean((), {"dtype": dtype, "out": out, "keepdims": keepdims}) result = nanops.nanmean(self._ndarray, axis=axis, skipna=skipna) return self._wrap_reduction_result(axis, result) @@ -319,7 +319,7 @@ def median( self, *, axis=None, out=None, overwrite_input=False, keepdims=False, skipna=True ): nv.validate_median( - (), dict(out=out, overwrite_input=overwrite_input, keepdims=keepdims) + (), {"out": out, "overwrite_input": overwrite_input, "keepdims": keepdims} ) result = nanops.nanmedian(self._ndarray, axis=axis, skipna=skipna) return self._wrap_reduction_result(axis, result) @@ -328,7 +328,7 @@ def std( self, *, axis=None, dtype=None, out=None, ddof=1, keepdims=False, skipna=True ): nv.validate_stat_ddof_func( - (), dict(dtype=dtype, out=out, keepdims=keepdims), fname="std" + (), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="std" ) result = nanops.nanstd(self._ndarray, axis=axis, skipna=skipna, ddof=ddof) return self._wrap_reduction_result(axis, result) @@ -337,7 +337,7 @@ def var( self, *, axis=None, dtype=None, out=None, ddof=1, keepdims=False, skipna=True ): nv.validate_stat_ddof_func( - (), dict(dtype=dtype, out=out, keepdims=keepdims), fname="var" + (), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="var" ) result = nanops.nanvar(self._ndarray, axis=axis, skipna=skipna, ddof=ddof) return self._wrap_reduction_result(axis, result) @@ -346,21 +346,21 @@ def sem( self, *, axis=None, dtype=None, out=None, ddof=1, keepdims=False, skipna=True ): nv.validate_stat_ddof_func( - (), dict(dtype=dtype, out=out, keepdims=keepdims), fname="sem" + (), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="sem" ) result = nanops.nansem(self._ndarray, axis=axis, skipna=skipna, ddof=ddof) return self._wrap_reduction_result(axis, result) def kurt(self, *, axis=None, dtype=None, out=None, keepdims=False, skipna=True): nv.validate_stat_ddof_func( - (), dict(dtype=dtype, out=out, keepdims=keepdims), fname="kurt" + (), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="kurt" ) result = nanops.nankurt(self._ndarray, axis=axis, skipna=skipna) return self._wrap_reduction_result(axis, result) def skew(self, *, axis=None, dtype=None, out=None, keepdims=False, skipna=True): nv.validate_stat_ddof_func( - (), dict(dtype=dtype, out=out, keepdims=keepdims), fname="skew" + (), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="skew" ) result = nanops.nanskew(self._ndarray, axis=axis, skipna=skipna) return self._wrap_reduction_result(axis, result)