diff --git a/doc/source/_static/rplot-seaborn-example1.png b/doc/source/_static/rplot-seaborn-example1.png
deleted file mode 100644
index d19a3a018bfbf..0000000000000
Binary files a/doc/source/_static/rplot-seaborn-example1.png and /dev/null differ
diff --git a/doc/source/_static/rplot-seaborn-example2.png b/doc/source/_static/rplot-seaborn-example2.png
deleted file mode 100644
index 9293082e78129..0000000000000
Binary files a/doc/source/_static/rplot-seaborn-example2.png and /dev/null differ
diff --git a/doc/source/_static/rplot-seaborn-example3.png b/doc/source/_static/rplot-seaborn-example3.png
deleted file mode 100644
index 8fd311acbd528..0000000000000
Binary files a/doc/source/_static/rplot-seaborn-example3.png and /dev/null differ
diff --git a/doc/source/_static/rplot-seaborn-example3b.png b/doc/source/_static/rplot-seaborn-example3b.png
deleted file mode 100644
index 4bfbac574ef29..0000000000000
Binary files a/doc/source/_static/rplot-seaborn-example3b.png and /dev/null differ
diff --git a/doc/source/_static/rplot-seaborn-example4.png b/doc/source/_static/rplot-seaborn-example4.png
deleted file mode 100644
index 8e08c7e86178a..0000000000000
Binary files a/doc/source/_static/rplot-seaborn-example4.png and /dev/null differ
diff --git a/doc/source/_static/rplot-seaborn-example6.png b/doc/source/_static/rplot-seaborn-example6.png
deleted file mode 100644
index 0fa56f4a018e7..0000000000000
Binary files a/doc/source/_static/rplot-seaborn-example6.png and /dev/null differ
diff --git a/doc/source/dsintro.rst b/doc/source/dsintro.rst
index 6334167b2c746..8f89cd6789f4f 100644
--- a/doc/source/dsintro.rst
+++ b/doc/source/dsintro.rst
@@ -943,7 +943,7 @@ Panel4D (Experimental)
.. warning::
- In 0.19.0 ``Panel4D` is deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package `__. Pandas provides a :meth:`~Panel4D.to_xarray` method to automate this conversion.
+ In 0.19.0 ``Panel4D`` is deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package `__. Pandas provides a :meth:`~Panel4D.to_xarray` method to automate this conversion.
``Panel4D`` is a 4-Dimensional named container very much like a ``Panel``, but
having 4 named dimensions. It is intended as a test bed for more N-Dimensional named
@@ -1032,7 +1032,7 @@ PanelND (Experimental)
.. warning::
- In 0.19.0 ``PanelND` is deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package `__.
+ In 0.19.0 ``PanelND`` is deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package `__.
PanelND is a module with a set of factory functions to enable a user to construct N-dimensional named
containers like Panel4D, with a custom set of axis labels. Thus a domain-specific container can easily be
diff --git a/doc/source/io.rst b/doc/source/io.rst
index 7917e6b4cdfce..35d6639d21269 100644
--- a/doc/source/io.rst
+++ b/doc/source/io.rst
@@ -487,13 +487,13 @@ worth trying.
you can end up with column(s) with mixed dtypes. For example,
.. ipython:: python
- :okwarning:
+ :okwarning:
- df = pd.DataFrame({'col_1':range(500000) + ['a', 'b'] + range(500000)})
- df.to_csv('foo')
- mixed_df = pd.read_csv('foo')
- mixed_df['col_1'].apply(type).value_counts()
- mixed_df['col_1'].dtype
+ df = pd.DataFrame({'col_1':range(500000) + ['a', 'b'] + range(500000)})
+ df.to_csv('foo')
+ mixed_df = pd.read_csv('foo')
+ mixed_df['col_1'].apply(type).value_counts()
+ mixed_df['col_1'].dtype
will result with `mixed_df` containing an ``int`` dtype for certain chunks
of the column, and ``str`` for others due to the mixed dtypes from the
diff --git a/doc/source/whatsnew/v0.19.0.txt b/doc/source/whatsnew/v0.19.0.txt
index 4f81eafa3adaf..8a1a62deebf29 100644
--- a/doc/source/whatsnew/v0.19.0.txt
+++ b/doc/source/whatsnew/v0.19.0.txt
@@ -201,9 +201,6 @@ default of the index) in a DataFrame.
from pandas.compat import StringIO
-.. _whatsnew_0190.enhancements.read_csv_dupe_col_names_support:
-
-
:ref:`Duplicate column names ` are now supported in :func:`read_csv` whether
they are in the file or passed in as the ``names`` parameter (:issue:`7160`, :issue:`9424`)
diff --git a/pandas/tseries/tdi.py b/pandas/tseries/tdi.py
index 921f60b23d187..271fee6341324 100644
--- a/pandas/tseries/tdi.py
+++ b/pandas/tseries/tdi.py
@@ -1010,14 +1010,14 @@ def timedelta_range(start=None, end=None, periods=None, freq='D',
Make the interval closed with respect to the given frequency to
the 'left', 'right', or both sides (None)
- Notes
- -----
- 2 of start, end, or periods must be specified
-
Returns
-------
rng : TimedeltaIndex
+ Notes
+ -----
+ 2 of start, end, or periods must be specified.
+
To learn more about the frequency strings, please see `this link
`__.
"""