diff --git a/pandas/tests/groupby/test_groupby.py b/pandas/tests/groupby/test_groupby.py index 31065cbb6f69a..a9945589211f6 100644 --- a/pandas/tests/groupby/test_groupby.py +++ b/pandas/tests/groupby/test_groupby.py @@ -1,4 +1,4 @@ -from collections import OrderedDict, defaultdict +from collections import OrderedDict from datetime import datetime from decimal import Decimal from io import StringIO @@ -11,7 +11,7 @@ import pandas as pd from pandas import ( - DataFrame, Index, MultiIndex, Panel, Series, Timestamp, date_range, + DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv) import pandas.core.common as com import pandas.util.testing as tm @@ -510,30 +510,30 @@ def test_frame_multi_key_function_list(): @pytest.mark.parametrize('op', [lambda x: x.sum(), lambda x: x.mean()]) -@pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_groupby_multiple_columns(df, op): data = df grouped = data.groupby(['A', 'B']) result1 = op(grouped) - expected = defaultdict(dict) + keys = [] + values = [] for n1, gp1 in data.groupby('A'): for n2, gp2 in gp1.groupby('B'): - expected[n1][n2] = op(gp2.loc[:, ['C', 'D']]) - expected = {k: DataFrame(v) - for k, v in expected.items()} - expected = Panel.fromDict(expected).swapaxes(0, 1) - expected.major_axis.name, expected.minor_axis.name = 'A', 'B' + keys.append((n1, n2)) + values.append(op(gp2.loc[:, ['C', 'D']])) + + mi = MultiIndex.from_tuples(keys, names=['A', 'B']) + expected = pd.concat(values, axis=1).T + expected.index = mi # a little bit crude for col in ['C', 'D']: result_col = op(grouped[col]) + pivoted = result1[col] exp = expected[col] - pivoted = result1[col].unstack() - pivoted2 = result_col.unstack() - assert_frame_equal(pivoted.reindex_like(exp), exp) - assert_frame_equal(pivoted2.reindex_like(exp), exp) + assert_series_equal(result_col, exp) + assert_series_equal(pivoted, exp) # test single series works the same result = data['C'].groupby([data['A'], data['B']]).mean() diff --git a/pandas/tests/io/test_excel.py b/pandas/tests/io/test_excel.py index e7110c8d32236..112d14795d9bf 100644 --- a/pandas/tests/io/test_excel.py +++ b/pandas/tests/io/test_excel.py @@ -2350,7 +2350,6 @@ def test_ExcelWriter_dispatch_raises(self): with pytest.raises(ValueError, match='No engine'): ExcelWriter('nothing') - @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_register_writer(self): # some awkward mocking to test out dispatch and such actually works called_save = [] diff --git a/pandas/tests/reshape/test_reshape.py b/pandas/tests/reshape/test_reshape.py index 6be215ee03166..552d71ac4fc38 100644 --- a/pandas/tests/reshape/test_reshape.py +++ b/pandas/tests/reshape/test_reshape.py @@ -587,8 +587,6 @@ class TestCategoricalReshape: def test_reshaping_multi_index_categorical(self): - # construct a MultiIndexed DataFrame formerly created - # via `tm.makePanel().to_frame()` cols = ['ItemA', 'ItemB', 'ItemC'] data = {c: tm.makeTimeDataFrame() for c in cols} df = pd.concat({c: data[c].stack() for c in data}, axis='columns') diff --git a/pandas/tests/sparse/frame/test_frame.py b/pandas/tests/sparse/frame/test_frame.py index 85654635a7926..588ba449ff862 100644 --- a/pandas/tests/sparse/frame/test_frame.py +++ b/pandas/tests/sparse/frame/test_frame.py @@ -9,7 +9,7 @@ from pandas.errors import PerformanceWarning import pandas as pd -from pandas import DataFrame, Panel, Series, bdate_range, compat +from pandas import DataFrame, Series, bdate_range, compat from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.sparse import frame as spf from pandas.core.sparse.api import ( @@ -1053,14 +1053,12 @@ def _check(frame, orig): _check(float_frame_fill0, float_frame_fill0_dense) _check(float_frame_fill2, float_frame_fill2_dense) - @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_stack_sparse_frame(self, float_frame, float_frame_int_kind, float_frame_fill0, float_frame_fill2): def _check(frame): dense_frame = frame.to_dense() # noqa - wp = Panel.from_dict({'foo': frame}) - from_dense_lp = wp.to_frame() + from_dense_lp = frame.stack().to_frame() from_sparse_lp = spf.stack_sparse_frame(frame)