@@ -1790,7 +1790,7 @@ def freq(self, value):
1790
1790
See Also
1791
1791
--------
1792
1792
quarter : Return the quarter of the date.
1793
- is_quarter_end : Similar method for indicating the start of a quarter.
1793
+ is_quarter_end : Similar property for indicating the start of a quarter.
1794
1794
1795
1795
Examples
1796
1796
--------
@@ -1831,7 +1831,7 @@ def freq(self, value):
1831
1831
See Also
1832
1832
--------
1833
1833
quarter : Return the quarter of the date.
1834
- is_quarter_start : Similar method indicating the quarter start.
1834
+ is_quarter_start : Similar property indicating the quarter start.
1835
1835
1836
1836
Examples
1837
1837
--------
@@ -1871,7 +1871,7 @@ def freq(self, value):
1871
1871
1872
1872
See Also
1873
1873
--------
1874
- is_year_end : Similar method indicating the last day of the year.
1874
+ is_year_end : Similar property indicating the last day of the year.
1875
1875
1876
1876
Examples
1877
1877
--------
@@ -1902,7 +1902,46 @@ def freq(self, value):
1902
1902
is_year_end = _field_accessor (
1903
1903
'is_year_end' ,
1904
1904
'is_year_end' ,
1905
- "Logical indicating if last day of year (defined by frequency)" )
1905
+ """
1906
+ Indicate whether the date is the last day of the year.
1907
+
1908
+ Returns
1909
+ -------
1910
+ Series or DatetimeIndex
1911
+ The same type as the original data with boolean values. Series will
1912
+ have the same name and index. DatetimeIndex will have the same
1913
+ name.
1914
+
1915
+ See Also
1916
+ --------
1917
+ is_year_start : Similar property indicating the start of the year.
1918
+
1919
+ Examples
1920
+ --------
1921
+ This method is available on Series with datetime values under
1922
+ the ``.dt`` accessor, and directly on DatetimeIndex.
1923
+
1924
+ >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3))
1925
+ >>> dates
1926
+ 0 2017-12-30
1927
+ 1 2017-12-31
1928
+ 2 2018-01-01
1929
+ dtype: datetime64[ns]
1930
+
1931
+ >>> dates.dt.is_year_end
1932
+ 0 False
1933
+ 1 True
1934
+ 2 False
1935
+ dtype: bool
1936
+
1937
+ >>> idx = pd.date_range("2017-12-30", periods=3)
1938
+ >>> idx
1939
+ DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'],
1940
+ dtype='datetime64[ns]', freq='D')
1941
+
1942
+ >>> idx.is_year_end
1943
+ array([False, True, False])
1944
+ """ )
1906
1945
is_leap_year = _field_accessor (
1907
1946
'is_leap_year' ,
1908
1947
'is_leap_year' ,
0 commit comments