From fd60ad0f672eb1ad1354db0c0dd14c67e644919e Mon Sep 17 00:00:00 2001 From: Eric Brassell <31701272+ebrassell@users.noreply.github.com> Date: Fri, 22 Nov 2019 21:44:45 -0500 Subject: [PATCH 1/3] Correct misuse of high-cardinality --- doc/source/user_guide/scale.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/source/user_guide/scale.rst b/doc/source/user_guide/scale.rst index 7b590a3a1fcc8..a1d414708a271 100644 --- a/doc/source/user_guide/scale.rst +++ b/doc/source/user_guide/scale.rst @@ -93,7 +93,7 @@ Use efficient datatypes ----------------------- The default pandas data types are not the most memory efficient. This is -especially true for high-cardinality text data (columns with relatively few +especially true for low-cardinality text data (columns with relatively few unique values). By using more efficient data types you can store larger datasets in memory. From a50fa3e72630fd459ecf8cd063ece48a17fe7f9d Mon Sep 17 00:00:00 2001 From: Eric Brassell <31701272+ebrassell@users.noreply.github.com> Date: Sat, 23 Nov 2019 06:24:14 -0500 Subject: [PATCH 2/3] Incorporate feedback on phrasing. --- doc/source/user_guide/scale.rst | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/doc/source/user_guide/scale.rst b/doc/source/user_guide/scale.rst index a1d414708a271..c030af4bdc913 100644 --- a/doc/source/user_guide/scale.rst +++ b/doc/source/user_guide/scale.rst @@ -93,9 +93,9 @@ Use efficient datatypes ----------------------- The default pandas data types are not the most memory efficient. This is -especially true for low-cardinality text data (columns with relatively few -unique values). By using more efficient data types you can store larger datasets -in memory. +especially true for text data columns with relatively few unique values (commonly +referred to as "low-cardinality" data). By using more efficient data types you +can store larger datasets in memory. .. ipython:: python From 2ed159032638b2c3c9a6460d9aa9db1d5a499db3 Mon Sep 17 00:00:00 2001 From: Eric Brassell <31701272+ebrassell@users.noreply.github.com> Date: Sat, 23 Nov 2019 16:55:57 -0500 Subject: [PATCH 3/3] Remove trailing whitespace. --- doc/source/user_guide/scale.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/source/user_guide/scale.rst b/doc/source/user_guide/scale.rst index c030af4bdc913..cff782678a4b3 100644 --- a/doc/source/user_guide/scale.rst +++ b/doc/source/user_guide/scale.rst @@ -93,7 +93,7 @@ Use efficient datatypes ----------------------- The default pandas data types are not the most memory efficient. This is -especially true for text data columns with relatively few unique values (commonly +especially true for text data columns with relatively few unique values (commonly referred to as "low-cardinality" data). By using more efficient data types you can store larger datasets in memory.