diff --git a/doc/source/_static/rplot-seaborn-example1.png b/doc/source/_static/rplot-seaborn-example1.png deleted file mode 100644 index d19a3a018bfbf..0000000000000 Binary files a/doc/source/_static/rplot-seaborn-example1.png and /dev/null differ diff --git a/doc/source/_static/rplot-seaborn-example2.png b/doc/source/_static/rplot-seaborn-example2.png deleted file mode 100644 index 9293082e78129..0000000000000 Binary files a/doc/source/_static/rplot-seaborn-example2.png and /dev/null differ diff --git a/doc/source/_static/rplot-seaborn-example3.png b/doc/source/_static/rplot-seaborn-example3.png deleted file mode 100644 index 8fd311acbd528..0000000000000 Binary files a/doc/source/_static/rplot-seaborn-example3.png and /dev/null differ diff --git a/doc/source/_static/rplot-seaborn-example3b.png b/doc/source/_static/rplot-seaborn-example3b.png deleted file mode 100644 index 4bfbac574ef29..0000000000000 Binary files a/doc/source/_static/rplot-seaborn-example3b.png and /dev/null differ diff --git a/doc/source/_static/rplot-seaborn-example4.png b/doc/source/_static/rplot-seaborn-example4.png deleted file mode 100644 index 8e08c7e86178a..0000000000000 Binary files a/doc/source/_static/rplot-seaborn-example4.png and /dev/null differ diff --git a/doc/source/_static/rplot-seaborn-example6.png b/doc/source/_static/rplot-seaborn-example6.png deleted file mode 100644 index 0fa56f4a018e7..0000000000000 Binary files a/doc/source/_static/rplot-seaborn-example6.png and /dev/null differ diff --git a/doc/source/dsintro.rst b/doc/source/dsintro.rst index 6334167b2c746..8f89cd6789f4f 100644 --- a/doc/source/dsintro.rst +++ b/doc/source/dsintro.rst @@ -943,7 +943,7 @@ Panel4D (Experimental) .. warning:: - In 0.19.0 ``Panel4D` is deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package `__. Pandas provides a :meth:`~Panel4D.to_xarray` method to automate this conversion. + In 0.19.0 ``Panel4D`` is deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package `__. Pandas provides a :meth:`~Panel4D.to_xarray` method to automate this conversion. ``Panel4D`` is a 4-Dimensional named container very much like a ``Panel``, but having 4 named dimensions. It is intended as a test bed for more N-Dimensional named @@ -1032,7 +1032,7 @@ PanelND (Experimental) .. warning:: - In 0.19.0 ``PanelND` is deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package `__. + In 0.19.0 ``PanelND`` is deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package `__. PanelND is a module with a set of factory functions to enable a user to construct N-dimensional named containers like Panel4D, with a custom set of axis labels. Thus a domain-specific container can easily be diff --git a/doc/source/io.rst b/doc/source/io.rst index 7917e6b4cdfce..35d6639d21269 100644 --- a/doc/source/io.rst +++ b/doc/source/io.rst @@ -487,13 +487,13 @@ worth trying. you can end up with column(s) with mixed dtypes. For example, .. ipython:: python - :okwarning: + :okwarning: - df = pd.DataFrame({'col_1':range(500000) + ['a', 'b'] + range(500000)}) - df.to_csv('foo') - mixed_df = pd.read_csv('foo') - mixed_df['col_1'].apply(type).value_counts() - mixed_df['col_1'].dtype + df = pd.DataFrame({'col_1':range(500000) + ['a', 'b'] + range(500000)}) + df.to_csv('foo') + mixed_df = pd.read_csv('foo') + mixed_df['col_1'].apply(type).value_counts() + mixed_df['col_1'].dtype will result with `mixed_df` containing an ``int`` dtype for certain chunks of the column, and ``str`` for others due to the mixed dtypes from the diff --git a/doc/source/whatsnew/v0.19.0.txt b/doc/source/whatsnew/v0.19.0.txt index 4f81eafa3adaf..8a1a62deebf29 100644 --- a/doc/source/whatsnew/v0.19.0.txt +++ b/doc/source/whatsnew/v0.19.0.txt @@ -201,9 +201,6 @@ default of the index) in a DataFrame. from pandas.compat import StringIO -.. _whatsnew_0190.enhancements.read_csv_dupe_col_names_support: - - :ref:`Duplicate column names ` are now supported in :func:`read_csv` whether they are in the file or passed in as the ``names`` parameter (:issue:`7160`, :issue:`9424`) diff --git a/pandas/tseries/tdi.py b/pandas/tseries/tdi.py index 921f60b23d187..271fee6341324 100644 --- a/pandas/tseries/tdi.py +++ b/pandas/tseries/tdi.py @@ -1010,14 +1010,14 @@ def timedelta_range(start=None, end=None, periods=None, freq='D', Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None) - Notes - ----- - 2 of start, end, or periods must be specified - Returns ------- rng : TimedeltaIndex + Notes + ----- + 2 of start, end, or periods must be specified. + To learn more about the frequency strings, please see `this link `__. """